

 Midterm Exam

Student Name:

[Question 1: 20%]

a) List three ways that software engineering differs from programming

 A Programmer writes a
o a software engineer writes a software component that

written by other software engineers to build a system
 Programming is primarily a

o Software engineering is essentially a team activity
 Programming is just one aspect of software development

o Large software

b) Define “Agile software engineering

 Effective (rapid and adaptive)

 Effective communication in structure and attitudes among all team members, technological and
business people, software engineers and managers.

 Drawing the customer into the team

 Planning in an uncertain world has its limits and plan must be

 Organizing a team so that it is in control of the work performed.

c) List the activities of waterfall model:

d) Discuss how waterfall model and
customer requirements:

In waterfall model, the inflexible partitioning of the project into distinct stages makes it
to changing customer requirements.
well-understood and changes will be fairly limited during the design process.

However, the iterative models ha
time. This enables you to develop increasingly more complete version of the software
often change as development proceeds.

Computer Science Department

Software Engineering (COMP 433)
1st Semester 2013/2014

 (75 minutes) 5/01/201

 ID: Section: Dr. Yousef

List three ways that software engineering differs from programming:

A Programmer writes a complete program
a software engineer writes a software component that will be combined with components
written by other software engineers to build a system

Programming is primarily a personal activity
Software engineering is essentially a team activity

Programming is just one aspect of software development
Large software systems must be developed similar to other engineering practices

Agile software engineering”:

(rapid and adaptive) response to change.

in structure and attitudes among all team members, technological and
s people, software engineers and managers.

Drawing the customer into the team.

in an uncertain world has its limits and plan must be flexible.

so that it is in control of the work performed.

model:

model and iterative models such as Rational Process deal with changing in

nflexible partitioning of the project into distinct stages makes it
customer requirements. Therefore, this model is only appropriate when the requirements are

understood and changes will be fairly limited during the design process.

have been explicitly designed to accommodate a product that evolved over
enables you to develop increasingly more complete version of the software

often change as development proceeds.

1

1/2014

Yousef Dr. Mamoun

will be combined with components

systems must be developed similar to other engineering practices

in structure and attitudes among all team members, technological and

models such as Rational Process deal with changing in

nflexible partitioning of the project into distinct stages makes it difficult to respond
Therefore, this model is only appropriate when the requirements are

igned to accommodate a product that evolved over
enables you to develop increasingly more complete version of the software as requirements

2

[Question 2: 20%]

a) What is the distinction (difference) between functional and non-functional requirements?

 Functional requirements: Describe user tasks which the system needs to support.
“An operator must be able to define a new game”

 Nonfunctional requirements: Describe properties of the system or the domain.
“The response time must be less than 1 second”

b) Based on your deliverable for phase one of the Municipality project, select a use case and specify one
functional and one non-functional requirements, your specification should be clear, correct, feasible, and
verifiable:

c) Consider an ATM system. Identify three different actors that interact with this system.

1 Bank Customer

2 ATM Maintainer

3 Central Bank Computer

 Thief

d) What is the difference between a scenario and a use case? When do you use each?

A scenario is an actual sequence of interactions (i.e., an instance) describing one specific situation;
A use case is a general sequence of interactions (i.e., a class) describing all possible scenarios associated
with a situation.
Scenarios are used as examples and for clarifying details with the client.
Use cases are used as complete descriptions to specify a user task or a set of related system features.

3

[Question 3: 20%]

Draw a use case diagram for a ticket distributor for a train system. The system includes two actors: a traveler,

who purchases different types of tickets, and a central computer system, which maintains a reference database

for the tariff (i.e. rate, price). Use cases should include: BuyOneWayTicket, BuyWeeklyCard, BuyMonthlyCard,

UpdateTariff. Also include the following exceptional cases: Time-Out (i.e., traveler took too long to insert the

right amount), TransactionAborted (i.e., traveler selected the cancel button without completing the

transaction), DistributorOutOfChange, and DistributorOutOfPaper.

This question can have several correct answers; the following figure is a possible answer:

The following elements should be present:
• The relationship between an actor and a use case is a communication relationship (undirected solid line).
• The relationship between exceptional use cases and common use cases is an <<extend>>relationship.
• The exceptional use cases described in the exercise only apply to the use cases invoked by the traveler.

The following elements should be present in a “good” answer:
• All exceptions apply to all traveler use cases. Instead of drawing 3x4 relationships between these use
cases, an abstract use case from which the exceptional use case inherit can be used, thus reducing the
number of <<extend>>relationships to 3 at the cost of introducing 4 generalization relationships.

