UML Diagrams

Covered

Class
Dic=rams

Collabor~.10n Component

Dia” . ams Diagrams
Deployment

Diagrams We are

here
Takem frorm [Bouch 1999 RATIONAL

Covered Covered

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

The component diagram's main purpose 1s to show the
structural relationships between the components of a
system

Component diagrams offer architects a natural format to
begin modelling a solution

Component diagrams allow an architect to verify that a
system's required functionality is being implemented by
components

Developers find the component diagram useful because it
provides them with a high-level, architectural view of the
system that they will be building

© Prof. Adel Taweel 2021

COMP433: Software Engineering

Component Diagrams

¥COMpOnent E «components

Order Order Order

All they mean the same: a component Order
UML version 2.0

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

Architectural connection in UML 2.0 is expressed
primarily in terms of interfaces

Interfaces are classifiers with operations but no attributes

Components have provided and required interfaces

Component implementations are said to realize their provided
interfaces

A provided and required interface can be connected if the
operations in the latter are a subset of those in the former, and the
signatures of the associated operations are ‘compatible’

Ports provide access between external interfaces and
internal structure of components

UML components can be used to model complex
architectural connectors (like a CORBA ORB)

© Prof. Adel Taweel 2021

COMP433: Software Engineering

Required/Provide Interface

Requires Interface Provides Interface
Defines the services { —O Defines the services
that are needed and > c ¢ — that are provided
should be provided omponen — (O by the component
by other components O to other components

«component»
Order
«provided inlerfacas»
OrderEntry
AccountPayable
arequirad Interraces»
Person
OrderEnlry .
O_ scomponents gl Pe. C
AccountPayable Order
C

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

E _C '''''''''''''' = O— CusTomey E

T Customerliookup Repository

Product Accessor ,L

Efpmm

Invcrtory a1
Syetem

showing a component's relationship with other components, the
lollipop and socket notation must also include a dependency arrow (as
used in the class diagram). On a component diagram with lollipops and
sockets, note that the dependency arrow comes out of the consuming

(requiring) socket and its arrow head connects with the provider's
lollipop

© Prof. Adel Taweel 2021

COMP433: Software Engineering

Component Diagrams

provided interface

required interface

2 | =
Assembl
<<com ponent» @ < <corrponent> > con toi'ls
PictureEditor Mouselistener MouseListener GUI nec
7 i <<interfaces>>
interface realisation T — interface dependency
void MouseClicked(MouseEvent e)
’/7 void MouseEntered(Mousetvent e) T \/
o void Mousebxited(MouscEvent) "~
e void MouscPressed{MouscEvent ¢) '-\
o void MouscReleased(MouscEvent ¢) Ny

<<component>>
Picturekditor

© Prof. Adel Taweel 2021

E Interface

- 5 dependencies
GUI

Refl: David Rosenblum, UCL

COMP433: Software Engineering

Composite Structure in Component Diagrams

<<component>> <<component>>
PicturcEditor GUI
MouseListener
. N\ GUIComponen
DrawingStorage _ ﬂj ‘
Mouselrstener

A
t B composite structures A —l l
DrawingEngine Vindow @———2-"| Button

Ref: David Rosenblum, UCL

A composite structure depicts the internal
realisation of component functionality

© Prof. Adel Taweel 2021 COMP433: Software Engineering

3 g

<<component>> -~ <<component>>
Picturetditor GUI
Mouseli
DrawingStorage O) —{ GUIComponent classes

r e =

DrawingEngine ey Window [@———%=| Button

Ref: David Rosenblum, UCL

The ports and connectors specify how component interfaces are mapped to
internal functionality

Note that these ‘connectors’ are rather limited, special cases of the ones in
software architectures

© Prof. Adel Taweel 2021 COMP433: Software Engineering

L

POt Aums <<component>>
\ :

~EK
mw,/ lﬂtﬂm\

Ref: David Rosenblum, UCL

Connectors and ports also can be used to specify
structure of component instantiations

¥ (6 B

© Prof. Adel Taweel 2021 COMP433: Software Engineering

gl

Facilities

2]

Student 1

Stereotype
Encryption /
o . A
Access control Security

<<infrastructure>>

2]

Seminar

- —

DataAccess O
i
Faci |ieso
~
L
Seminar ﬂ o
Management x4 Dammso_
<> <
e —Shde
N =0+
™~
\ ~
a \ Dalaﬁcas%_
Student \ 3
Administration =~ e =— — %m;o_
<>
N
Dahkm%_
Schedule
o

CLLHMPONGats> k o |

Schedule

© Prof. Adel Taweel 2021

O
=]
Persistence Persistence
<<infrastructure>>
0 \
\
\
<<requircs>>
= \‘
University DB
<<database>> JDBC

COMP433: Software Engineering

Componentization Guidelines

“Keep components cohesive”. 1.e a component should

implement a single, related set of functionality.

This may be the user interface logic for a single user application,
business classes comprising a large-scale domain concept, or technical
classes representing a common infrastructure concept.

User interface classes assigned as application components.

User interface classes, those that implement screens, pages, or
reports, as well as those that implement “glue logic”.

Assign common technical classes to infrastructure

components .

Technical classes, e.g. that implement system-level services such as
security, persistence, or middleware should be assigned to
components which have the infrastructure stereotype.

© Prof. Adel Taweel 2021 COMP433: Software Engineering

g Infrastructure components
DataAccess
O—1 Facilities
F
fﬁjo— Encryption
- oo i SR |
. = -~ Security
Seminar DataAccess gl Access control <<infrastructure>>
ManagL;”ement Focss O— Student e O—
<<yl|>>
N TSweg,
G
XN
A s = D |
Student \ . <<infrastructure>> }
Administration b s— — Seritgo_ = C}— \
<> l
\ \
<m>k L \
me%__ <<requircs>>
Schedule
Schedule \
o— gl |
University DB
User interfaces assigned to application components <<database>> | "JDBC

© Prof. Adel Taweel 2021

COMP433: Software Engineering

Componentization Guidelines

Assign hierarchies to the same component.
99.9% of the time it makes sense to assign all of the classes of a
hierarchy, either an inheritance hierarchy or a composition
hierarchy, to the same component.

Identify business domain components.

Because you want to minimize network traffic to reduce the response
time of your application, you want to design your business domain
components in such a way that most of the information flow occurs
within the components and not between them.

Business domain components = business services

Identify the “collaboration type” of business classes.
Once you have identified the collaboration type of each class (e.g.
server/client or both), you can start identifying potential business
domain components.

© Prof. Adel Taweel 2021 COMP433: Software Engineering

= St
Seminar ﬂ L o
Management . =5
<> \\ — TR
N g
.
\ pa
Student a \ .
Administration b — *
<>

z N

£ \
Facilities

g]

Infrastructure components

Student

3]

Seminar

“LooempTreat>> l‘

Schedule

4

M

Students, Facilities, Seminar, Schedule are

Business Domain Components

© Prof. Adel Taweel 2021

Encryption
<z gl
Access control ~ Security
o_ <<infrastructure>>
Persistence Persistence
| <<infrastructure>> }
C \

\

\
<<requircs>>
= \

.) \
University DB
<<database>> IDBC

COMP433: Software Engineering

Componentization Guidelines

Highly coupled classes grouped in the same component.
When two classes collaborate frequently, this is an indication they
should be in the same domain business component to reduce the
network traffic between the two classes.

Minimize the size of the message flow between components.
If you have domain components, one as a server to only the other as
a client, you may decide to combine or merge the two components.

Define component contracts, as interfaces.
Each component will offer services to its client components, each
such service is a component contract.

© Prof. Adel Taweel 2021 COMP433: Software Engineering

<<component>> " <<component>>
PicturcEditor Defining contacts GUI

GUIComponen
g 8| A]

T\ DrawingEngine \knw-o—“" Button

Highly coupled
classes

Highly coupled classes belong in the same
component

DrawingStorage:

Ref: David Rosenblum. UCL

© Prof. Adel Taweel 2021 COMP433: Software Engineering

