
Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

UML Diagrams

173

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

The component diagram's main purpose is to show the
structural relationships between the components of a
system

Component diagrams offer architects a natural format to
begin modelling a solution

Component diagrams allow an architect to verify that a
system's required functionality is being implemented by
components

Developers find the component diagram useful because it
provides them with a high-level, architectural view of the
system that they will be building

174

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

175

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

Architectural connection in UML 2.0 is expressed
primarily in terms of interfaces

Interfaces are classifiers with operations but no attributes
Components have provided and required interfaces

Component implementations are said to realize their provided
interfaces

A provided and required interface can be connected if the
operations in the latter are a subset of those in the former, and the
signatures of the associated operations are ‘compatible’

Ports provide access between external interfaces and
internal structure of components

UML components can be used to model complex
architectural connectors (like a CORBA ORB)

176

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Required/Provide Interface

177

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

showing a component's relationship with other components, the
lollipop and socket notation must also include a dependency arrow (as
used in the class diagram). On a component diagram with lollipops and
sockets, note that the dependency arrow comes out of the consuming
(requiring) socket and its arrow head connects with the provider's
lollipop

178

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Component Diagrams

179

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Composite Structure in Component Diagrams

A composite structure depicts the internal
realisation of component functionality

180

Ref: David Rosenblum, UCL

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Ports

The ports and connectors specify how component interfaces are mapped to
internal functionality

Note that these ‘connectors’ are rather limited, special cases of the ones in
software architectures

181

Ref: David Rosenblum, UCL

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Ports

Connectors and ports also can be used to specify
structure of component instantiations

182

Ref: David Rosenblum, UCL

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example

183

Facilities

Student

Seminar

Schedule

Seminar
Management

<<UI>>

Student
Administration

<<UI>>

Security
<<infrastructure>>

Persistence
<<infrastructure>>

University DB
<<database>>

Encryption

Persistence

Access control

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Componentization Guidelines

“Keep components cohesive”. i.e a component should
implement a single, related set of functionality.
This may be the user interface logic for a single user application,

business classes comprising a large-scale domain concept, or technical
classes representing a common infrastructure concept.

User interface classes assigned as application components.
User interface classes, those that implement screens, pages, or

reports, as well as those that implement “glue logic”.

Assign common technical classes to infrastructure
components.
Technical classes, e.g. that implement system-level services such as

security, persistence, or middleware should be assigned to
components which have the infrastructure stereotype.

184

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example

185

Facilities

Student

Seminar

Schedule

Seminar
Management

<<UI>>

Student
Administration

<<UI>>

Security
<<infrastructure>>

Persistence
<<infrastructure>>

University DB
<<database>>

Encryption

Persistence

Access control

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Componentization Guidelines

Assign hierarchies to the same component.
99.9% of the time it makes sense to assign all of the classes of a

hierarchy, either an inheritance hierarchy or a composition
hierarchy, to the same component.

Identify business domain components.
Because you want to minimize network traffic to reduce the response

time of your application, you want to design your business domain
components in such a way that most of the information flow occurs
within the components and not between them.

Business domain components = business services

Identify the “collaboration type” of business classes.
Once you have identified the collaboration type of each class (e.g.

server/client or both), you can start identifying potential business
domain components.

186

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example

187

Facilities

Student

Seminar

Schedule

Seminar
Management

<<UI>>

Student
Administration

<<UI>>

Security
<<infrastructure>>

Persistence
<<infrastructure>>

University DB
<<database>>

Encryption

Persistence

Access control

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Componentization Guidelines

Highly coupled classes grouped in the same component.
When two classes collaborate frequently, this is an indication they

should be in the same domain business component to reduce the
network traffic between the two classes.

Minimize the size of the message flow between components.
If you have domain components, one as a server to only the other as

a client, you may decide to combine or merge the two components.

Define component contracts, as interfaces.
Each component will offer services to its client components, each

such service is a component contract.

188

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example

189

