
Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Software Engineering

System Design
(chapter 7, Bruegge et al)

(chapter 6, Sommerville, 9th ed.)

Prof Adel Taweel

1

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Objectives

To provide an overview of System Design

To appreciate issues addressed during the system
design phase

To understand consequences of design goals and
how to achieve them

To appreciate the value of architectural styles in
formulating system designs.

2

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Design is multi-perspective

Analysis: Focuses on the business (or problem)
domain.

Design: Focuses on the solution domain.
The (system) solution perspective

considers three aspects:
- Software artifacts
- Associated technologies
- Hardware limitations or solutions

3

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

The Scope of System Design

It bridges the gap between
a (business) problem and an
system solution in a
structured way

Problem
(Business)

System as a
Solution

System
Design

• How?
• Use Divide & Conquer (see next

slide):
1) Identify design goals
2) Model the new system design as
a set of components (subsystems)
or sub-solutions
3-8) Address main design goals.

System
Model

5

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

System Design

2. Subsystem Decomposition
Solution as components (sub-solutions)
->Architectural Style
->Layers vs Partitions
->Cohesion/Coupling

4. Hardware/
Software Mapping

Identification of hardware needs,
nodes and configurations
Special Purpose Systems (Buy vs Build)
Network Connectivity

3. Data
Management

How to persist Objects?
e.g. File system vs Database Security vs Capabilities

e.g. Access Control

5. Resource
Control

7. Boundary
Conditions

Under what assumptions
the system starts?
How and when the system
terminates?
How to handle failure

6. Software
Control

Monolithic/centralised/
decentralised/distributed
e.g. Event-Driven

1. Design Goals
How to achieve non-functional requirements?
=> As optimally as possible

System Design: Seven Key Issues to
address

6

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Developer/

Maintainer

Minimum # of errors
Maintainability (Modifiability),
Readability, Reusability,
Adaptability, Well-defined interfaces

Stakeholders have different Design Goals (OR Issues
of Concerns)

Reliability

Low cost
Increased productivity
Backward compatibility
Traceability of requirements
Rapid development
Flexibility

Client
(Customer)

Portability
Good documentation

Runtime
Efficiency

End
User

Functionality
User-friendliness
Usability
Ease of learning
Fault tolerant
Robustness

9

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Some Design Trade-offs for a developer

➢ Functionality vs.
➢ Robustness vs.
➢ Portability vs.
➢ Rapid development vs.

➢ Reusability vs.
➢ Backward Compatibility vs.

Usability

Efficiency
Functionality
Complexity

Cost
Readability

Cost

10

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Design Goals: Coupling and Cohesion
Goal: Reduce system complexity while allowing change
Cohesion measures degree of the strength of functional relatedness

within classes (or among classes) in a component
High cohesion: The classes in a component (a subsystem) perform similar or
related tasks/functions and are related to each other via many associations
Low cohesion: classes are grouped with no clear relatedness between them,

but lots of miscellaneous and auxiliary classes, almost no associations

Coupling measures degree of interdependence between
components (or subsystems)
High coupling: Changes to one component will cause significant changes to

another component
Low coupling: A change in one component will cause minimal or no effect to

other components

14

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering
15

Why high Cohesion?

➢ increases the clarity and ease of comprehension
of the design

➢ simplifies maintenance and future upgrades and
enhancements

➢ often supports low coupling
➢ supports increased reuse

➢ a highly cohesive (i.e. a highly related functionality)
component can be re-used for the same specific
purpose!

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

How to achieve high Cohesion?

High Cohesion can be achieved if most of the interaction is kept
within a component (opposed to “between components”)

Indicators:
Does a component (or a subsystem) often or always call another

component (or subsystem) for a specific service?
Þ If yes: Consider moving them together into the same subsystem,

preferably on the same h/w physical node.

Which of the components call each other for services?
Þ Can this be avoided by restructuring the components (i.e. classes

within) or changing their interfaces?

Can the components be hierarchically ordered (in layers)?

16

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

How to achieve Low Coupling?

Low coupling can be achieved by making (self-contained components) as
independent as possible by not needing any knowledge of or relying on other
components to complete its function.

Indicator: if a calling class does not need to know about the internal (knowledge,
e.g. attributes) of the called class (Principle of information hiding, Parnas)

Does the calling class need to know about attributes of other called classes?
=> Define as interfaces (or public operations)

David Parnas,
Developed the concept of

Information Hiding in modular programming.

17

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Is this a Good Design?

Advertisement

User Interface

Session
Management

User Management

Tournament
Statistics

Component
Management

Tournament

No, it has a high-level of
coupling
(“Spaghetti” Design)

How to avoid?

Package Diagram Each package contains a component or a collection of
component (similar to component diagram)

18

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Architectural Style vs Architecture

Subsystem decomposition:
Identification of subsystems, services, and their

relationship to each other

Architectural Style:
A pattern for a subsystem decomposition

Software Architecture:
Instance of an architectural style.

19

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Examples of Architectural Styles

➢ Layered Architectural style
➢ Service-Oriented Architecture (SOA)

➢ Client/Server
➢ Peer-To-Peer
➢ Three-tier, Four-tier Architecture
➢ Repository
➢ Model-View-Controller
➢ Pipes and Filters

20

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Layers and Partitions

A layer is a subsystem that provides a service to another
subsystem with the following restrictions:
A layer only depends on services from lower layers
A layer has no knowledge of higher layers

A layer can be divided horizontally into several independent
subsystems called partitions
Partitions provide services to other partitions on the same layer
Partitions are also called “weakly coupled” subsystems.

21

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

The Layers of an O.S. System
“An operating system is a hierarchy of layers, each layers using

services offered by the lower layers”

Layer 0: Scheduler

Layer 1: Pager

Layer 2: Communication with Console

Layer 3: I/O Device Manager

Layer 4: User Programs GUI Services partition

layer

22

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

The Layered Architectural Style

Client Layer N

Layer N-1

Layer N-2

Layer 1

Layer 0

..

.

uses

calls

calls

calls

calls

Hierarchical
Relationship

23

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Hierarchical Relationships between
Subsystems

There are two major types of hierarchical relationships
Layer A “depends on” layer B (compile time dependency)

Example: Build dependencies (e.g. make, ant, maven)

Layer A “calls” layer B (runtime dependency)
Example: A web browser calls a web server

UML convention:
Þ Runtime relationships are represented with dashed lines
Þ Compile time relationships are represented with solid lines

24

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

F:SubsystemE:Subsystem G:Subsystem

D:SubsystemC:SubsystemB:Subsystem

A:Subsystem Layer 1

Layer 2

Layer 3

Example of a System with more than one Hierarchical
Relationship

Layer
Relationship

“calls”

Layer
Relationship
“depends on”

compile time dependency
Run time dependency

25

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Closed Architecture (Opaque Layering)

Each layer can only call
operations from the layer
below (called “direct
addressing”)

Design goals:
Maintainability,
flexibility.

Operating System, Libraries

L2

L3

L4

L1

26

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Open Architecture (Transparent Layering)

Each layer can call
operations from any layer
below (“indirect
addressing”)

Design goal:
Runtime efficiency.

Operating System, Libraries

L2

L3

L4

L1

28

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Client/Server Architectures

Often used in the design of many applications, e.g.
database systems
Front-end: User application (client)
Back end: Database access and manipulation (server)

Functions performed by client:
Input from the user (Customized user interface)
Front-end processing of input data

Functions performed by the database server:
Centralized data management
Data integrity and database consistency
Database security

33

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Client/Server Architectural Style
Special case of the Layered Architectural style

One or many servers provide services to instances of subsystems, called clients

Client

Server

+service1()
+service2()

+serviceN()

**

requester provider

• Each client calls on the server, which performs
some service and returns the result

The clients know the interface of the server
The server does not need to know the interface of the

client
• The response is, in general, reasonably fast
• End users interact only with the client

.

34

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Client/Server Architectures: Design
Features/goals

Location-
Transparency

High=>Server runs on many operating systems and
many networking environments

Reasonable=> Server might itself be
distributed, but provides a single "logical"
service to the user

Reasonable=>Client optimized for interactive
display-intensive tasks; Server optimized for
CPU-intensive operations

High=>Server can handle large # of clients

Reasonable=>User interface of client can
support a variety of end devices (PDA,
Handy, laptop, wearable computer)

Service Portability

High Performance

Reliability

Scalability

Client Portability

Reasonable=>Server would survive some
client and communication problems. e.g. crash
of a client does not cause all the system to fail

35

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Client/Server Architectures: Limitations
Client/Server systems do not provide peer-to-peer communication,

e.g. calls can only be triggered from a client NOT vice versa
Peer-to-peer communication is often needed for improved

robustness.
Example:

In some situations, it would useful if a Database could process queries
from an application/client and be able to send notifications to the application
when data have changed – this is not possible in client-server!

application1:DBUser

database:DBMS

1. updateData

application2:DBUser 2. changeNotification

36

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Peer-to-Peer Architectural Style
Generalization of Client/Server Architectural Style
“Clients can be servers and servers can be clients”

Introduces a new abstraction: Peer
“Clients and servers can both be peers”
How do we model this statement? With Inheritance?

Proposal 1: “A peer can be either a client or a server”

Proposal 2: “A peer can be a client as well as a server”.

37

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Client/Server Vs Peer-to-Peer
“Clients can be servers and servers can be clients”
How to Model?
Which model is correct?
Model 1: “A peer can be either a client or a server”
Model 2: “A peer can be a client as well as a server”

Client Server
✔

?Model 1
Model 2

38

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

3-Layer-Architectural Style
(3-Tier Architecture)

Definition: 3-Layered Architectural Style
An architectural style, where an application consists of 3 hierarchically

ordered subsystems
A user interface, middleware and a database system
The middleware subsystem services data requests between the user

interface and the database subsystem

Definition: 3-Tier Architecture
A software architecture where the 3 layers are allocated on 3 separate

hardware nodes
Note: Layer is a type (e.g. class, subsystem) and Tier is an

instance (e.g. object, hardware node)
Layer and Tier are often used interchangeably.

39

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example of a 3-Layered Architectural Style

Three-Layered Architectural style
are often used for the
development of Websites:
1. The Web Browser implements the

user interface
2. The Web Server serves requests

from the web browser
3. The Database manages and

provides access to the persistent
data.

40

Database

Web Server

Web Browser (UI)

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example of a 4-Layered Architectural Style

4-Layer-architectural styles are usually
used for the development of
electronic commerce sites. The
layers are
1. The Web Browser, providing the user

interface
2. A Web Server, serving static HTML

requests
3. An Application Server, providing session

management (for example the contents
of an electronic shopping cart) and
processing of dynamic HTML requests

4. A back end Database, that manages and
provides access to the persistent data
• In commercially available 4-tier

architectures, this is usually a relational
database management system (RDBMS).

41

Database

Web Server

Web Browser (UI)

Application
Server

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Model-View-Controller Architectural Style

Problem: In systems with high coupling changes to the user
interface (boundary objects) often force changes to the
entity objects (data)
The user interface cannot be re-implemented without changing the

representation of the entity objects
The entity objects cannot be reorganized without changing the user

interface

Solution: Decoupling! The model-view-controller (MVC) style
decouples data access (entity objects) and data
presentation (boundary objects)

Views: Subsystems containing boundary objects
Model: Subsystem with entity objects
Controller: Subsystem mediating between Views (data presentation) and

Models (data access).

43

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Model-View-Controller Architectural Style
Subsystems are classified into 3 different types

Model : Provides application domain knowledge
View : Responsible for displaying

information to the user
Controller : controls interacting with the

user and notifying views of changes in the
model

Sommerville, 9th Ed.

Example: Web Application
in MVC

44

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example: Modeling the
Sequence of Events in MVC

:Controller

:Model1.0 Subscribe

:PowerpointView

4.0 User types new filename

7.0 Show updated views

:InfoView

5.0 Request name change in model

:FolderView

6.0 Notify subscribers

In UML
Communication/Collaboration

Diagram

package
Diagram

3.0Subscribe

2.0Subscribe

subscriber
notifier

*

1

initiator
repository1*

Model

Controller

View

45

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

MVC vs. 3-Tier Architectural Style
The MVC architectural style is nonhierarchical (triangular):

View subsystem sends updates to the Controller subsystem
Controller subsystem updates the Model subsystem
View subsystem is updated directly from the Model

The 3-tier architectural style is hierarchical (linear):
The presentation layer never communicates directly with the data layer

(opaque architecture)
All communication must pass through the middleware layer

History:
MVC (1970-1980): Originated during the development of modular

graphical applications for a single graphical workstation at Xerox Parc
3-Tier (1990s): Originated with the appearance of Web applications,

where the client, middleware and data layers ran on physically separate
platforms.

47

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Repository Architectural Style

The basic idea behind this architectural style is to support a collection of
independent programs that work cooperatively on a common data
structure called the repository

Subsystems access and modify data from the repository. The subsystems
are loosely coupled (they interact only through the repository).

Subsystem

Repository

createData()

setData()

getData()

searchData()

*

Subsystem

Subsystem

48

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Pipes and Filters

A pipeline consists of a chain of processing
elements (processes, threads, etc.), arranged
so that the output of one element is the input to
the next element
Usually some amount of buffering is provided

between consecutive elements
The information that flows in these pipelines is

often a stream of records, bytes or bits.

49

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Pipes and Filters Architectural Style
An architectural style that consists of two subsystems called

pipes and filters
Filter: A subsystem that does a processing step
Pipe: A Pipe is a connection between two processing steps

Each filter has an input pipe and an output pipe.
The data from the input pipe are processed by the filter and then moved

to the output pipe
Example of a Pipes-and-Filters architecture: Unix

Unix shell command: ls -a l cat

A pipe
The Unix shell commands ls

and cat are Filter

50

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Example of Design Goals

Reliability
Modifiability
Maintainability
Understandability
Adaptability
Reusability
Efficiency
Portability
Traceability of requirements
Fault tolerance
Backward-compatibility
Cost-effectiveness
Robustness
High-performance

� Good documentation
� Well-defined interfaces
� User-friendliness
� Reuse of components
� Rapid development
� Minimum number of errors
� Readability
� Ease of learning
� Ease of remembering
� Ease of use
� Increased productivity
� Low-cost
� Flexibility

To whom (the customer, end-user or developer) each of the following design
goals is most important to?

51

Ó Prof. Adel Taweel 2021 COMP433: Software Engineering

Summary
System Design

Focuses on finding an optimal solution combining software and
hardware approaches

Design Goals
Evaluates important system features against alternative designs (design-

tradeoffs)
Considers General Design Goals and principles (cohesion and coupling)

and system specific ones (from non-functional requirements) in design
System Composition

Modularising the system from parts or modules in creating an optimal
design based on the general and specific design goals/principles.

Architectural Style
Choosing a suitable pattern of system layout (architectural style) that

meets the needs of identified design goals; from layer styles (C/S, SOA,
n-Tier), MVC, Repository, Pipes & Filters

Software architecture
An instance of an architectural style: e.g. client/server, SOA etc.

52

