EXERCISE

Binary to Decimal Conversion

- 1. Convert the following 8-bit numbers from binary to decimal.
 - a. 00011110,
 - b. 10000101,
 - c. 11011011₂
 - d. 01101001,
- 2. Determine whether the following statements are true or false.
 - a. $1000_2 < 4_{10}$
 - b. $0111_2 = 0 111_{10}$
 - c. $0010_{2} > 3_{10}$
 - d. 1001, > 1101,
- 3. Convert the following numbers to their binary equivalents.
 - a. 25₁₀
 - b. 37₁₀
 - c. 55₁₀
 - d. 400₁₀
 - e. 547₁₀

Converting Fractions

- 4. Convert the following numbers to their binary equivalents.
 - a. 26.75₁₀
 - b. 37.375₁₀
 - c. 59.625₁₀
 - d. 63.125₁₀
 - e. 78.875₁₀
- 5. Use the 32-bit floating representation to represent the binary numbers you have got from the previous question and show how it will be represented in the memory .

- 6. Convert the following decimal numbers to binary. Work until you are sure your binary answer is repeating.
 - a. 0.2_{10}
 - b. 0.3₁₀
 - c. 0.4₁₀

Adding Two Binary Numbers

- 7. Add the following 8-bit binary numbers.
 - a. 11010011, +01010110,
 - b. 10010011, + 10111001,
 - c. 111111110, + 11110101,

Two's Complement

- 8. Convert the following decimal numbers to binary using 8-bit 2's complement representation.
 - 1. -32,
 - 2. 13,10
 - 3. -5,
 - 4. -20₁₀
 - 5. 36,10
 - 6. -23,10

Subtraction with Two's Complement

- 9. Solve each of the following 8-bit subtraction problems using 2's complement representation.
 - a. $011111111_{2} 76_{10}$
 - b. 00110010_{2} 125_{10}
 - c. 01011001₂ 111₁₀
 - d. 00001111₂ 35₁₀

Hexadecimal and Octal Numbers

- 10. Convert the following numbers to decimal.
 - a. 72₈
 - b. 72₁₆
 - c. DE1₁₆
 - d. 11001_s
 - e. ACE
 - f. 1001₁₆
 - g. 37.7_s

h. B2.F₁₆

ASCII Code Representation

11. Using the even parity bit to represent the following sentence in memory(Hexadecimal)?

Welcome to C.