

Numbering Systems

Computer Science Department

Comp 131

SUCCEED

You will never know if you don't keep trying, the next time might be your time to succeed.

Outline

- Converting Fractions.
- Adding Binary Fractions.
- Binary Subtraction.
- Data Representation.
- Characters and Integers Representation.
- Floating Point Representation.
- Summary

When converting a fractional decimal value to binary, we need to use a slightly different approach. Instead of dividing by 2, we repeatedly multiply the decimal fraction by 2.

Let's take an example!

Convert 11.375₁₀ to it's binary equivalents. First convert 11 to binary.

We know from the last week $11_{10} = 1011_2$

Now convert .375₁₀ to binary

$$.375_{10} = .011_{2}$$

$$11.375_{10} = 1011.011_2$$

Convert the following numbers to their binary equivalents.

```
\Box (26.75_{10}) = 11010.11_2
```

$$\Box$$
 (37.375₁₀) = H.W

- Exercise:
- Convert the following decimal number to binary?

$$(0.2)_{10} = (0.\overline{0011})_{2}$$

$$(0.3)_{10} = (0.0\overline{1001})_{2}$$

Adding Binary Fractions

- Example:
- 1011.0+0.011=

Adding Binary Fractions

- Example:
- 110.01+1.011=

Binary Subtraction

 Solve the following 8-bit subtraction problem using 2's complement representation.

$$011111111_2 - 76_{10} = ???$$

Think if we rewrite the above problem as $01111111_2 + (-76)_{10}$

Binary Subtraction

Example: $011111111_2 + (-76)_{10}$

1 1

1's complement → 10110011

 $10110100 \rightarrow (-76)$

Binary Subtraction Cont.

$$01111111_2 + (-76)_{10}$$

```
1 11 1
01111111 127
+ 10110100 - 76
------ Overflow 1 00110011 51
```


Binary Subtraction Cont.

Example: $00110010_2 + (-125)_{10}$

 $125 \rightarrow 01111101$

1's complement \rightarrow 10000010

 $10000011 \rightarrow (-125)$

Binary Subtraction Cont.

$$00110010_2 + (-125)_{10}$$

```
00110\overset{1}{0}10 \\ + 10000011 \\ ---- \\ 10110101 \\ -75
```

The 2's comp for the result (10110101) is
 01001011 equivalent to (75)₁₀

Data Representation

❖Computer understand two things: on and off.

- **❖Data represented in binary form.**
- ❖Bit is the basic unit for storing data 0→off ,1→on .
- **❖Byte is a group of 8 bits. That is, each byte has 256(28) possible values.**
- ❖Two bytes form a word

Parity bit

- Used for error detection
- Two types: 1. Odd parity (number of 1's are odd)
 - 2. Even parity (number of 1's are even)

Characters Representation

Using the **even parity** bit to represent the character \mathbf{Q} ($\mathbf{Q} = \mathbf{81}$ in ASCII) in memory (Hexadecimal)?

$$(81)_{10} = (01010001)_2$$

	Parity bit		
Q	1	1010001	= D1 ₁₆

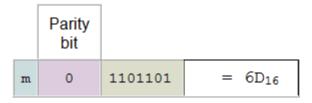
Memory

D1

Note: ASCII for A=65 and

American Standard Code for Information Interchange

A=65 a=97 B=66 b=98


Characters Representation

Using the odd parity bit to represent your name in memory?

Ex. Ahmad

	Parity bit		
A	1	1000001	= C1 ₁₆

	Parity bit		
h	0	1101000	= 68 ₁₆

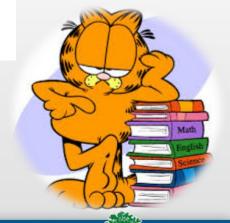
	Parity bit		
a	0	1100001	= 61 ₁₆

	Parity bit		
d	0	1100100	= 64 ₁₆

A 01000001 h 01101000 m 01101101

Memory

C1	
68	
6D	
61	
64	


Integers Representation

Represent the following integer in memory using 2 byte?

92 92 = 1011100

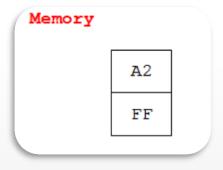
Answer

0000 0000 01011100 0 0 5 C Memory 5C 00

Integers Representation

Represent the following integer in memory using 2 byte?

```
-94


94 = 000000001011110

1's → 11111111110100001

2's →+ 1

11111111110100010

F F A 2
```


32 bits divided into three sections

	Χ	XXXXXXXX	XXXXXXX
F	1 bit For sign	8 bits For Exponent	23 bits For Mantissa
for	1 for		
ositive	Negativ	′ e	

32 bits divided into three sections

X	XXXXXXX	XXXXXXX
_ 1 bit	8 bits	23 bits
For sign	For Exponent	For Mantissa

 $2^8 = 256$

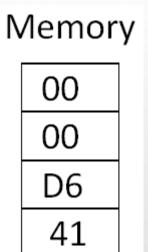
0-255

What about negative ??

255/2=127.5 we take the integer part 127

0 25

Let's take an example!


Use the 32-bit floating representation to represent the following the binary number and show how it will represented in the memory?

 $(26.75)_{10}$

Answer:

Convert the number from decimal to binary

Summary

- Converting Fractions.
- Adding Binary Fractions.
- Binary Subtraction.
- Data Representation.
- Characters and Integers Representation.
- •Floating Point Representation.

Thanks to Mr. Abdallah Karakra

