
5/10/2019

1

Working with Files

Computer Science Department

Computer Science Department

V-2

Files vs. File Variables

A file variable is a data structure in the C program
which represents the file

• Temporary exists only when program runs
• There is a struct called FILE in <stdio.h>
• Details of the struct are private to the

standard C I/O library routines

5/10/2019

2

V-3

What's in stdio.h?

Prototypes for I/O functions.

Definitions of useful #define constants
Example: EOF for End of File

Definition of FILE struct to represent information about
open files.

File variables in C programs are pointers to a FILE struct.

FILE *myfile;

V-4

Opening A File

"Opening" a file: making a connection between the
operating system (file name) and the C program (file
variable)

Files must be opened before they can be used

5/10/2019

3

V-5

Opening A File

To open a disk file in C:
library function fopen
specify "r" (read, input) or "w" (write, output)

NB String “r”, not char ‘r’ !

Files stdin/stdout (used by scanf/printf) are
automatically opened & connected to the
keyboard and display

V-6

File Open Example

/*usually done only once in a program*/
/*usually done near beginning of program*/

FILE *infilep, *outfilep; /*file variables*/
char ch;

/* Open input and output files */
infilep = fopen (“Student_Data.txt”, “r”) ;
outfilep = fopen (“New_Student_Data.txt”, “w”) ;

5/10/2019

4

V-7

File I/O: fscanf and fprintf

Once a file has been opened...

use fscanf and fprintf to read or write data from/to the
file

Use the file variable returned by fopen to identify the
file to be read/written

File must already be open before fscanf or fprintf is
used!

V-8

File I/O: fscanf and fprintf

fscanf: works just like scanf, but 1st parameter is a
file variable

fscanf (filepi, “%...”, &var, ...) ;

fprintf: works just printf, but 1st parameter is a file
variable

fprintf (filepo, “%...”, var, ...) ;

5/10/2019

5

Files - Summary

• Declare a file pointer variable
– FILE *ftp_in , /* pointer to input file */

– FILE *ftp_out; /* pointer to output file */

• The calls to function fopen
– ftp_in = fopen(“distance.dat”, “r”) ;
– ftp_out = fopen(“distance.out”, “w”) ;

• Use of the functions
– fscanf(ftp_in, “%lf”, &miles);
– fprintf(ftp_out, “The distance in miles is %.2f. \n”, miles);

• End of use
– fclose(ftp_in);

– fclose(ftp_out);

Files (Examples)

1. Write a program to read two integers from a file

(input.txt), find the sum of them and save the result

into another file (output.txt).

2. Repeat the above example, but print the result on the
screen instead of saving the result of the file.

5/10/2019

6

Files (Example 1 solution)

Files (Example 2 solution)

5/10/2019

7

End-file-Controlled Loops

End-file-Controlled Loops

Repetition statement is very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to
control repetition rather than using the values scanned.

The loop repetition condition: input_status != EOF

input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

scanf function returns as its value the number of data items scanned
Here 3

5/10/2019

8

Example: Write a C program that reads the integers stored in a text file

