BIRZEIT UNIVERSlTY

Chapter 10 Thinking 1n Objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 1
rights reserved.

SN e

Class Abstraction and Encapsulatiof™

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides
a description of the class and let the user know how the
class can be used. The user of the class does not need to
know how the class is implemented. The detail of
implementation 1s encapsulated and hidden from the user.

Class implementation Class Contract

Eiéigl(:naf:’;?ﬁhbe"giems (Signatures of Clients use the
public methods and & —>| class through the
public constants) contract of the class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All)
rights reserved.

The BMI Class

BMI /

-name: String /

-age: int
-weight: double
-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,
height: double)

+getBMI(): double
+getStatus(): String

The get methods for these data fields are
provided in the class, but omitted in the
UML diagram for brevity.

The name of the person.

The age of the person.

The weight of the person in pounds.
The height of the person in inches.

Creates a BMI object with the specified
name, age, weight, and height.

Creates a BMI object with the specified
name, weight, height, and a default age
20.

Returns the BMI

Returns the BMI status (e.g., normal,
overweight, etc.)

BMI UseBMIClass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

W&L

BIRZEIT UNIVERSITY

http://html/UseBMIClass.bat
https://liveexample.pearsoncmg.com/html/BMI.html
https://liveexample.pearsoncmg.com/html/UseBMIClass.html

2.2 2 IALTN
B T hk‘
- s - A&

BIRZEIT UNIVERSITY

Class Relationships

Association
Aggregation
Composition
Inheritance (Chapter 13)

Association: 1s a general binary relationship that describes
an activity between two classes.

Take p Teach 4

0.3

5..60
' = Course | Faculty

Student |

Teacher

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 4
rights reserved.

e o

BIRZEIT UNIVERSITY

Programming Association

public class Student {
private Course[]
courselist;

public void addCourse(

public class Course {
private Student][]
classlList;
private Faculty faculty;

public class Faculty {
private Course|[]
courselList;

public void addCourse(

Course c) { ...} public void addStudent (Course c) { ... }
} Student s) { ... } }
public void setFaculty(
Faculty faculty) { }
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 5

rights reserved.

gv..é B3 %\/‘
NE 2P A

BIRZEIT UNIVERSITY

Object Composition

Composition 1s actually a special case of the aggregation
relationship. Aggregation models sas-a relationships and
represents an ownership relationship between two objects.
The owner object is called an aggregating object and 1ts
class an aggregating class. The subject object 1s called an
aggregated object and 1ts class an aggregated class.

Composition Aggre gation

N/

Name q Student K> - Address

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 6
rights reserved.

2.2 2 l*x)* <154
553 Wikl e <
e it - A

BIRZEIT UNIVERSITY

Class Representation

An aggregation relationship 1s usually represented as a data
field 1n the aggregating class. For example, the relationship
in Figure 10.6 can be represented as follows:

public class Name (public class Student ({ public class Address {
private Name name;
} private Address address; }
}
Aggregated class Aggregating class Aggregated class

Since aggregation and composition relationships are represented using classes in
similar ways, many texts don t differentiate them and call both compositions.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 7
rights reserved.

e e

Aggregation Between Same Class™™

Aggregation may exist between objects of the same class.

For example, a person may have a supervisor.

Person

Supervisor
1

public class Person {
// The type for the data is the class itself
private Person supervisor;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 8
rights reserved.

e e

Aggregation Between Same Class™™

What happens 1f a person has several supervisors?

1
Person <>
Supervisor

m

public class Person {

private Person[] supervisors;
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 9

rights reserved.

Boolean

Character

Short
Byte

gv..é B3 %\/‘
NP A P =

BIRZEIT UNIVERSITY

Wrapper Classes

d
d
d
d

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

Integer NOTE: (1) The wrapper classes do
not have no-arg constructors. (2)
Long The instances of all wrapper
classes are immutable, i.e., their
Float .
internal values cannot be changed
Double once the objects are created.

10

rights reserved.

e

The Integer and Double Classes™

java.lang.Integer java.lang.Double
-value: int -value: double
+MAX VALUE: int +MAX VALUE: double
+MIN VALUE: int +MIN VALUE: double
+Integer(value: int) +Double (value: double)
+Integer(s: String) +Double(s: String)
+byteValue() : byte +byteValue(): byte
+shortValue(): short +shortvValue() : short
+intvValue(): int +intValue(): int
+longVlaue() : long +longVlaue () : long
+floatValue(): float +floatValue() : float
+doubleValue () :double +doubleValue() :double
+compareTo(o: Integer): int +compareTo(o: Double): int
+toString(): String rEostring (s String
+valueOf(s: String): Integer +valueOf(s: String): Double
+valueOf(s: String, radix: int): Integer +valueOf(s: String, radix: int): Double
+parselnt(s: String): int +parseDouble(s: String) : double
+parselInt(s: String, radix: int): int +parseDouble(s: String, radix: int): double
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 11

rights reserved.

gv..é B3 %\/‘
NE 2P A

BIRZEIT UNIVERSITY

The Integer Class
and the Double Class

2 Constructors
Q Class Constants MAX VALUE, MIN VALUE

a Conversion Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 12
rights reserved.

et

IIIIIIIIIIIIIIIII

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a

primitive data type value or from a string

representing the numeric value. The constructors
for Integer and Double are:

pub]
pub]
pub]
pub]

1C
1C
iC

1C

Integer(int value)
Integer(String s)
Double(double value)

Double(String s)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

13

gv..é B3 %\/‘
NE 2P A

IIIIIIIIIIIIIIIII

Each numerical wrapper class has the constants

MAX VALUE and MIN_VALUE. MAX VALUE
represents the maximum value of the corresponding
primitive data type. For Byte, Short, Integer, and Long,
MIN_ VALUE represents the minimum byte, short, int,
and long values. For Float and Double, MIN VALUE
represents the minimum positive float and double values.
The following statements display the maximum integer
(2,147,483,647), the minimum positive float (1.4E-45),
and the maximum double floating-point number
(1.79769313486231570e+308d).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

14

i B

BIRZEIT UNIVERSITY

Conversion Methods

Each numeric wrapper class implements the
abstract methods doubleValue, floatValue,
intValue, longValue, and shortValue, which
are defined 1n the Number class. These
methods “convert” objects into primitive
type values.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 15
rights reserved.

i B

IIIIIIIIIIIIIIIII

The Static valueOf Methods

The numeric wrapper classes have a useful
class method, valueOf(String s). This method
creates a new object initialized to the value
represented by the specified string. For
example:

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueO1("12");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 16
rights reserved.

The Methods for Parsing Strings 1
Numbers

You have used the parselnt method 1n the
Integer class to parse a numeric string into an
int value and the parseDouble method in the
Double class to parse a numeric string into a
double value. Each numeric wrapper class
has two overloaded parsing methods to parse
a numeric string into an appropriate numeric
value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

17

Automatic Conversion Between Primit&re—wt
Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

; Equival .
Integer[] 1ntArray = {new Integer(2), quivalent Integer[] intArray =wi2, 4, 3};
new Integer(4), new Integer(3)};
/
(a) New JDK 1.5 boxing (b)

Integer[] intArray = {1.2, 3}:
System.out.printin(intArray[0] + intArray[1] + intArray[2]):

—

Unboxing

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 18
rights reserved.

i B

IIIIIIIIIIIIIIIII

BigInteger and BigDecimal

If you need to compute with very large integers or
high precision floating-point values, you can use
the Biginteger and BigDecimal classes 1n the
java.math package. Both are immutable. Both
extend the Number class and implement the
Comparable interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 19
rights reserved.

Biglnteger and B1gDec1mal ''''''''''''''''

BigInteger a = new BigInteger(""9223372036854775807");
Biglnteger b = new Biglnteger("2");

Biglnteger ¢ = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

LargeFactorial -

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal ¢ = a.divide(b, 20, BigDecimal. ROUND UP);
System.out.println(c);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved. 20

http://html/LargeFactorial.bat
https://liveexample.pearsoncmg.com/html/LargeFactorial.html

abs()

add()

compareTo()

divide()

divideAndRemainder()

doubleValue()

equals()

gcd()

floatValue()

intvValue()

longValue()

max()

min()

mod()

multiply()

negate()

pow()

remainder()

signum()

subtract()

toString()

valueOf()

It returns a BigInteger whose value is the absolute value of this Biginteger.

This method returns a BigInteger by simply computing 'this + val' value.

This method compares this BigInteger with the specified BigInteger.

This method returns a BigInteger by computing 'this /~val ' value.

This method returns a Biglnteger by computing 'this & ~val ' value followed by 'this%value'.
This method converts this BigInteger to double.

This method compares this BigInteger with the given Object for equality.

This method returns a BigInteger whose value is the greatest common divisor between abs(this)and abs(val).

This method converts this BigInteger to float.

This method converts this BigInteger to an int.

This method coverts this BigInteger to a long.

This method returns the maximum between this BigInteger and val.
This method returns the minimum between this Biginteger and val.
This method returns a BigInteger value for this mod m.

This method returns a BigInteger by computing 'this *val ' value.

This method returns a BigInteger whose value is '-this'.

This method returns a BigInteger whose value is 'this&xPonent:

This method returns a BigInteger whose value is 'this % val'.

This method returns the signum function of this BigInteger.

This method returns a BigInteger whose value is 'this - val'.

This method returns the decimal String representation of this BigInteger.

This method returns a BigInteger whose value is equivalent to that of the specified long.

55 31
BIRZEIT UNIVERSITY

21

