
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 1

Chapter 2 Elementary Programming

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

20radius

memory

1256.636area

print a message to the
console

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

Reading Input from the Console
1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Run

Run

ComputeAreaWithConsoleInput

ComputeAverage

http://html/ComputeAreaWithConsoleInput.bat
http://html/ComputeAverage.bat
https://liveexample.pearsoncmg.com/html/ComputeAreaWithConsoleInput.html
https://liveexample.pearsoncmg.com/html/ComputeAverage.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

Identifiers
● An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).
● An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.
● An identifier cannot be a reserved word. (See Appendix

A, “Java Keywords,” for a list of reserved words).
● An identifier cannot be true, false, or
null.

● An identifier can be of any length.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 5

Variables
int x; // Declare x to be an
 // integer variable;

double radius; // Declare radius to
 // be a double variable;

char a; // Declare a to be a
 // character variable;

x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

Declaring and Initializing
in One Step

● int x = 1;

● double d = 1.4;

● Named Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

Naming Conventions
● Choose meaningful and descriptive names.
● Variables and method names:

– Use lowercase.
– If the name consists of several words,

concatenate all in one, use lowercase for the
first word, and capitalize the first letter of each
subsequent word in the name.

– For example, the variables radius and area,
and the method computeArea.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

Naming Conventions, cont.
● Class names:

– Capitalize the first letter of each word in
the name. For example, the class name
ComputeArea.

● Constants:
– Capitalize all letters in constants, and use

underscores to connect words. For
example, the constant PI and
MAX_VALUE

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

Character Data Type
char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)
char letter = '\u0041'; (Unicode)
char numChar = '\u0034'; (Unicode)

NOTE: The increment and decrement operators can
also be used on char variables to get the next or
preceding Unicode character. For example, the
following statements display character b.

 char ch = 'a';
 System.out.println(++ch);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

Numerical Data Types

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

Reading Numbers from the Keyboard
Scanner input = new Scanner(System.in);
int value = input.nextInt();

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Strings

●The char type only represents one character.
To represent a string of characters, use the
data type called String. For example:

 String message = "Welcome to Java!";
● String is actually a predefined class in the
Java library.

● The String type is not a primitive type. It is
known as a reference type.

12

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

More on Strings
// Three strings are concatenated

String message = "Welcome " + "to " + "Java";
// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2
● You can use the Scanner class for console input.
● Java uses System.in to refer to the standard input device

(i.e. Keyboard).

13

public class Test{

 public static void main(String[] s){

 Scanner input = new Scanner(System.in);

 System.out.println(“Enter text : ”);

 int x = input.nextLine();

 System.out.println(“You entered: ”+ x);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.
5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15

Remainder Operator
Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number
is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17

Exponent Operations
System.out.println(Math.pow(2, 3));
// Displays 8.0
System.out.println(Math.pow(4, 0.5));
// Displays 2.0
System.out.println(Math.pow(2.5, 2));
// Displays 6.25
System.out.println(Math.pow(2.5, -2));
// Displays 0.16

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18

Integer Literals
An integer literal can be assigned to an integer variable as
long as it can fit into the variable. A compilation error
would occur if the literal were too large for the variable to
hold. For example, the statement byte b = 1000 would
cause a compilation error, because 1000 cannot be stored
in a variable of the byte type.

An integer literal is assumed to be of the int type, whose
value is between -231 (-2147483648) to 231–1
(2147483647). To denote an integer literal of the long type,
append it with the letter L or l. L is preferred because l
(lowercase L) can easily be confused with 1 (the digit
one).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19

Floating-Point Literals
Floating-point literals are written with a decimal
point. By default, a floating-point literal is treated
as a double type value. For example, 5.0 is
considered a double value, not a float value. You
can make a number a float by appending the letter f
or F, and make a number a double by appending the
letter d or D. For example, you can use 100.2f or
100.2F for a float number, and 100.2d or 100.2D
for a double number.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20

double vs. float
The double type values are more accurate than the
float type values. For example,
System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21

Arithmetic Expressions

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22

How to Evaluate an Expression
Though Java has its own way to evaluate an
expression behind the scene, the result of a Java
expression and its corresponding arithmetic
expression are the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java
expression.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23

Problem: Converting Temperatures
Write a program that converts a Fahrenheit degree
to Celsius using the formula:

Run

Note: you have to write
celsius = (5.0 / 9) * (fahrenheit – 32)

FahrenheitToCelsius

http://html/FahrenheitToCelsius.bat
https://liveexample.pearsoncmg.com/html/FahrenheitToCelsius.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

● public class FahrenheitToCelsius {
● public static void main(String[] args) {
● Scanner input = new Scanner(System.in);

● System.out.print("Enter a degree in Fahrenheit: ");
● double fahrenheit = input.nextDouble();

● // Convert Fahrenheit to Celsius
● double celsius = (5.0 / 9) * (fahrenheit - 32);
● System.out.println("Fahrenheit " + fahrenheit + " is " +
● celsius + " in Celsius");
● }
● }

24

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

Problem: Displaying Current Time
Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The currentTimeMillis method in the System class returns
the current time in milliseconds since the midnight, January
1, 1970 GMT. (1970 was the year when the Unix operating
system was formally introduced.) You can use this method
to obtain the current time, and then compute the current
second, minute, and hour as follows.

Run

ShowCurrentTime

http://html/ShowCurrentTime.bat
https://liveexample.pearsoncmg.com/html/ShowCurrentTime.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

Augmented Assignment Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27

Increment and
Decrement Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

Increment and
Decrement Operators, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 29

Increment and
Decrement Operators, cont.

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 30

Assignment Expressions and
Assignment Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 31

Numeric Type Conversion

Consider the following statements:

byte i = 100;
long k = i * 3 + 4;
double d = i * 3.1 + k / 2;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 32

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.
2. Otherwise, if one of the operands is float, the other is

converted into float.
3. Otherwise, if one of the operands is long, the other is

converted into long.
4. Otherwise, both operands are converted into int.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 33

Type Casting
Implicit casting
 double d = 3; (type widening)

Explicit casting
 int i = (int)3.0; (type narrowing)
 int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 34

Problem: Keeping Two Digits After
Decimal Points

Write a program that displays the sales tax with two
digits after the decimal point.

RunSalesTax

public class SalesTax {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.print("Enter purchase amount: ");
 double purchaseAmount = input.nextDouble(); double tax
= purchaseAmount * 0.06; System.out.println("Sales tax is " +
(int)(tax * 100) / 100.0);
 }
}

http://html/SalesTax.bat
https://liveexample.pearsoncmg.com/html/SalesTax.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 35

Casting in an Augmented Expression

In Java, an augmented expression of the form x1 op=
x2 is implemented as x1 = (T)(x1 op x2), where T is
the type for x1. Therefore, the following code is
correct.
int sum = 0;
sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 36

Common Errors and Pitfalls
● Common Error 1: Undeclared/Uninitialized

Variables and Unused Variables
● Common Error 2: Integer Overflow
● Common Error 3: Round-off Errors
● Common Error 4: Unintended Integer Division
● Common Error 5: Redundant Input Objects

● Common Pitfall 1: Redundant Input Objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 37

Common Error 1:
Undeclared/Uninitialized Variables

and Unused Variables
double interestRate = 0.05;
double interest = interestrate * 45;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 38

Common Error 2: Integer Overflow

int value = 2147483647 + 1;
// value will actually be -2147483648

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 39

Common Error 3: Round-off Errors

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 40

Common Error 4: Unintended Integer
Division

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 41

Common Pitfall 1: Redundant Input
Objects

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

