
Liang, Introduction to Java
Programming, Eleventh Edition, (c)

2017 Pearson Education, Inc. All
rights reserved.

1

Chapter 5 Loops
Chapter 6 Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

while Loop Flow Chart
while (loop-continuation-condition) {
 // loop-body;
 Statement(s);
}

int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count++;
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

Trace while Loop

int count = 0;
while (count < 2) {
 System.out.println("Welcome to Java!");
 count++;
}

Initialize count

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

Problem: Repeat Addition Until Correct

Recall that Listing 3.1 AdditionQuiz.java gives a
program that prompts the user to enter an answer
for a question on addition of two single digits.
Using a loop, you can now rewrite the program to
let the user enter a new answer until it is correct.

RepeatAdditionQuiz Run

https://liveexample.pearsoncmg.com/html/RepeatAdditionQuiz.html
http://html/RepeatAdditionQuiz.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 5

import java.util.Scanner;
public class RepeatAdditionQuiz {

public static void main(String[] args) {
int number1 = (int)(Math.random() * 10);
int number2 = (int)(Math.random() * 10);

// Create a Scanner
Scanner input = new Scanner(System.in);
System.out.print("What is " + number1 + " + " + number2 + "? ");
int answer = input.nextInt();

while (number1 + number2 != answer) {
System.out.print("Wrong answer. Try again. What is " +
 number1 + " + " + number2 + "? ");
answer = input.nextInt();

}
System.out.println("You got it!");
}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

Ending a Loop with a Sentinel Value
You may use an input value to signify the end of the
loop. Such a value is known as a sentinel value.

SentinelValue Run

Scanner input = new Scanner(System.in);
// Read an initial data
System.out.print("Enter an integer (the input ends if it is 0): ");
int data = input.nextInt();
// Keep reading data until the input is 0 int sum = 0;
while (data != 0) {

sum += data;
// Read the next data
System.out.print("Enter an integer (the input ends if it is 0): ");
data = input.nextInt();

}

https://liveexample.pearsoncmg.com/html/SentinelValue.html
http://html/SentinelValue.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

Caution
Don’t use floating-point values for equality checking in a
loop control. Since floating-point values are
approximations for some values, using them could result
in imprecise counter values and inaccurate results.
Consider the following code for computing 1 + 0.9 + 0.8
+ ... + 0.1:

double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0
 sum += item;
 item -= 0.1;
}
System.out.println(sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

do-while Loop

do {

 // Loop body;

 Statement(s);

} while (loop-continuation-condition);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

for Loops
for (initial-action;

loop-continuation-condition;
action-after-each-iteration) {

 // loop body;
 Statement(s);
}

int i;
for (i = 0; i < 100; i++) {
 System.out.println(
 "Welcome to Java!");
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

Note
The initial-action in a for loop can be a list of zero or more
comma-separated expressions. The
action-after-each-iteration in a for loop can be a list of zero
or more comma-separated statements. Therefore, the
following two for loops are correct. They are rarely used in
practice, however.

for (int i = 1; i < 100; System.out.println(i++));

for (int i = 0, j = 0; (i + j < 10); i++, j++) {

 // Do something

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

Note
If the loop-continuation-condition in a for loop is omitted,
it is implicitly true. Thus the statement given below in (a),
which is an infinite loop, is correct. Nevertheless, it is
better to use the equivalent loop in (b) to avoid confusion:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 12

Caution
Adding a semicolon at the end of the for clause before
the loop body is a common mistake, as shown below:

Logic
Error

for (int i=0; i<10; i++);
{
 System.out.println("i is " + i);
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 13

Caution, cont.
Similarly, the following loop is also wrong:
int i=0;
while (i < 10);
{
 System.out.println("i is " + i);
 i++;
}
In the case of the do loop, the following semicolon is
needed to end the loop.
int i=0;
do {
 System.out.println("i is " + i);
 i++;
} while (i<10);

Logic Error

Correct

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14

Problem:
Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive
integers and finds their greatest common divisor.

GreatestCommonDivisor Run

// Prompt the user to enter two integers
System.out.print("Enter first integer: ");
int n1 = input.nextInt();
System.out.print("Enter second integer: ");
int n2 = input.nextInt();
int gcd = 1;
int k = 2;
while (k <= n1 && k <= n2) {

if (n1 % k == 0 && n2 % k == 0)
gcd = k;

k++;
}

https://liveexample.pearsoncmg.com/html/GreatestCommonDivisor.html
http://html/GreatestCommonDivisor.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15

break

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16

continue

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17

Problem: Checking Palindrome
A string is a palindrome if it reads the same forward and backward.
The words “mom,” “dad,” and “noon,” for instance, are all
palindromes.

Palindrome Run

// Prompt the user to enter a string
System.out.print("Enter a string: ");
String s = input.nextLine();
// The index of the first character in the string
int low = 0;
// The index of the last character in the string
int high = s.length() - 1;
boolean isPalindrome = true;
while (low < high) {

if (s.charAt(low) != s.charAt(high)) {
isPalindrome = false;
break;

}
low++;
high--;

}

https://liveexample.pearsoncmg.com/html/Palindrome.html
http://html/Palindrome.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18

Problem: Displaying Prime Numbers
Problem: Write a program that displays the first 50 prime numbers in
five lines, each of which contains 10 numbers. An integer greater than
1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.
Solution: The problem can be broken into the following tasks:

•For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.
•Determine whether a given number is prime.
•Count the prime numbers.
•Print each prime number, and print 10 numbers per line.

PrimeNumber Run

for (int divisor = 2; divisor <= number / 2; divisor++) {
if (number % divisor == 0) {

isPrime = false;
break;

}
}

https://liveexample.pearsoncmg.com/html/PrimeNumber.html
http://html/PrimeNumber.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19

Problem
int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 30; i++)
 sum += i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)
 sum += i;
System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20

Solution
public static int sum(int i1, int i2) {
 int sum = 0;
 for (int i = i1; i <= i2; i++)
 sum += i;
 return sum;
}

public static void main(String[] args) {
 System.out.println("Sum from 1 to 10 is " + sum(1, 10));
 System.out.println("Sum from 20 to 30 is " + sum(20, 30));
 System.out.println("Sum from 35 to 45 is " + sum(35, 45));
}

MethodDemo Run

https://liveexample.pearsoncmg.com/html/MethodDemo.html
http://html/MethodDemo.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21

Defining Methods
A method is a collection of statements that are
grouped together to perform an operation.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22

Defining Methods
A method is a collection of statements that are
grouped together to perform an operation.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23

Method Signature
Method signature is the combination of the method name and
the parameter list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 24

Calling Methods, cont.
animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

Trace Method Invocation
i is now 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

CAUTION
A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27

Trace Call Stack

i is declared and initialized

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

Trace Call Stack

pass the values of i and j to num1
and num2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 29

Trace Call Stack

Return result and assign it to k

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 30

Trace Call Stack

Execute print statement

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 31

Passing Parameters
public static void nPrintln(String message, int n) {
 for (int i = 0; i < n; i++)
 System.out.println(message);
}

Suppose you invoke the method using
nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using
nPrintln(“Computer Science”, 15);

What is the output?

Can you invoke the method using
nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 32

Pass by Value

This program demonstrates passing values
to the methods.

TestPassByValue

Run

public static void swap(int n1, int n2) {
 System.out.println("\tInside the swap method");

System.out.println("\t\tBefore swapping, n1 is " + n1 +
" and n2 is " + n2);
// Swap n1 with n2
int temp = n1; n1 = n2;
n2 = temp;
System.out.println("\t\tAfter swapping, n1 is " + n1 + " and n2 is " + n2);

}

https://liveexample.pearsoncmg.com/html/TestPassByValue.html
http://html/TestPassByValue.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 33

Overloading Methods

TestMethodOverloading

public static int max(int num1, int num2) {
if (num1 > num2)

return num1;
else

return num2;
}

public static double max(double num1, double num2) {
if (num1 > num2)

return num1;
else

return num2;
}

public static double max(double num1, double num2, double num3) {
return max(max(num1, num2), num3);

}

https://liveexample.pearsoncmg.com/html/TestMethodOverloading.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 34

Ambiguous Invocation: Error
public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }

 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 35

Scope of Local Variables
A local variable: a variable defined inside a method.
Scope: the part of the program where the variable can be

referenced.
The scope of a local variable starts from its declaration and

continues to the end of the block that contains the
variable. A local variable must be declared before it can
be used.

You can declare a local variable with the same name
multiple times in different non-nesting blocks in a
method, but you cannot declare a local variable twice in
nested blocks.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 36

Scope of Local Variables, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 37

Scope of Local Variables, cont.
// Fine with no errors
public static void correctMethod() {
 int x = 1;
 int y = 1;
 // i is declared
 for (int i = 1; i < 10; i++) {
 x += i;
 }
 // i is declared again
 for (int i = 1; i < 10; i++) {
 y += i;
 }
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 38

Scope of Local Variables, cont.
// With errors
public static void incorrectMethod() {
 int x = 1;
 int y = 1;
 for (int i = 1; i < 10; i++) {
 int x = 0;
 x += i;
 }
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 39

Method Abstraction
You can think of the method body as a black box
that contains the detailed implementation for the
method.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 40

Case Study: Generating Random
Characters, cont.

To generalize the foregoing discussion, a random character
between any two characters ch1 and ch2 with ch1 < ch2
can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 41

The RandomCharacter Class
// RandomCharacter.java: Generate random characters
public class RandomCharacter {
 /** Generate a random character between ch1 and ch2 */
 public static char getRandomCharacter(char ch1, char ch2) {
 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
 }

 /** Generate a random lowercase letter */
 public static char getRandomLowerCaseLetter() {
 return getRandomCharacter('a', 'z');
 }

 /** Generate a random uppercase letter */
 public static char getRandomUpperCaseLetter() {
 return getRandomCharacter('A', 'Z');
 }

 /** Generate a random digit character */
 public static char getRandomDigitCharacter() {
 return getRandomCharacter('0', '9');
 }

 /** Generate a random character */
 public static char getRandomCharacter() {
 return getRandomCharacter('\u0000', '\uFFFF');
 }
}

TestRandomCharacter

Run

RandomCharacter

https://liveexample.pearsoncmg.com/html/TestRandomCharacter.html
http://html/TestRandomCharacter.bat
https://liveexample.pearsoncmg.com/html/RandomCharacter.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 42

PrintCalender Case Study
Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

PrintCalendar Run

https://liveexample.pearsoncmg.com/html/PrintCalendar.html
http://html/PrintCalendar.bat

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 43

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 44

public static boolean isLeapYear(int year) {
return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

}

public static int getNumberOfDaysInMonth(int year, int month) {
if (month == 1 || month == 3 || month == 5 || month == 7 ||
month == 8 || month == 10 || month == 12)

return 31;
if (month == 4 || month == 6 || month == 9 || month == 11)

return 30;
if (month == 2)

return isLeapYear(year) ? 29 : 28; return 0;
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 45

public static int getTotalNumberOfDays(int year, int month) {
int total = 0; // Get the total days from 1800 to 1/1/year

for (int i = 1800; i < year; i++)
if (isLeapYear(i))

total = total + 366;
else total = total + 365;

// Add days from Jan to the month prior to the calendar month
for (int i = 1; i < month; i++)

total = total + getNumberOfDaysInMonth(year, i);
return total;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 46

public static int getStartDay(int year, int month) {
final int START_DAY_FOR_JAN_1_1800 = 3;

// Get total number of days from 1/1/1800 to month/1/year
int totalNumberOfDays = getTotalNumberOfDays(year, month);

// Return the start day for month/1/year
return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 47

/** Print month body */
public static void printMonthBody(int year, int month) {

// Get start day of the week for the first date in the month
int startDay = getStartDay(year, month);

// Get number of days in the month
int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);

// Pad space before the first day of the month
int i = 0;
for (i = 0; i < startDay; i++)

System.out.print(" ");
for (i = 1; i <= numberOfDaysInMonth; i++) {

System.out.printf("%4d", i);
if ((i + startDay) % 7 == 0) System.out.println();

}
System.out.println();

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 48

public static String getMonthName(int month) {
String monthName = "";
switch (month) {

case 1: monthName = "January"; break;
case 2: monthName = "February"; break;
case 3: monthName = "March"; break;
case 4: monthName = "April"; break;
case 5: monthName = "May"; break;
case 6: monthName = "June"; break;
case 7: monthName = "July"; break;
case 8: monthName = "August"; break;
case 9: monthName = "September"; break;
case 10: monthName = "October"; break;
case 11: monthName = "November"; break;
case 12: monthName = "December"; }

return monthName;
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 49

public static void printMonth(int year, int month) {
// Print the headings of the calendar
printMonthTitle(year, month);

// Print the body of the calendar
printMonthBody(year, month);

}

/** Print the month title, e.g., May, 1999 */
public static void printMonthTitle(int year, int month) {

System.out.println(" " + getMonthName(month) + " " + year);
 System.out.println("-----------------------------");

System.out.println(" Sun Mon Tue Wed Thu Fri Sat");
}

