
4/4/2022

1

Elementary
Programming

By: Mamoun Nawahdah (PhD)
2022

Liang, Introduction to Java Programming and Data Structures,
Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.

2

Trace a Program Execution
public class ComputeArea {

/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " + radius + " is " + area);

}
}

20radius

memory

1256.636area

4/4/2022

2

3

Identifiers
 Identifiers are for naming variables, methods, classes

 An identifier is a sequence of characters that consist of
letters, digits, underscores (_), and dollar signs ($).

 An identifier must start with a letter, an underscore (_),
or a dollar sign ($). It cannot start with a digit.

 An identifier cannot be a reserved word.

 An identifier cannot be true, false, or null.

 An identifier can be of any length.

Java Keywords and Reserved Words

4/4/2022

3

5

Variables

 Variables are used to represent values
that may be changed in the program.

 A variable must be declared before it
can be assigned a value.

 A variable declared in a method must
be assigned a value before it can be
used.

6

Declaring Variables
int x; // Declare x to be an integer variable

double radius; // Declare radius to be a double variable

char a; // Declare a to be a character variable

Assignment Statements
x = 1; // Assign 1 to x

radius = 1.0; // Assign 1.0 to radius

a = 'A'; // Assign 'A' to a

4/4/2022

4

7

Declaring and Initializing in 1 Step
int x = 1;

double d = 1.4;

Named Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

8

Naming Conventions
 Choose meaningful and descriptive names
 Variables and method names:
 Use lowercase.
 If the name consists of several words,

concatenate all in one, use lowercase for the
first word, and capitalize the first letter of each
subsequent word in the name.

 For example, the variables radius and area, and
the method computeArea.

4/4/2022

5

9

Naming Conventions, cont.

 Class names:
 Capitalize the 1st letter of each word in the name
 For example, the class name ComputeArea

 Constants:
 Capitalize all letters in constants, and use

underscores to connect words.
 For example, the constant PI and MAX_VALUE

10

Numerical Data Types

4/4/2022

6

Numeric Operators

12

Integer Division
 5 / 2 yields an integer 2.

 5.0 / 2 yields a double value 2.5

 5 % 2 yields 1 (the remainder of the division)

 The % operator is often used for positive
integers, but it can also be used with negative
integers and floating-point values.

 The remainder is negative only if the dividend is
negative. For example,
 -7 % 3 yields -1 -12 % 4 yields 0

 -26 % -8 yields -2 20 % -13 yields 7

4/4/2022

7

13

double vs. float
The double type values are more accurate than the
float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Scientific Notation
 Floating-point literals can be written in scientific

notation in the form of a * 10^b. For example:
 The scientific notation for 123.45 is 1.2345 * 10^2
 For 0.012345 is 1.2345 * 10^-2

 A special syntax is used to write scientific
notation numbers. For example:
 1.2345 * 10^2 is written as 1.2345E2 or 1.2345E+2
 1.2345 * 10^-2 as 1.2345E-2

 E (or e) represents an exponent, and can be in
either lowercase or uppercase.

4/4/2022

8

Evaluating Expressions
 Java expressions are evaluated in the same way

as arithmetic expressions.

Operator Precedence
 Operators contained within pairs of parentheses

() are evaluated first.
 When more than one operator is used in an

expression, the following operator precedence
rule is used to determine the order of evaluation:
 *, /, and % operators are applied first.
 If an expression contains several *, /, and %

operators, they are applied from left to right.
 + and - operators are applied last.
 If an expression contains several + and -

operators, they are applied from left to right.

4/4/2022

9

17

Augmented Assignment Operators

Note: There are no spaces in the augmented assignment operators.

18

Increment and Decrement Operators

4/4/2022

10

19

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

20

Conversion Rules
 When performing a binary operation involving 2

operands of different types, Java automatically
converts the operand using the following rules:

1. If one of the operands is double, the other is converted
into double.

2. Otherwise, if one of the operands is float, the other is
converted into float.

3. Otherwise, if one of the operands is long, the other is
converted into long.

4. Otherwise, both operands are converted into int.

4/4/2022

11

21

Type Casting
Implicit casting
double d = 3; (type widening)

Explicit casting
int i = (int) 3.0; (type narrowing)
int i = (int) 3.9; (Fraction part is truncated)

What is wrong? int x = 6 / 2.0;

22

Character Data Type
char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)

char letter = '¥u0041'; (Unicode)

char numChar = '¥u0034'; (Unicode)
NOTE: The increment and decrement operators can
also be used on char variables to get the next or
preceding Unicode character.
For example, the following statements display
character b.

char ch = 'a';
System.out.println(++ch);

4/4/2022

12

ASCII Code for Commonly Used
Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039
'A' to 'Z' 65 to 90 \u0041 to \u005A
'a' to 'z' 97 to 122 \u0061 to \u007A

Escape Sequences for Special
Characters

4/4/2022

13

Casting between char and Numeric
Types

int i = 'a'; // Same as int i = (int)'a';

char c = 97; // Same as char c = (char)97;

Comparing and Testing Characters

if (ch >= 'A' && ch <= 'Z')

System.out.println(ch + " is an uppercase letter");

else if (ch >= 'a' && ch <= 'z')

System.out.println(ch + " is a lowercase letter");

else if (ch >= '0' && ch <= '9')

System.out.println(ch + " is a numeric character");

4/4/2022

14

27

The String Type
 The char type only represents 1 character.

 To represent a string of characters, use the
data type called String. For example:

String message = "Welcome to Java!";

 String is actually a predefined class in the
Java library.

 The String type is not a primitive type. It is
known as a reference type.

28

String Concatenation

// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

4/4/2022

15

Simple Methods for Strings

Method Description

 Returns the number of characters in this string.

Returns the character at the specified index from this string.

Returns a new string that concatenates this string with string s1.

Returns a new string with all letters in uppercase.

Returns a new string with all letters in lowercase.

Returns a new string with whitespace characters trimmed on both sides.

length()

charAt(index)

concat(s1)

toUpperCase()

toLowerCase()

trim()

30

Console Input
 You can use the Scanner class for console input
 Java uses System.in to refer to the standard input

device (i.e. Keyboard)
import java.util.Scanner;
public class Test{

public static void main(String[] s){
Scanner input = new Scanner(System.in);
System.out.println(“Enter X : ”);
int x = input.nextInt();
System.out.println(“You entered: ”+ x);

}
}

4/4/2022

16

31

Reading Numbers from the Keyboard

Reading a String from the Console
Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

