
4/2/2022

1

Recursion

By: Mamoun Nawahdah (Ph.D.)
2022

2

Recursion
• To use recursion is to program using recursive

methods—that is, to use methods that invoke

themselves.

• A recursive method is one that invokes itself

directly or indirectly.

• Case Study: Computing Factorials

4/2/2022

2

Computing Factorial
 Let factorial(n) be the method for computing n!.
 If you call the method with n = 0, it immediately returns

the result.
 The method knows how to solve the simplest case,

which is referred to as the base case or the stopping
condition.

 If you call the method with n > 0, it reduces the
problem into a subproblem for computing the factorial
of n - 1.

 The subproblem is essentially the same as the original
problem, but it is simpler or smaller.

4

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)
= 24

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

4/2/2022

3

factorial(n)
int factorial(int n) {

if (n == 0) // base case
return 1;

else // recursion
return n * factorial(n - 1);

}

Notes:
• For a recursive method to terminate, the problem must

eventually be reduced to a stopping case, at which point the
method returns a result to its caller.

• If recursion does not reduce the problem in a manner that
allows it to eventually converge into the base case or a base
case is not specified, infinite recursion can occur. The
method runs infinitely and causes a StackOverflowError.

Invoking factorial(4)

4/2/2022

4

7

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1)

= (fib(1) + fib(0)) + fib(1)

= (1 + 0) +fib(1)

= 1 + fib(1)

= 1 + 1 = 2

8

Fibonnaci Numbers, cont.

4/2/2022

5

9

Characteristics of Recursion
All recursive methods have the following
characteristics:
■ The method is implemented using an if-else
or a switch statement that leads to different
cases.
■ One or more base cases (the simplest case)
are used to stop recursion.
■ Every recursive call reduces the original
problem, bringing it increasingly closer to a
base case until it becomes that case.

10

Characteristics of Recursion

 In general, to solve a problem using recursion,
you break it into subproblems.

 If a subproblem resembles the original problem,
you can apply the same approach to solve the
subproblem recursively.

 This subproblem is almost the same as the
original problem in nature with a smaller size.

4/2/2022

6

11

Problem Solving Using Recursion
 Let us consider a simple problem of printing a message

for n times.
 You can break the problem into two subproblems:

 one is to print the message one time and the other is to print
the message for n-1 times.

 The second problem is the same as the original problem with a
smaller size.

 The base case for the problem is n==0. You can solve this
problem using recursion as follows:

12

Think Recursively

 Many of the problems can be solved using recursion if
you think recursively.

 For example, the palindrome problem can be solved
recursively as follows:

