BIRZEIT UNIVERSITY

Recursion

By: Mamoun Nawahdah (Ph.D.)
2022

Recursion

« To use recursion is to program using recursive
methods—that is, to use methods that invoke
themselves.

* Arecursive method is one that invokes itself
directly or indirectly.

» Case Study: Computing Factorials

0! ; &
%n!=nx(n-1)!;nb0

2

4/2/2022

Computing Factorial

*» Let factorial(n) be the method for computing n!.

00 00

* If you call the method with n =0, it immediately returns
the result.

¢ The method knows how to solve the simplest case,
which is referred to as the base case or the stopping
condition.

¢ If you call the method with n > 0, it reduces the
problem into a subproblem for computing the factorial
ofn-1.

¢ The subproblem is essentially the same as the original
problem, but it is simpler or smaller.

o

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))
=4 * (3 * (2 * factorial(1)))
=4 *(3*(2*(1*factorial(0))))
=4*(3*(2*(1*1)))
=4*(3*(2*1))
=4*(3*2)
=4 *(6)

=2

4

B ;

4/2/2022

factorial(n)
int factorial(int n) {
if (n==0) // base case
return 1;
else // recursion
return n * factorial(n - 1);
}
Notes:

* For a recursive method to terminate, the problem must
eventually be reduced to a stopping case, at which point the
method returns a result to its caller.

* If recursion does not reduce the problem in a manner that
allows it to eventually converge into the base case or a base
case is not specified, infinite recursion can occur. The

% method runs infinitely and causes a StackOverflowError.

Invoking factorial(4)

factorial (4)

\Step 0: executes factorial (4)
Step 9: return 24 ‘ '

return 4 * factorial (3)

\Step 1: executes factorial (3)
Step 8: return 6 i i
retum 3 * factorial (2)
\Step 2: executes factorial (2)
Step 7: return 2
I 1

return 2 * factorial (1)

‘Step 3: executes factorial (1)
Step 6: return 1 [‘

return 1 * factorial (0)

Step 4: executes factorial (0)
Step 5: return 1

return 1

4/2/2022

Fibonacci Numbers

Fibonacci series: 01 1 2 3 5 8 13 21 34 55 89..
indices: 01 2 3456 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1)
= (fib(1) + fib(0)) + fib(1)
= (1 +0) +fib(1)
= 1 + fib(1)

% =1+1=2

Fibonnaci Numbers, cont.

public static Tong fib(long index) {

if (index == 0) // Base case
return 0;

else if (index == 1) // Base case
return 1;

else // Reduction and recursive calls

o

return fib(index - 1) + fib(index - 2);

4/2/2022

Characteristics of Recursion

All recursive methods have the following
characteristics:

B The method is implemented using an if-else
or a switch statement that leads to different
cases.

B One or more base cases (the simplest case)
are used to stop recursion.

B Every recursive call reduces the original
problem, bringing it increasingly closer to a
base case until it becomes that case.

Ead ;

Characteristics of Recursion

¢ In general, to solve a problem using recursion,
you break it into subproblems.

¢ If a subproblem resembles the original problem,
you can apply the same approach to solve the
subproblem recursively.

+¢* This subproblem is almost the same as the
original problem in nature with a smaller size.

Ead o

4/2/2022

Problem Solving Using Recursion

¢ Let us consider a simple problem of printing a message
for n times.

¢ You can break the problem into two subproblems:
= one is to print the message one time and the other is to print
the message for n-1 times.
= The second problem is the same as the original problem with a
smaller size.

= The base case for the problem is n==0. You can solve this
problem using recursion as follows:

public static void nPrintin(String message, int times) {
if (times >= 1) {

System.out.println(message)

nPrintin(message, times - 1

} // The base case is times =

0

1| ~ -

% }

Think Recursively

+** Many of the problems can be solved using recursion if
you think recursively.

+» For example, the palindrome problem can be solved
recursively as follows:

public static boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;
else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
return false;
else
return isPalindrome(s.substring(1, s.length() - 1));:

}

B o

4/2/2022

