
5/25/2022

1

Exception Handling
and

Text IO

By: Mamoun Nawahdah (Ph.D.)

2022

2

Runtime Error?

5/25/2022

2

3

Fix it Using an if Statement

4

Exception Handling

 Exception handling technique enables a

method to throw an exception to its caller.

 Without this capability, a method must
handle the exception or terminate the
program.

5/25/2022

3

5

Exception Types

6

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

5/25/2022

4

7

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.

8

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

5/25/2022

5

9

Checked Exceptions vs.
Unchecked Exceptions

 RuntimeException, Error and their

subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

10

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

5/25/2022

6

11

Declaring, Throwing, and
Catching Exceptions

12

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

5/25/2022

7

13

Throwing Exceptions
 When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

14

Throwing Exceptions Example

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}

5/25/2022

8

15

Catching Exceptions
try {

statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

5/25/2022

9

17

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or

 declare to throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

5/25/2022

10

5/25/2022

11

21

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;

throw ex;
}

22

When to Throw Exceptions
 An exception occurs in a method.

 If you want the exception to be processed by
its caller, you should create an exception object
and throw it.

 If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions
 You should use it to deal with unexpected
error conditions.

5/25/2022

12

23

Caution!
 Do not use exception to deal with simple,
expected situations.
 For example, the following code:

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

 is better to be replaced by:
if (refVar != null)

System.out.println(refVar.toString());
else

System.out.println("refVar is null");

24

The File Class

 The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

 The filename is a string.

 The File class is a wrapper class for
the file name and its directory path.

5/25/2022

13

25

File class

26

File class

5/25/2022

14

27

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file.

 In order to perform I/O, you need to create objects

using appropriate Java I/O classes.

 The objects contain the methods for reading/writing

data from/to a file.

 This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner

and PrintWriter classes.

28

PrintWriter class

5/25/2022

15

29

Scanner class

30

Problem: Replacing Text

 Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

 java ReplaceText sourceFile
targetFile oldString newString

