5557 ’*V/ 1%
et .)IL-——“

——ARAC:
BIRZEIT UNIVERSITY

Exception Handling
and G

By: Mamoun Nawahdah (Ph.D.)
2022

Runtime Error?

import java.util.Scanner;

public elass Quotient {

public static wvoid main(String[] args) {
Scanner input = new Scanner (System.in);
// Prompt the user to enter two integers

System.out.print ("Enter two integers: ");

int numberl = input.nextInt();

int number2 = input.nextInt();

System.out.println(numberl + " / " + number2 + " is " +
(numberl / number?)):

}

- :

5/25/2022

Fix it Using an if Statement

import java.util.Scanner;

public class QuotientWithIf {
public statie wvoid main (String[] args) {
Scanner input = new Scanner (System.in);

System.but.print("Enter two integers; iy
int numberl = input.nextInt();
int number?2 = input.nextInt():;

if (number2 != 0)

(numberl / number2)) ;
else

System.out.println(numberl + " / " + number2 + " is

"4

System.out.println("Divisor cannot be zero "):;

Exception Handling

¢ Exception handling technique enables a
method to throw an exception to its caller.

** Without this capability, a method must
handle the exception or terminate the
program.

eX'Cep'tion 9) noun \ik-'sep-shan),

: someone or something that is different from others :
someone or something that is not included

% : a case where a rule does not apply
4

5/25/2022

Exception Types

‘ Object K Throwablemf

ClassNotFoundException

RuntimeException ‘

—— Many more classes

LinkageErmor

4{ Emror KI [{VinualMaclﬁneError‘

i

Many more classes

ArithmeticException
NullPointerException

4{ IndexOutOfBoundsException ‘

4‘ Illegal ArgumentException ‘

L Many more classes

System Errors

| Object K]_rrhmwabiem_

—{ ClassNotFoundException

IOException

RuntimeException ‘

L__ Many more classes

| X

LinkageError

VirtualMachineError

Many more classes

ArithmeticException
INullPointerException

_| IndexOutOfBoundsException

¥| IllegalArgumentException |

L Many more classes

System errors are thrown by JVM and represented in the
4 Error class. The Error class describes internal system errors.

o

5/25/2022

Exceptions

—1C1assNotIFoundExccption|

IOException

— { INullPointerExceptio:
ot |

_| IndexOutOfBoundsException |

| Many more classes

| Object M_rl‘hmwablelq_ _| Illegal ArgumentException |

L Many more classes

LinkageError
VirtualMachineError

Many more classes

+» Exception describes errors caused by your program and
external circumstances.
¢ These errors can be caught and handled by your program. ,

Runtime Exceptions

—iclassNorF eundException‘

IOException
‘ INullPointerExceptio

_<l RuntimeException

_| IndexOutOfBoundsException

Many more classes

| Object M_rl‘hmwablelq_ _| IllegalArgumentException |

L Many more classes

LinkageError

Many more classes

+* RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

5/25/2022

Checked Exceptions vs.
Unchecked Exceptions

% RuntimeException, Error and their
subclasses are known as unchecked
exceptions.

% All other exceptions are known as checked

exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

Unchecked Exceptions

+* In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

¢ For example:

= a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

= an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

+»» These are the logic errors that should be corrected in the

ii@ program.

5/25/2022

Declaring, Throwing, and
Catching Exceptions

|_declare exception

if (an error occurs) {

Et.hrow new Exception(): ?;.e_throwexception
S e P o S L ;

}
\ methodl () |
::t.ty { :

\ invoke method2;
catch exceplmi%;catch (Exception ex) {:
i Process exception; i

Declaring Exceptions

s Every method must state the types of
checked exceptions it might throw.

< This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

e u

5/25/2022

Throwing Exceptions

** When the program detects an error, the
program can create an instance of an appropriate

exception type and throw it.
% This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

2 B

Throwing Exceptions Example

public void setRadius(double newRadius)
throws lllegalArgumentException {
if (newRadius >=0)
radius = newRadius;

else
throw new lllegalArgumentException(

"Radius cannot be negative");

}

5/25/2022

Catching Exceptions

try {
statements; // Statements that may throw exceptions

}
catch (Exceptionl exVarl) {

handler for exceptionl;

}
catch (Exception2 exVar2) {

handler for exception2;
}

catch (ExceptionN exVar3) {
handler for exceptionN;

}

e 15

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2 () throws IOException ({
if (a file does not exist) {
throw new IOException("File does not exist");

}

5/25/2022

Catch or Declare Checked Exceptions

++ Java forces you to deal with checked exceptions.

= You must invoke it in a try-catch block or

= declare to throw the exception in the calling method.

+* For example, suppose that method p1 invokes method

p2, you have to write the code as follow:

}
catch (IOException ex) ({ }

}
}

void pl() { void pl() throws IOException {
try {
Pp2(); p2();

,* (b)

17

1 public class CircleWithException {

2 /** The radius of the circle */

3 private double radius;

4

5 /** The number of the objects created */
o private static int numberOfCbjects = 0;
-

8 /** Construct a circle with radius 1 */
9 public CircleWithException() {

10 this(1.0);

11 }

12

13 /** Construct a circle with a specified radi
14 public CircleWithException (double newRadius)
15 setRadius (newRadius) ;

16 numberOfObjects++;

17 }

18

19 /** Return radius */
20 public double getRadius () {
21 return radius;
272 }

us

{

* __f'

5/25/2022

24 /** Set a new radius */
25 public void setRadius (double newRadius)
26 throws IllegalArgumentException ({
27 if (newRadius >= 0)
28 radius = newRadius;
29 else
30 throw new IllegalArgumentException (
31 "Radius cannot be negative");
32 }
33
34 /** Return numberOfObjects */
35 public static int getNumberOfObjects () {
36 return numberOfCbjects;
37 }
38
39 /** Return the area of this circle */
40 public double findArea() {
41 return radius * radius * 3.14159;
42 }
43 }
1 publie class TestCircleWithException {
2 public static void main(String[] args) {
3 try {
4 CircleWithException cl = new CircleWithException(5);
5 CircleWithException c2 = new CircleWithException(-5)}
6 CircleWithException ¢3 = new CircleWithException (0);
7 }
8 catch (IllegalArgumentException ex) {
9 System.out.println (ex);
10 }
11
12 System.out.println ("Number of objects created: " +
13 CircleWithException.getNumberOfObjects());
14 }
15 }

2

5/25/2022

10

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;
throw ex;
}

When to Throw Exceptions

¢ An exception occurs in a method.

+* If you want the exception to be processed by
its caller, you should create an exception object
and throw it.

+¢ If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions

% You should use it to deal with unexpected
error conditions.

5/25/2022

11

Caution!

¢ Do not use exception to deal with simple,
expected situations.

¢ For example, the following code:

try {
System.out.printIn(refVar.toString());

}

catch (NullPointerException ex) {
System.out.printIn("refVar is null");

}

+*»* is better to be replaced by:

if (refVar 1= null)

System.out.printIn(refVar.toString());

else
% System.out.printin("refVar is null"); 23

The File Class

+*»* The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

+** The filename is a string.

** The File class is a wrapper class for
the file name and its directory path.

24

5/25/2022

12

File class

+File(pathname: String)

Creates a File object for the specified path name, The path name may be a
directory or a file.

+File(parent: String, child: String) Creates a File object for the child under the dircetory parent. The child may be

+File(parent: File, child: 5tring)

+exists(): boolean
+canRead(): boolean
+canWrite(): boolean
+isDirectory(}: boolean
+isFile(): boglean
+1sAbsalute(): boolean
+isHidden(}: boolean

a file name or a subdirectory.

Creates a File object for the child under the directory parent. The parent isa
File object, In the preceding constructor, the parent is a string,

Returns true if the file or the directory represented by the File object exists
Returns true if the file represented by the File object exists and can be read,
Returns true if the file represented by the File object exists and can be written,
Returns true if the File object represents a directory,

Returns true if the File object represents a file.

Returns true if the FiTe object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent, On Windows, you can mark a file
hidden in the File Propertics dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character,

25

File class

+getAbsolutePath(): String

+getCanonicalPath(}: String

+getName(): String

+getPath(): String
+getParent(): String
+lastModified(): long
+length(): Tong

+listFile(): File[]
+delete(): boolean

+renameTo(dest: File): boolean
+mkdir(): boolean

+mkdirs(): boolean

Returns the complete absolute file or directory name represented by the File
abject.
Returns the same as getAbsoTutePath () except that it removes redundant
names, such as *." and "..", from the path name, resolves symbolic links (on
Unix), and converts drive letters to fard upp {on Windows).
Returns the last name of the complete directory and file name represented by
the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.
Returns the complete directory and file rame represented by the Fi le object.
For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.
Returns the complete parent directory of the current directory or the file
represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.
Returns the time that the file was last modified.
Returns the size of the file, or (1 if it does not exist or if it is a directory.
Returns the files under the directory for a directory File object.
Deletes the file or directory represented by this Fi e object. The method returns
true if the deletion succeeds
Renames the file or directory represented by this Fi1e object to the specified name
represented in dest. The method returns true if the operation succee:

Creates a directory represented in this FiTe object. Returns true if the the directory is
created successfully,

Same as mkdi r() except that it creates directory along with its parent directories if
the parent directories do not exist.

26

5/25/2022

13

Text 1/0

¢ A File object encapsulates the properties of a file or a
path, but does not contain the methods for
reading/writing data from/to a file.

¢ In order to perform I/O, you need to create objects
using appropriate Java I/O classes.

+ The objects contain the methods for reading/writing
data from/to a file.

+¢ This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner
and PrintWriter classes.

e 27

PrintWriter class

javaio.PrintWriter

+PrintWriter(filename: String) | Creates a PrintWriter for the specified file.

+print(s: String): void Writes a string.

+print(c: char): void Writes a character.

+print(cArray: char[]): void Writes an array of character.

“+print(i: int): void Writes an int value.

+print(l: long): void Writes a long value.

+print(f: float): void Writes a float value.

+print(d: double): void Writes a double value.

+print(b: boolean): void Writes a boolean value.

Also contains the overloaded A println method acts like a print method; additionally it
println methods. prints a line separator. The line separator string is defined

Also contains the overloaded by the system. It is \r'n on Windows and 'n on Unix.
printf methods. The printf method was irm"loduc"ed in §3.6, “Formatting

Console Output and Strings.”

e :

5/25/2022

14

Scanner class

javautil Scanner

+Scanner{source: File)
+Scanner{source: String)
+dose()

+hasNext(): boolean
+next(): String

+nextB vte(): byte
+nextShort(): short
+nextlnt() int
+nextlLong() long
+nextFloat (): float
+nextDouble(): double

+useDd imiter(pattern: Stng):
Scanner

2

Creates a Scanner object to read data from the spedfiedfile

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns trueif this scanner has another token in its input.
Returns next token as a sting.

Returns next token as abiie

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as adauble.

Sets this scanner s delimiting pattern.

29

Problem: Replacing Text

2

+* Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

> java ReplaceText sourceFile
targetFile oldString newString

30

5/25/2022

15

