
1

Computer Science Department

COMP2311 Mid Term Exam

 Time: 80 minutes

Student Name: _____KEY_______________ Student ID#: __________________

Choose your instructor:

Dr. Mamoun Nawahdah Dr. Murad Njoum Dr. Abdallah Karakra

Lab 3 (S, 08:00 - 10:40)

Lab 1 (M, 14:15 - 16:55)

Lab 2 (T, 11:25 - 14:05)

Lab 4 (M, 14:15 - 16:55)

Lab 5 (T, 08:00 - 10:40)

Question Q1 Q2 Q3 Total

Mark 20+15 /35 20 + 15 /35 30 /30 100

 Question I (35%)

Part A (20%)
Select the best answer for each of the following questions (1-10) and put your
answers in the given table at page 4.

1. We cannot create a subclass of _________class.

A. abstract.
B. public.
C. static.
D. final.

2. What is an immutable object?

A. An immutable object can be changed once it is created.
B. An immutable object can't be changed once it is created.
C. An immutable object is an instance of a public class.
D. None of the above.

3. Which of the following statements about inheritance is correct?

A. You can always use a superclass object in place of a subclass object.
B. You can always use a subclass object in place of a superclass object.
C. A superclass inherits data and behavior from a subclass.
D. A superclass inherits only behavior from a subclass.

2

4. What is the output of the following code segment?

 try {

 System.out.print("Hello World");

 } catch (Exception e) {

 System.out.println("e");

 } catch (ArithmeticException e) {

 System.out.println("e");

 } finally {

 System.out.println("!");

 }

A. Hello World
B. Hello World!
C. It will throw runtime exception
D. It will not compile because the second catch statement is unreachable

5. To keep the circle at the center of the pane regardless of how the stage is

resized (width or height). Among the following methods, which is correct?

A)
circle.centerXProperty().bind(pane.widthProperty().divide(2));

circle.centerYProperty().bind(pane.heightProperty().divide(2));

B)

circle.SetCenterXProperty().bind(pane.widthProperty().divide(2));

circle.SetCenterYProperty().bind(pane.heightProperty().divide(2));

C)
 circle.SetCenterX(pane.widthProperty().divide(2));

 circle.SetCenterY(pane.heightProperty().divide(2));

D)
No of the above

6. To write to a byte stream (Binary), you should use a class that extends
 which of the following abstract classes ?

A. InputStream

B. OutputStream

C. Reader

D. Writer

3

7. Consider the following code snippet:

public class Coin {

 private String name;

 . . .

 public boolean equals(Object otherCoin){

 return name.equals(otherCoin.name);

 }

 . . .

}

 What is wrong with this code?

A. The return statement should use the == operator instead of the equals
 method.

B. The parameter in the equals method should be declared as Coin otherCoin.
C. otherCoin must be cast as a Coin object before using the equals method.
D. There is nothing wrong with this code

8. Given the declaration Circle[] x = new Circle[10], which of the

following statement is most accurate.

A. x contains a reference to an array and each element in the array can hold a
reference to a Circle object.

B. x contains a reference to an array and each element in the array can hold a
Circle object.

C. x contains an array of ten objects of the Circle type.
D. x contains an array of ten int values.

9. Which corner of the screen has the pixel coordinates (0, 0)?

A. Top-left
B. Top-right
C. Bottom-left
D. Bottom-right

10. Assume Book is an interface, and both “Dictionary” and “Encyclopedia”

classes implement it. Which of the following statements is valid ?

A. Book b = new Book();

B. Book d = new Dictionary();

C. Encyclopedia e = new Book();

D. none of the above

4

Answer : Sheet for Question I (Part A): باستخدام الأحرف الكبيرة فقط ملأ الجدول التالي ا

1 2 3 4 5 6 7 8 9 10

D B B D A B C A A B

Part B (15%)
There are some errors with the codes from A to C. You should
rewrite these codes to address those errors.

A) Assuming that the Animal class does define a public eat method.

 Object animal = new Animal();

 animal.eat();

 /*the compiler complains because the Object class does not define an eat method.*/ 1pt

 Object animal = new Animal();

 ((Animal)animal).eat();// 2pts

B)

public class Test {

 public static void main(String[] args) {

 java.util.Date x = new java.util.Date();

 java.util.Date y = x.clone();

 System.out.print("Hello World").

 }

}

public class Test {

 public static void main(String[] args) {

 java.util.Date x = new java.util.Date();

 java.util.Date y = (java.util.Date)x.clone(); // Cast 3pts

 System.out.print("Hello World"); // ; 2pts

 }

}

5

C)

public class Test {

 public static void main(String[] args) {

 Person[] persons = {new Person(3), new Person(4), new Person(1)};

 java.util.Arrays.sort(persons);

 }

}

class Person implements Comparable<Person>{ // implements Comparable<Person> 2pts

 private int id;

 Person(int id) {

 this.id = id;

 }

 @Override

 public int compareTo(Person o) { // method signature 2pts

 return (this.id- o.id); // override compareTo 3Pts

 }

}

public class Test {

 public static void main(String[] args) {

 Person[] persons = {new Person(3), new Person(4), new Person(1)};

 java.util.Arrays.sort(persons);

 }

}

class Person {

 private int id;

 Person(int id) {

 this.id = id;

 }

}

6

Question II (35%)

Part A (20%)
True/False Questions: put your answers in the given table below.

 TRUE FALSE

1. Every JavaFX program is defined in a class that
extends the interface Application.

 False

2. A particular catch block can catch exceptions from
more than one try block.

 False

3. An interface has methods but no instance variables. True

4. A “has-a” relationship is implemented via inheritance. False

5. Exception is a subclass of Error. False

6. Interfaces have both private and public methods. False

7. It is not possible to add a Shape or an ImageView
directly to a Scene.

True

8.
 The following statements will create three objects

 Student studentName, studentId, stud_class;
 False

9.
You can use the following statement to create a Color object:

 new Color(1.2, 2.3, 3.5, 4);

 False

10. A subclass inherits methods from its superclass but not
instance variables.

 False

Part B (15%)

Answer the following questions (A-C).

A) Suppose your code fills a personList[] array with objects instantiated from several
different classes derived (extended) from the Person class, like Doctor,
Student, Driver, etc. Write a Java statement that prints, “Tries to explain meaning
of life” if and only if personList [i] refers to a Doctor.

if (personList [i] instanceof Doctor){ // 3 pts

 System.out.println("Tries to explain meaning of life"); // 1 pt

}

7

B) Assume an Animal class defines a public eat method and a Dog class
derived (extended) from the Animal class defines a different public eat
method. Assume the declaration:

 Animal[] animals = {new Animal(), new Dog("Leo", "brown")};

Indicate which eat method is invoked by each of the following statements,
and explain why.

animals[0].eat();

animals[1].eat();

The animal[0].eat(); statement invokes Animal's eat method // 2pts

The animal[1].eat(); statement invokes Dog's eat method. // 2pts

Reason //2pts

In each case, the JVM determines the type of the object referenced, and then it binds the method call

to the method defined in that object's class.

C) public class Mystery {
 static int a= 0;

 int b;

 public Mystery () {

 b= a;

 a= a+1;

 }

 public boolean equals (Mystery that) {

 return b == that.b;

 }

}

 Is the result of (new Mystery (). equals (new Mystery ())) true? Why?

 No // 2pts

Reason // 3pts

 new Mystery (). equals (new Mystery ())

 value of b=0 value of b=1

it will evaluate to true only if two Mystery objects are constructed at the same time, where here is not

the case.

8

Question III (30%)

Write a class that implements the Queue interface called MyQueue, as shown in
Figure 1 below. A queue is a data structure that accepts data and then returns it in
the order in which it was received (first-in, first-out order). Items are added to the
tail (نهاية) of the queue and removed from the head (بداية). See Figure 3.

public interface Queue {

 public int size(); //Returns number of objects in queue

 public boolean isEmpty(); //Returns true if queue is empty

 /* Adds an item to the tail of the queue */

 public void addLast(Object o);

/*Removes and returns the item from the head of the queue */

public Object removeFirst();

}

Your queue implementation must be accessible and usable from any package.
However, any attempt to extend your class should produce a compile-time
error (your class must be protected in such a way that it cannot be extended
by others). Figure 2 illustrates a sample main method and sample output.

Sample main method

public static void main(String[] args) {

 Queue line = new MyQueue();

 line.addLast(“Hello”);

 line.addLast(“World”);

System.out.println(line.removeFirst());

System.out.println(line.removeFirst());

}

Output

Hello
World

Empty Queue

Figure 3: Queue implemented using ArrayList

head tail

Figure 1: Queue interface

line

Figure 2: sample main method and sample output

H
ello

 AddLast (“Hello”)

AddLast (“World”)

H
ello

W
o

rld

Add items into Queue

Remove item from the Queue

W
o

rld

removeFirst ()

(1) After adding “Hello”

(2) After adding “World”

(3) After removing the first item

 Use Only ArrayList for storing(تخزين) the items

9

Good Luck

import java.util.ArrayList; // 2pts for the import statement

public final class MyQueue implements Queue { // 2pts for the final keyword , 2 pts for the implements keyword

 private ArrayList list = new ArrayList(); // 2pts for the creation of ArrayList , 2pts for the private keyword

 public MyQueue() { // 2pts for the constructor

 }

 public int size() { // 2 pts for correct signature

 return list.size(); // 2 pts

 }

 public boolean isEmpty() { // 2 pts for correct signature

 return (list.size() == 0); // 2 pts

 }

 public void addLast (Object o) { // 2 pts for correct signature

 list.add(o); // 2 pts

 }

 public Object removeFirst() { // 2 pts for correct signature

 if (!isEmpty()) // 1 pts

 return list.remove(0); // 2 pts

 return null; // 1pt

 }

}

