
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231
Instructor :Murad Njoum
Office : Masri322

Chapter 12 Exception Handling and Text IO

2

•An Exception is a run-time error which interrupts the normal flow of
program execution. Disruption during the execution of the program is
referred as error or exception.

•Errors are classified into two categories
• Compile time errors – Syntax errors, Semantic errors
• Runtime errors- Exception

•A robust program should handle all exceptions and continue with its normal
flow of program execution. Java provides an inbuilt exceptional handling
method
•Exception Handler is a set of code that handles an exception. Exceptions can
be handled in Java using try & catch.
•Try block: Normal code goes on this block.
•Catch block: If there is error in normal code, then it will go into this block

3

Advantage of Exception Handling
The core advantage of exception handling is to maintain the normal flow of the
application. An exception normally disrupts the normal flow of the application that is why
we use exception handling. Let's take a scenario:
1.statement 1;
2.statement 2;
3.statement 3;
4.statement 4;
5.statement 5;//exception occurs
6.statement 6;
7.statement 7;
8.statement 8;
9.statement 9;
10.statement 10;

Suppose there are 10 statements in your program and there occurs an exception at statement
5, the rest of the code will not be executed i.e. statement 6 to 10 will not be executed. If we
perform exception handling, the rest of the statement will be executed. That is why we use
exception handling in Java.

4

The java.lang.Throwable class is the root class of
Java Exception hierarchy which is inherited by

two subclasses: Exception and Error. A hierarchy
of Java Exception classes are given below:

Hierarchy of Java Exception classes

5

checked and unchecked. Here, an error is considered as the
unchecked exception.

1) Checked Exception
The classes which directly inherit Throwable class except
RuntimeException and Error are known as checked exceptions
e.g. IOException, SQLException etc. Checked exceptions are
checked at compile-time.

2) Unchecked Exception
The classes which inherit RuntimeException are known as
unchecked exceptions e.g. ArithmeticException,
NullPointerException, ArrayIndexOutOfBoundsException etc.
Unchecked exceptions are not checked at compile-time, but
they are checked at runtime.

3) Error
Error is irrecoverable e.g. OutOfMemoryError,
VirtualMachineError, AssertionError etc.

Types of Java Exceptions, Difference between Checked and Unchecked Exceptions

6

7

Java Exception Keywords
There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try The "try" keyword is used to specify a block where we should place exception code. The try block must be
followed by either catch or finally. It means, we can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded by try block which means we can't use
catch block alone. It can be followed by finally block later.

finally The "finally" block is used to execute the important code of the program. It is executed whether an exception
is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used with method signature.

8

Common Scenarios of Java Exceptions
There are given some scenarios where unchecked exceptions may occur. They are as
follows:
1) A scenario where ArithmeticException occurs
If we divide any number by zero, there occurs an ArithmeticException.

1.int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs
If we have a null value in any variable, performing any operation on the variable throws a
NullPointerException.
1.String s=null;
2.System.out.println(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs
The wrong formatting of any value may occur NumberFormatException. Suppose I have a string
variable that has characters, converting this variable into digit will occur NumberFormatException.
1.String s="abc";
2.int i=Integer.parseInt(s);//NumberFormatException

9

4) A scenario where ArrayIndexOutOfBoundsException occurs
If you are inserting any value in the wrong index, it would
result in ArrayIndexOutOfBoundsException as shown below:
1.int a[]=new int[5];
2.a[10]=50; //ArrayIndexOutOfBoundsException

Syntax of Java try-catch
try{

//code that may throw an exception
}catch(Exception_class_Name ref){}

Syntax of try-finally block
try{

//code that may throw an exception
}finally{}

Trace a Program Execution

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

10

Suppose no
exceptions in the
statements

Trace a Program Execution

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

11

The final block is
always executed

Trace a Program Execution

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

12

Next statement in the
method is executed

Trace a Program Execution

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

13

Suppose an exception
of type Exception1 is
thrown in statement2

Trace a Program Execution

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

14

The exception is
handled.

Trace a Program Execution

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

15

The final block is
always executed.

Trace a Program Execution

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

16

The next statement in
the method is now
executed.

Trace a Program Execution
try {

statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

17

statement2 throws an
exception of type
Exception2.

Trace a Program Execution
try {

statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

18

Handling exception

Trace a Program Execution
try {

statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

19

Execute the final block

Trace a Program Execution
try {

statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

20

Rethrow the exception
and control is
transferred to the caller

Example: What is the output?

21

int []a= {1,2,3};
try {

System.out.println(a[2]/2);;
System.out.println(a[2]/0);;
System.out.println(a[0]/2);;

}
catch(IllegalArgumentException ex) {

System.out.println(ex.getMessage());
}

catch(ArithmeticException ex) {
System.out.println(ex.getMessage());

throw new IllegalArgumentException("2 . Welcome");
}

finally {
System.out.println("3. finalStatements");

}

22

public class JavaExceptionExample{
public static void main(String args[]){
try{

//code that may raise exception
int data=100/0;

}catch(ArithmeticException e){System.out.println(e);
}
//rest code of the program
System.out.println("rest of the code...");

}
}

Output:
Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code...

In the above example, 100/0 raises an ArithmeticException which is handled by a try-catch
block.

23

1.public class TryCatchExample5 {
2.
3. public static void main(String[] args) {
4. try
5. {
6. int data=100/0; //may throw exception
7. }
8. // handling the exception
9. catch(Exception e)
10. {
11. // displaying the custom message
12. System.out.println("Can't divided by zero");
13. }
14. }
15.
16.}

24

public class TryCatchExample9 {

public static void main(String[] args) {
try
{

int arr[]= {1,3,5,7};
System.out.println(arr[10]); //may throw exception
}

// handling the array exception
catch(ArrayIndexOutOfBoundsException e)
{

System.out.println(e);
}
System.out.println("rest of the code");

}

}

25

public class MultipleCatchBlock3 {
public static void main(String[] args) {

try{
int a[]=new int[5];
System.out.println(a[10]);
a[5]=30/0;
System.out.println(a[10]);
}

catch(ArithmeticException e)
{System.out.println("Arithmetic Exception occurs"); }

catch(ArrayIndexOutOfBoundsException e)
{System.out.println("ArrayIndexOutOfBounds Exception occurs");

}
catch(Exception e)

{System.out.println("Parent Exception occurs"); }
finally{System.out.println("Processed final");}
System.out.println("rest of the code");
}

} ArrayIndexOutOfBounds Exception occurs
Processed final
rest of the code

26

public class MultipleCatchBlock3 {

public static void main(String[] args) {
int a[]=new int[5];
try{

System.out.println(a[10]);
}

catch(ArrayIndexOutOfBoundsException e)
{System.out.println("ArrayIndexOutOfBounds Exception occurs"); }

try{
a[5]=30/0;

System.out.println(a[10]);
}
catch(Exception e)

{System.out.println("Parent Exception occurs"); }

finally{System.out.println("Processed finnal");}
System.out.println("rest of the code");
}

}

Try-catch Blocks:

27

public class MultipleCatchBlock3 {

public static void main(String[] args) {
int a[]=new int[5];
try{

System.out.println(a[10]);

try{
a[5]=30/0;
System.out.println(a[10]);
}catch(Exception e)

{System.out.println("Parent Exception occurs"); }

}
catch(ArrayIndexOutOfBoundsException e)

{System.out.println("ArrayIndexOutOfBounds Exception occurs"); }
finally{System.out.println("Processed finnal");}

System.out.println("rest of the code");
}

}

Nested try catch:

28

public class QuotientWithMethod {
public static int quotient(int number1, int number2) {
if (number2 == 0) {
System.out.println("Divisor cannot be zero");
System.exit(1);

}

return number1 / number2;
}

public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers
System.out.print("Enter two integers: ");
int number1 = input.nextInt();
int number2 = input.nextInt();

int result = quotient(number1, number2);
System.out.println(number1 + " / " + number2 + " is "
+ result);

}
}

Fixing With a method

29

public class QuotientWithException {
public static int quotient(int number1, int number2) {
if (number2 == 0)
throw new ArithmeticException("Divisor cannot be zero");

return number1 / number2;
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

System.out.print("Enter two integers: ");
int number1 = input.nextInt();
int number2 = input.nextInt();

try {
int result = quotient(number1, number2);
System.out.println(number1 + " / " + number2 + " is "
+ result);

}
catch (ArithmeticException ex) {
System.out.println("Exception: an integer " +
"cannot be divided by zero ");

}
System.out.println("Execution continues ..."); }}

Handling InputMismatchException

30

By handling InputMismatchException, your program will
continuously read an input until it is correct.

public class InputMismatchExceptionDemo {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
boolean continueInput = true;

do {
try {
System.out.print("Enter an integer: ");
int number = input.nextInt();

// Display the result
System.out.println(
"The number entered is " + number);

continueInput = false;
}
catch (InputMismatchException ex) {
System.out.println("Try again. (" +
"Incorrect input: an integer is required)");

input.nextLine(); // discard input
}

} while (continueInput);
}

}

Unchecked Exceptions

31

v In most cases, unchecked exceptions reflect programming logic errors
that are not recoverable.

v For example, a NullPointerException is thrown if you access an object
through a reference variable before an object is assigned to it;

v an IndexOutOfBoundsException is thrown if you access an element in
an array outside the bounds of the array. These are the logic errors that
should be corrected in the program.

v Unchecked exceptions can occur anywhere in the program. To avoid
cumbersome overuse of try-catch blocks, Java does not mandate you to
write code to catch unchecked exceptions.

Declaring, Throwing, and Catching Exceptions

32

method1() {

 try {
 invoke method2;
 }
 catch (Exception ex) {
 Process exception;
 }
}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();
 }
}

catch exception throw exception

declare exception

Declaring Exceptions

Every method must state the types of checked exceptions it might
throw. This is known as declaring exceptions.

public void myMethod()
throws IOException

public void myMethod()
throws IOException, OtherException

33

Throwing Exceptions

When the program detects an error, the program can create an instance of
an appropriate exception type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

34

Throwing Exceptions Example

/** Set a new radius */
public void setRadius(double newRadius)

throws IllegalArgumentException {
if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(
"Radius cannot be negative");

}

35

Catching Exceptions

try {
statements; // Statements that may throw exceptions
}

catch (Exception1 exVar1) {
handler for exception1;

}
catch (Exception2 exVar2) {
handler for exception2;

}
...
catch (ExceptionN exVar3) {
handler for exceptionN;

}

36

Catching Exceptions

37

main method {
 ...
 try {
 ...
 invoke method1;
 statement1;
 }
 catch (Exception1 ex1) {
 Process ex1;
 }
 statement2;
}

method1 {
 ...
 try {
 ...
 invoke method2;
 statement3;
 }
 catch (Exception2 ex2) {
 Process ex2;
 }
 statement4;
}

method2 {
 ...
 try {
 ...
 invoke method3;
 statement5;
 }
 catch (Exception3 ex3) {
 Process ex3;
 }
 statement6;
}

An exception
is thrown in
method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Catch or Declare Checked Exceptions

Suppose p2 is defined as follows:

38

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

Catch or Declare Checked Exceptions
Java forces you to deal with checked exceptions. If a method declares a checked exception
(i.e., an exception other than Error or RuntimeException), you must invoke it in a try-catch
block or declare to throw the exception in the calling method. For example, suppose that
method p1 invokes method p2 and p2 may throw a checked exception (e.g., IOException),
you have to write the code as shown in (a) or (b).

39

void p1() {
 try {
 p2();
 }
 catch (IOException ex) {
 ...
 }
}

(a)

(b)

void p1() throws IOException {

 p2();

}

Example: Declaring, Throwing, and Catching Exceptions

•Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 9. The new
setRadius method throws an exception if
radius is negative.

40

RunTestCircleWithException

CircleWithException

41

public class CircleWithException {
private double radius;
private static int numberOfObjects = 0;

public CircleWithException() {
this(1.0);

}

public CircleWithException(double newRadius) {
setRadius(newRadius);
numberOfObjects++;

}

public double getRadius() {
return radius;

}

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(
"Radius cannot be negative");

}

public static int getNumberOfObjects() {
return numberOfObjects;

}

public double findArea() {
return radius * radius * 3.14159;

}
}

42

public class TestCircleWithException {
public static void main(String[] args) {
try {
CircleWithException c1 = new CircleWithException(5);
CircleWithException c2 = new CircleWithException(-5);
CircleWithException c3 = new CircleWithException(0);

}
catch (IllegalArgumentException ex) {
System.out.println(ex);

}

System.out.println("Number of objects created: " +
CircleWithException.getNumberOfObjects());

}
}

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {
perform operations before exits;
throw ex;

}

43

The finally Clause
try {
statements;

}
catch(TheException ex) {
handling ex;

}
finally {
finalStatements;

}

44

For each try block there can be zero or more catch block, but only one finally
block.

Example:

45

// A Class that represents use-defined expception
class MyException extends Exception
{

public MyException(String s)
{ // Call constructor of parent Exception
super(s); }
}

// A Class that uses above MyException
public class Main
{ // Driver Program
public static void main(String args[])
{ try
{
// Throw an object of user defined exception
throw new MyException("Comp231");
}

catch (MyException ex)
{
System.out.println("Caught");
// Print the message from MyException object
System.out.println(ex.getMessage()); }
}

}

Caught
Comp231

46

import java.util.Scanner;
class MarriageAgeException extends Exception {
public MarriageAgeException(String message) {
super(message);
}
}
public class MyOwnException {

public static void main(String args[]) throws MarriageAgeException {

Scanner sc = new Scanner(System.in);

System.out.println("Enter a person age");

int age = sc.nextInt();
if (age <= 30) {

System.out.println("Valid for Marriage");

} else {
throw new MarriageAgeException("Maarige Age is Over Exception");

}
}

}

47

class BelowAgeException extends Exception{
BelowAgeException(){
super("Excpetion :Age is under 18 cann't do it");}
}

class Application {
private String name;
private String course;
private int age;

public Application(String name,String course) {
this.name=name;
this.course=course;
age=18;
}
public Application() {
this("","");

}
public void setAge(int age) throws BelowAgeException{
if(age<18)
throw new BelowAgeException();
else
this.age=age;
}

public void displayDetails() {
System.out.println("the name of student :"+name);
System.out.println("Applied for "+course);
System.out.println("Applicant's Ag: "+age);
System.out.println();}}

public class userDefinedExcpetion {
public static void main(String[] args) {
Application app1= new Application("Ali","Java
Programming");
Application app2= new Application("Ahmad","Java
Programming");

try {
app1.setAge(20);
app1.displayDetails();

app2.setAge(17);
app2.displayDetails();
}catch(BelowAgeException ex) {
System.out.println(ex.getMessage());
}finally {System.out.println("Finally called");}

System.out.println("Procced job ");
}
}

the name of student :Ali
Applied for Java Programming
Applicant's Ag: 20

Excpetion :Age is under 18 cann't do it
Finally called
Procced job

Cautions When Using Exceptions

• Exception handling separates error-handling code from
normal programming tasks, thus making programs easier to
read and to modify.

• Be aware, however, that exception handling usually requires
more time and resources because it requires instantiating a
new exception object, rolling back the call stack, and
propagating the errors to the calling methods.

48

When to Throw Exceptions

• An exception occurs in a method. If you want the exception to
be processed by its caller, you should create an exception
object and throw it. If you can handle the exception in the
method where it occurs, there is no need to throw it.

49

When to Use Exceptions
When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

50

try {

System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

System.out.println("refVar is null");

}

When to Use Exceptions
is better to be replaced by

51

if (refVar != null)

System.out.println(refVar.toString());

else

System.out.println("refVar is null");

Defining Custom Exception Classes

52

! Use the exception classes in the API whenever possible.

! Define custom exception classes if the predefined
classes are not sufficient.

! Define custom exception classes by extending
Exception or a subclass of Exception.

The File Class
The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

53

Obtaining file properties and manipulating file

54

Problem: Explore File Properties

55

Objective: Write a program that demonstrates how to
create files in a platform-independent way and use the
methods in the File class to obtain their properties. The
following figures show a sample run of the program on
Windows and on Unix.

RunTestFileClass

Text I/O

A File object encapsulates the properties of a file or a
path, but does not contain the methods for
reading/writing data from/to a file. In order to perform
I/O, you need to create objects using appropriate Java I/O
classes. The objects contain the methods for
reading/writing data from/to a file. This section
introduces how to read/write strings and numeric values
from/to a text file using the Scanner and PrintWriter
classes.

56

Writing Data Using PrintWriter

57

 java.io.PrintWriter

+PrintWriter(filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void
Also contains the overloaded

println methods.
Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.
Writes a string.
Writes a character.
Writes an array of character.
Writes an int value.
Writes a long value.
Writes a float value.
Writes a double value.
Writes a boolean value.
A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined
by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting
Console Output and Strings.”

RunWriteData

58

Try-with-resources
try-with-resources syntax that automatically closes the files.
try (declare and create resources) {

Use the resource to process the file;
}

59

public class WriteDataWithAutoClose
{ public static void main(String[] args) throws
Exception

{ java.io.File file = new File("scores.txt");
if (file.exists()) {

System.out.println("File already exists");
System.exit(0); }

try (PrintWriter output = new PrintWriter(file);)
{
output.print("John T Smith "); output.println(90);
output.print("Eric K Jones "); output.println(85);
}
}

}

Reading Data Using Scanner

60

 java.util.Scanner

+Scanner(source: File)
+Scanner(source: String)
+close()
+hasNext(): boolean
+next(): String
+nextByte(): byte
+nextShort(): short
+nextInt(): int
+nextLong(): long
+nextFloat(): float
+nextDouble(): double
+useDelimiter(pattern: St ring):

Scanner

Creates a Scanner object to read data from the specified file.
Creates a Scanner object to read data from the specified string.
Closes th is scanner.
Returns true if this scanner has another token in its input.
Returns next token as a stri ng.
Returns next token as a byte.
Returns next token as a short.
Returns next token as an int.
Returns next token as a long.
Returns next token as a float.
Returns next token as a double.
Sets this scanner’s delimit ing pattern.

RunReadData

Problem: Replacing Text
Write a class named ReplaceText that replaces a string in a text
file with a new string. The filename and strings are passed as
command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking
java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in
FormatString.java and saves the new file in t.txt.

61

RunReplaceText

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

62

Reading Data from the Web
URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner
object as follows:

Scanner input = new Scanner(url.openStream());

63

RunReadFileFromURL

Case Study: Web Crawler
This case study develops a program that travels the Web
by following hyperlinks.

64

Case Study: Web Crawler
The program follows the URLs to traverse the Web. To
avoid that each URL is traversed only once, the program
maintains two lists of URLs. One list stores the URLs
pending for traversing and the other stores the URLs that
have already been traversed. The algorithm for this
program can be described as follows:

65

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty {

Remove a URL from listOfPendingURLs;
if this URL is not in listOfTraversedURLs {
Add it to listOfTraversedURLs;
Display this URL;
Exit the while loop when the size of S is equal to 100.
Read the page from this URL and for each URL contained in the page {
Add it to listOfPendingURLs if it is not is listOfTraversedURLs;

}
}

}

66

RunWebCrawler

