
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY

OBJECT-ORIENTED PROGRAMMING
COMP2311

Instructor :Murad Njoum
Office : Masri322

Chapter 9 Objects and Classes - Revesion

OO Programming Concepts

2

Object-oriented programming (OOP) involves programming
using objects. An object represents an entity in the real
world that can be distinctly identified. For example, a
student, a desk, a circle, a button, and even a loan can all be
viewed as objects. An object has a unique identity, state, and
behaviors. The state of an object consists of a set of data fields
(also known as properties) with their current values. The
behavior of an object is defined by a set of methods.

3

4

5

6

7

Classes

8

Classes are constructs that define objects of the same type. A
Java class uses variables to define data fields and methods
to define behaviors. Additionally, a class provides a special
type of methods, known as constructors, which are invoked
to construct objects from the class.

UML Class Diagram: Unified Modeling Language

9

Circle

radius: double

Circle()
Circle(newRadius: double)
getArea(): double
getPerimeter(): double
setRadius(newRadius:
double): void

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and
methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation
for objects

Constructors

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

10

Constructors are a special
kind of methods that are
invoked to construct objects.

Constructors, cont.

11

A constructor with no parameters is referred to as a no-arg
constructor.

· Constructors must have the same name as the class itself.

· Constructors do not have a return type—not even void.

· Constructors are invoked using the new operator when an
object is created. Constructors play the role of initializing objects.

Default Constructor

12

A class may be defined without constructors. In this case, a no-arg
constructor with an empty body is implicitly defined in the class.
This constructor, called a default constructor, is provided
automatically only if no constructors are explicitly defined in
the class.

Default Value for a Data Field
The default value of a data field is null for a reference
type, 0 for a numeric type, false for a boolean type, and
'\u0000' for a char type. However, Java assigns no default
value to a local variable inside a method.

13

public class Test {
public static void main(String[] args) {
Student student = new Student();
System.out.println("name? " + student.name);
System.out.println("age? " + student.age);
System.out.println("isScienceMajor? " + student.isScienceMajor);
System.out.println("gender? " + student.gender);

}
}

Example

public class Test {

public static void main(String[] args) {

int x; // x has no default value

String y; // y has no default value

System.out.println("x is " + x);

System.out.println("y is " + y);

}

}

14

Compile error: variable not
initialized

Java assigns no default value to a local variable
inside a method.

Differences between Variables of
Primitive Data Types and Object Types

15

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

Garbage Collection,

TIP: If you know that an object is no longer needed,
you can explicitly assign null to a reference variable for
the object. The JVM will automatically collect the
space if the object is not referenced by any variable.

16

The Date Class
Java provides a system-independent encapsulation of date and
time in the java.util.Date class. You can use the Date class to
create an instance for the current date and time and use its
toString method to return the date and time as a string.

17

 java.util.Date

+Date()
+Date(elapseTime: long)

+toString(): String
+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.
Constructs a Date object for a given time in

milliseconds elapsed since January 1, 1970, GMT.
Returns a string representing the date and time.
Returns the number of milliseconds since January 1,

1970, GMT.
Sets a new elapse time in the object.

The + sign indicates
public modifer

The Date Class Example
For example, the following code

java.util.Date date = new java.util.Date();
System.out.println(date.toString());

displays a string like Sun Mar 09 13:50:19 EST
2003.

18

The Random Class
You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0). A more useful
random number generator is provided in the
java.util.Random class.

19

 java.util.Random

+Random()
+Random(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextLong(): long
+nextDouble(): double
+nextFloat(): float
+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.
Returns a random int value.
Returns a random int value between 0 and n (exclusive).
Returns a random long value.
Returns a random double value between 0.0 and 1.0 (exclusive).
Returns a random float value between 0.0F and 1.0F (exclusive).
Returns a random boolean value.

The Random Class Example
If two Random objects have the same seed, they will generate
identical sequences of numbers. For example, the following code
creates two Random objects with the same seed 3.

20

Random random1 = new Random(3);
System.out.print("From random1: ");
for (int i = 0; i < 10; i++)
System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);
System.out.print("\nFrom random2: ");
for (int i = 0; i < 10; i++)
System.out.print(random2.nextInt(1000) + " ");

From random1: 734 660 210 581 128 202 549 564 459 961
From random2: 734 660 210 581 128 202 549 564 459 961

Instance
Variables, and Methods

21

• Instance variables belong to a specific instance.

•
Instance methods are invoked by an instance of the class.

Static Variables, Constants, and Methods

22

Static variables are shared by all the instances of the class.

Static methods are not tied to a specific instance (object).

Static constants are final variables shared by all the instances of the
class.

To declare static variables, constants, and methods, use
the static modifier.

Static Variables, Constants,
and Methods, cont.

23

24

public class CircleWithStaticMembers {
/** The radius of the circle */
double radius;

/** The number of the objects created */
static int numberOfObjects = 0;

/** Construct a circle with radius 1 */
CircleWithStaticMembers() {
radius = 1.0;
numberOfObjects++;

}

/** Construct a circle with a specified radius */
CircleWithStaticMembers(double newRadius)

{
radius = newRadius;
numberOfObjects++;

}

/** Return numberOfObjects */
static int getNumberOfObjects() {
return numberOfObjects;

}

/** Return the area of this circle */
double getArea() {
return radius * radius * Math.PI;

}
}

25

Static Variable
1. It is a variable which belongs to the class and not to the instance
(object).
2. Static variables are initialized only once, at the start of the
execution.
Static variables will be initialized first, before the initialization of any
instance variables.
3. A single copy to be shared by all instances of the class.
4. A static variable can be accessed directly by the class name and
doesn’t need any object.

Syntax : < class - name>.<static - variable - name>

26

Static Method
1. It is a method which belongs to the class and not to the instance (object).

2. A static method can access only static data. It can not access non-static
data (instance variables).
3. A static method can call only other static methods and can not call a non-
static method from method inside.
4. A static method can be accessed directly by the class name and doesn’t
need any create an instance (object) to access it.
Syntax : < class - name>.<static - method - name>(..)
5. A static method cannot refer to “this” or “super” keywords in anyway.

Note: main method is static, since it must be accessible for an
application to run, before any instantiation takes place.

27

public class Checkstatic {

public static void main(String[] args) {

Check c1=new Check();
Check c2=new Check();

System.out.println(c1.x);
c2.setX(20);
System.out.println(c1.x);

c1.setX(30);
System.out.println(c1.getX());

}
}

class Check{
static int x;

Check(){
x=10;
}

Check(int xvalue)
{

x=xvalue;
}

public void setX(int xvalue){
x=xvalue;
}
public int getX(){
return x;

}}

public class Checkstatic {

public static void main(String[] args) {

Check c1=new Check();
Check c2=new Check();

c2.setX(20);
System.out.println(c1.getX());

}

c1.setX(30);
System.out.println(c2.getX());

}
}

class Check{
static int x;

Check(){
x=10;
}

Check(int xvalue)
{

x=xvalue;
}

public void setX(int xvalue){
x=xvalue;
}

public int getX(){
return x;

}}

The static field Check.x should
be accessed in a static way

28

public class Checkstatic {

public static void main(String[] args) {

Check c1=new Check();
Check c2=new Check();

/*System.out.println(c1.x); syntax error :using set to change value
of x or get to return value of x
c2.setX(20);

//System.out.println(c1.x);syntax error

System.out.println(c1.getX());

c1.setX(30);
System.out.println(c2.getX());

}
}

class Check{
private static int x;
Check(){

x =10;
}

Check(int xvalue)
{

x=xvalue;
}

public void setX(int xvalue){
x=xvalue;

}
public int getX(){
return x;
}
}

public class Checkstatic {

public static void main(String[] args) {

System.out.println(Check.x);

Check.setX(20);

System.out.println(Check.getX());
}

}

class Check{
static int x;

Check(){
x=10;

}
Check(int xvalue)
{

x=xvalue;
}

public static void setX(int xvalue){
x=xvalue;
}

public static int getX(){
return x;

}
}

We accessed in a static way
Since no instance object createded

Visibility Modifiers and
Accessor/Mutator Methods
By default, the class, variable, or method can be
accessed by any class in the same package.

29

q public

The class, data, or method is visible to any class in any
package.

q private

The data or methods can be accessed only by the declaring
class.

The get and set methods are used to read and modify private
properties.(variables)

30

The private modifier restricts access to within a class, the default
modifier restricts access to within a package, and the public
modifier enables unrestricted access.

31

32

The default modifier on a class restricts access to within a package, and
the public modifier enables unrestricted access.

Why Data Fields Should Be private?
To protect data.

To make code easy to maintain.

33

Example of
Data Field Encapsulation

34

Run

CircleWithPrivateDataFields

TestCircleWithPrivateDataFields

 Circle

-radius: double
-numberOfObjects: int

+Circle()
+Circle(radius: double)
+getRadius(): double
+setRadius(radius: double): void
+getNumberOfObjects(): int
+getArea(): double

The radius of this circle (default: 1.0).
The number of circle objects created.

Constructs a default circle object.
Constructs a circle object with the specified radius.
Returns the radius of this circle.
Sets a new radius for this circle.
Returns the number of circle objects created.
Returns the area of this circle.

The - sign indicates
private modifier

35

public class TestPassObject {
/** Main method */
public static void main(String[] args) {
// Create a Circle object with radius 1
CircleWithPrivateDataFields myCircle = new CircleWithPrivateDataFields(1);
// Print areas for radius 1, 2, 3, 4, and 5.
int n = 5;
printAreas(myCircle, n);

// See myCircle.radius and times
System.out.println("\n" + "Radius is " + myCircle.getRadius());
System.out.println("n is " + n);

}
/** Print a table of areas for radius */
public static void printAreas(CircleWithPrivateDataFields c, int times) {
System.out.println("Radius \t\tArea");
while (times >= 1) {
System.out.println(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}
}

}

Passing Objects to Methods

qPassing by value for primitive type value (the value
is passed to the parameter)

qPassing by value for reference type value (the
value is the reference to the object)

36

Radius Area
1.0 3.141592653589793
2.0 12.566370614359172
3.0 28.274333882308138
4.0 50.26548245743669
5.0 78.53981633974483
Radius is 6.0n is 5

Passing Objects to Methods

Array of Objects
Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables. So invoking
circleArray[1].getArea() involves two
levels of referencing as shown in the next
figure. circleArray references to the entire
array. circleArray[1] references to a Circle
object.

37

Array of Objects, cont.
Circle[] circleArray = new Circle[10];

38

Immutable(Cannot change) Objects and Classes

39

If the contents of an object cannot be changed once the object
is created, the object is called an immutable object and its class
is called an immutable class. If you delete the set method in
the Circle class in Listing 8.10, the class would be immutable
because radius is private and cannot be changed without a set
method.

A class with all private data fields and without mutators is not
necessarily immutable. For example, the following class
Student has all private data fields and no mutators, but it is
mutable.

Example

40

public class Student {
private int id;
private BirthDate birthDate;

public Student(int ssn,
int year, int month, int day) {

id = ssn;
birthDate = new BirthDate(year, month, day);

}

public int getId() {
return id;

}

public BirthDate getBirthDate() {
return birthDate;

}
}

public class BirthDate {
private int year;
private int month;
private int day;

public BirthDate(int newYear,
int newMonth, int newDay) {

year = newYear;
month = newMonth;
day = newDay;

}

public void setYear(int newYear) {
year = newYear;

}
}

public class Test {
public static void main(String[] args) {

Student student = new Student(111223333, 1970, 5, 3);
BirthDate date = student.getBirthDate();
date.setYear(2010); // Now the student birth year is changed!

}
}

Remember : . A static method cannot refer to “this” or
“super” keywords in anyway.

qThe this keyword is the name of a reference that refers to an object
itself. One common use of the this keyword is reference a class’s hidden
data fields.

qAnother common use of the this keyword to enable a constructor to
invoke another constructor of the same class.

41

Calling Overloaded Constructor

42

 public class Circle {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public Circle() {
 this(1.0);
 }

 public double getArea() {
 return this.radius * this.radius * Math.PI;
 }
}

Every instance variable belongs to an instance represented by this,
which is normally omitted

this must be explicitly used to reference the data
field radius of the object being constructed

this is used to invoke another constructor

