poy M
< — BIRZEIT UNIVERSITY

Java

COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY

OBJECT-ORIENTED PROGRAMMING

((/‘*/‘/\;
—H &I A=
gl

Covpr2311
Instructor :Murad Njoum
Office : Masri322 (
—
R
Chapter 10 Thinking in Objects —

and Strings -Revision

Java

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Constructing Strings

String newString = new String(stringLiteral);
String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a shorthand
initializer for creating a string:

String message = "Welcome to Java",; =)
s

—
liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum | 2 \@

Strings Are Immutable

A String object is immutable; its contents cannot be changed.
Does the following code change the contents of the string?

String s = "Java";

race Code _ e

. " "
p— ‘ —n ",
String s = "Java’; s ="HTML";
After executing String s = "Java"; After executing s = "HTML";
S ——> : String S \ —ae)l : String This string object is

liang introduction to java programming 11th edi%ion ,2019 , Edit By : Mr.Murad Njoum \ja

now unreferenced
String object for "Java" String object for "Java"
y.d
/ Q

Contents cannot be changed : String p)
T
String object for "HTML" e

Interned Strings

Since strings are immutable and are frequently used, to improve efficiency
and save memory, the JVM uses a unigue instance for string literals with
the same character sequence. Such an instance is called interned. For
example, the following statements:

Examples

String
String

String

System.
System.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

sl = "Welcome to Java";

s”:] s

ﬁ[Ek”;’

s2 = new String("Welcome to Java');

s3 = "Welcome to Java";

out.println("sl == s2 is "
out.println("sl == s3 is "

|
|

Interned string object for
"Welcome to Java"

(s1 == s2)); s2LTF—>

(sl == s3));

A string object for

"Welcome to Java"

Jaga

\

C
s

display A new object is created if you use the new operator.

If you use the string initializer, no new object is
sl ==s3istrue created if the interned object 1s already created.

sl ==s2 is false

Trace Code
String sl = "Welcome to Java'; — : String
String s2 = new String("Welcome to Java'"); [nterned string object for (
"Welcome to Java"
String s3 = "Welcome to Java"; C_—r)
Compmme.
s
—

J\aga

@
o

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Trace Code

String sl = "Welcome to Java'; L= g : String
String s2 = new String("Welcome to Java'"); [nterned string object for

"Welcome to Java"
String s3 = "Welcome to Java'";

s2[[4—f : String

A string object for
"Welcome to Java"

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Trace Code

. n n Sl | :)' N
String sl = "Welcome to Java'; .
g ; i : String
String s2 = new String("Welcome to Java'"); [nterned string object for
"Welcome to Java"
String s3 = "Welcome to Java';

s2[4—f . String

A string object for
"Welcome to Java"

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

<>
Java

Replacing and Splitting Strings

java.lang.String

+replace(oldChar: char, Returns a new string that replaces all matching character in this
newChar: char): String string with the new character.

+replaceFirst(oldString: String,| Returns a new string that replaces the first matching substring in
newString: String): String this string with the new substring.

+replaceAll(oldString: String, | Returns a new string that replace all matching substrings in this

newString: String): String string with the new substring.
+split(delimiter: String): Returns an array of strings consisting of the substrings split by the (
String|] delimiter.
—
oo
—

J\ag\.@(a

@
o

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Examples

"Welcome".replace('e’, 'A') returns a new string, WAIcomA.
"Welcome".replaceFirst("e", "AB") returns a new string,

WABIcome.

"Welcome".replaceAll("e", "AB") returns a new string,

WABIcomAB.

"Welcome".replace("el", "AB") returns a new string,

WABcome. (

" " nqn n " . Q)
Welcomel".replaceAll("el", "AB") returns a new string, e

RS
WABcomAB. -

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum | 9\@

String[] tokens = "Java#HTML###Perl#thello#######" .split("#", 9);
for (int i1 = @; i < tokens.length; i++)
System.out.print(tokens[i1] + " ");
System.out.print("hi");

Java HTML Perl hello hi

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Matching, Replacing and Splitting by Patterns

The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (inti=0; i< tokens.length; i++)

System.out.printin(tokensli]);

Jaga

C
s

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Convert Character and Numbers to Strings

The String class provides several static valueOf methods for converting a
character, an array of characters, and numeric values to strings. These
methods have the same name valueOf with different argument types

char, char[], double, long, int, and float. For example, to convert a
double value to a string, use

String.valueOf(5.44). The return value is string consists of characters ‘5’,

‘!, ‘4, and ‘4. (
String.valueOf(tokens[0]). <)

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \ \Q

StringBuilder and StringBuffer

2>The StringBuilder/StringBuffer classis an alternative to
the String class.

—21In general, a StringBuilder/StringBuffer can be used wherever a string is
used.

- StringBuilder/StringBuffer is more flexible than String.

- You can add, insert, or append new contents into a string buffer,

whereas the value of a String object is fixed once the string is created. (

7

Ja¥a

@
o

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder()
+StringBuilder(capacity: int)
+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.
Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

Java

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \14/-

Modifying Strings in the Builder

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):
StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):
StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,
len: int): StringBuilder

+insert(offset: int, data: charf]):
StringBuilder

+insert(offset: int, b: aPrimitiveType):
StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:
String): StringBuilder

+reverse(): StringBuilder
+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.

Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this
builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.

Inserts a subarray of the data in the array to the builder
at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex with the specified string.
Reverses the characters in the builder.

Sets a new character at the specified index in this
builder.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Examples

Welcome Javalava
StringBuilder stringBuilder = new StringBuilder("Welcome Java"); Welcome JavHTML and aJava

Welcome Java
Welcome ava

stringBuilder.append("Java"); ava emocleW

i] ava emocleWHTML
stringBuilder.insert(11, "HTML and ");
stringBuilder.delete(8, 21) changes the builder to Welcome Java.
stringBuilder.deleteCharAt(8)
stringBuilder.reverse() changes the builder to aval ot emocleW.

stringBuilder.replace(11, 15, "HTML") (
changes the builder to Welcome to HTML. (
stringBuilder.setCharAt(0, 'w') sets the builder to welcome to Java. ——)

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum | 16\9

The toString, capacity, length, setLength, and charAt Methods

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char
+length(): int
+setLength(newLength: int): void
+substring(startindex: int): String

+substring(startindex: int, endIndex: int):
String

+trimToSize(): void

Returns a string object from the string builder.
Returns the capacity of this string builder.
Returns the character at the specified index.
Returns the number of characters in this builder.
Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startindex to endIndex-1.

Reduces the storage size used for the string builder.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Regular Expressions

A regular expression (abbreviated regex) is a string that describes a pattern for
matching a set of strings. Regular expression is a powerful tool for string

manipulations. You can use regular expressions for matching, replacing, and
splitting strings.

&

C_—r)
Compmme.
—

Jaga

@
o

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Matching Strings

"Java".matches("Java");
"Java".equals("Java");

"Java 1s fun".matches("Java.*")
"Java 1s cool".matches("Java.*")

"Java 1s powerful".matches("Java.*")

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Jaga

C
£

Regular Expression ~ Matches Example

X a specified character x Java matches Java
any single character Java matches J..a
| . SS (ab|cd) ab or cd ten matches t(en|im)
Regu a r EXpreSS|On yntax [abc] a, b, or c Java matches Jal[uvwx]a
[Aabc] any character except Java matches Ja[*ars]a
a, b, orc
[a-Z] a through z Java matches [A-MJav[a-d]
" " t] "J my. [Aa-Z] any character except Java matches Jav[/b-d]
Java".matches("J..a"); Y characte
[a-e[m-p]] a through e or Java matches [A-G[I-M]]Jav[a-d]
m through p
1 11 11 mnm\,
Java .matches J aV dld , [a-e&&[c-p]] intersection of a-e Java matches [A-P&&[I-M]]av[a-d]
with c-p
\d a digit, same as [0-9] Java2 matches "Java[\\d]"
\D a non-digit $Java matches "[\\DJ[\\DJava"
\w a word character Javal matches "[\\wl]ava[\\w]l"
\W a non-word character $Java matches "[\\W][\\w]ava"
\s a whitespace character "Java 2" matches "Java\\s2"
\S a non-whitespace char Javamatches "[\\S]ava"
p* Zero or more aaaabb matches "a“bb"
occurrences of pattern p ababab matches "(ab)*"
P+ one or more occurrences a matches "a+b*"
of pattern p able matches "(ab)+.*"
p? zero or one occurrence of Java matches "J?Java"
pattern p Java matches "J7ava"
p{n} exactly n occurrences of Java matches "Ja{l}.=*"
pattern p Java does not match ".{2}"
p{n,} at Teast n occurrences of aaaa matches "a{l,}"
pattern p a does not match "a{2,}"
p{n,m} between n and m occur- aaaa matches "a{l,9}"
rences (inclusive) abb does not match "a{2,9}bb"

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Thinking in Objects

You see the advantages of object-oriented programming from the
preceding chapter. This chapter will demonstrate how to solve
problems using the object-oriented paradigm.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Jaga

C
s

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides a
description of the class and let the user know how the class
can be used. The user of the class does not need to know
how the class is implemented. The detail of implementation
is encapsulated and hidden from the user.

Class implementation Class Contract

LS‘ (llicliqe afblacl:hbox1 . (Signatures of Clients use the (
tdden trom the chients public methods and &—>| class through the
public constants) contract of the class C:')
g

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum = 229

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming techniques for
problem solving using loops, methods, and arrays. The studies of these
techniques lay a solid foundation for object-oriented programming.
Classes provide more flexibility and modularity for building reusable
software. This section improves the solution for a problem introduced in
Chapter 3 using the object-oriented approach. From the improvements,
you will gain the insight on the differences between the procedural
programming and object-oriented programming and see the benefits of
developing reusable code using objects and classes. (

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum | 23\9

. . Associotion, A reqgotion, Composition
Relations : —_— ey

ASSociod'Ion

Aggre,go\-ﬁor\

Qow\posi-ﬁon

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

24

Association
Whenever two classes are connected to each other, an association relationship link can be used.
(No ownership , no lifetime dependency)

You can use a simple name for the relationship close to the line. For example, in a game, a player will have a lot of save files.
If we consider Player and SaveFile as classes, then we can create an association link for them like below:

ASSOQ?O\-HOV\

SO\V&() Sou e_F; le_

Plou/e_r

AlgoDaily

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Aggregation

With aggregation, an object will always be referenced by other objects.

(One owner instance but no lifetime dependency)

This can be shown by an open diamond (a diamond without any fill color) in the UML.

Previously we described aggregation and composition using the Vehicle class example.
We will use the same example for the UML diagrams.

Asﬁre,gocﬁon
Car

! «

* 4{ —
Passanger Driver Java

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \jj}a

Composition

If an object only contains one other object such that their lives are bound together,

(One owner instance and lifetime child instance dependent on lifetime of owner
instance)

then we can show this relationship with the composition arrow in UML.

Qomposi‘ﬁon

Car

4 ¢ l ¢ S{)

Whe,e,l Door —

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \j}.\

Generalization
Generalization is a synonym of inheritance in the world of OOP. When a class is inherited

from another class, then we can show this inheritance relationship with a simple arrow
from the child class to the parent class.

&enerahzadﬁon

Car
{

f «

To t/o-l'a;Qorol lon For‘dE'xp lore_r —

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \;8}\

Car Address

Part of composition Has-a aggregation
Engine Student
class Student {
cléss Car.{ _ _ private Address address;
private final Engine engine; Student (Address addr) {
Car(){ address=addr;
engine=new Engine(); }
}//final initialized once }
} class Address {
class Engine { Str}ng city;
: : String state;
private String type; . . :
) Address(String city, String state){
this.city=city; this.state=state;
Car car=new Car();) }
_ Student student=new Student();
* Create 1instance:

(engine automatically created once), student has passed parameters from other methods
* Delete instance: delete car instance ,automatically engine instance deleted and

can’'t passed to other car instance, but inf class student deleted then address can

be passed to other students 29

Overloading Constructors

* If you create a class from which you instantiate objects, Java
automatically provides a constructor

* But, if you create your own constructor, the automatically created
constructor no longer exists

* As with other methods, you can overload constructors

* Overloading constructors provides a way to create objects with or without
initial arguments, as needed (

Java

\

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

C
w7

Aggregation Between Same Class

Aggregation may exist between objects of the same class.

For example, a person may have a supervisor.

1

Person

Supervisor
1

public class Person {

// The type for the data 1s the class itself (
private Person supervisor; .
—

} Java

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \j}a

Aggregation Between Same Class

What happens if a person has several supervisors?

Person (>
. Supervisor
public class Person ((
private Person[] supervisors; -)
} Gz
G

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Wrapper Classes

(dBoolean 0 Integer

(Character Q Long

Short a Float

Byte 2 Double
NOTE:
(1) The wrapper classes do not have no-arg constructors. (
(2) The instances of all wrapper classes are immutable, 1.¢., their 1ntema‘":)

values cannot be changed once the objects are created. —

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum \j@

Java

o

The Integer and Double Classes

java.lang.Integer

java.lang.Double

-value: int
+MAX_VALUE: int
+MIN_VALUE: int

-value: double
+MAX_VALUE: double
+MIN_VALUE: double

+Integer (value: int)
+Integer (s: String)
t+byteValue () : byte
+shortvValue () : short
+intValue () : int
+longVlaue () : long
+floatValue () : float

+doubleValue () :double

+compareTo (o: Integer): int

+toString () : String

+valueOf (s: String): Integer

+valueOf (s: String, radix: int): Integer
+parseInt(s: String): int

t+parseInt(s: String, radix: int): int

+Double (value: double)
+Double(s: String)
+byteValue () : byte
+shortValue () : short
+intValue () : int
+longVlaue () : long
+floatValue () : float

+doubleValue () :double

+compareTo (o: Double): int

+toString () : String

+valueOf (s: String): Double

+valueOf (s: radix: int)

double

String,

+parseDouble (s: String) :

+parseDouble(s: String, radix:

: Double

int) :

double

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum

The Integer Class and the Double Class

JConstructors

dClass Constants MAX VALUE, MIN VALUE

JConversion Methods

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum 3%

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a primitive data type value
or from a string representing the numeric value. The constructors for
Integer and Double are:

public Integer(int value)
public Integer(String s)
public Double(double value)

public Double(String s) ((

C———)
oo
—

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum | 36\@

N)

Numeric Wrapper Class Constants

*Each numerical wrapper class has the constants MAX VALUE and
MIN VALUE.

s MAX VALUE represents the maximum value of the corresponding primitive
data type. For Byte, Short, Integer, and Long,

*MIN VALUE represents the minimum byte, short, int, and long values.

¢ For Float and Double, MIN VALUE represents the minimum positive float

and double values (
*** The following statements display the maximum integer (2,147,483,64 ﬁhe

minimum positive float (1.4E-45),
____/

and the maximum double floating-point number Java

(1.79769313486231570e+308d).
liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum 3\

Conversion Methods

Each numeric wrapper class implements the abstract
methods doubleValue, floatValue, intValue, longValue,
and shortValue, which are defined in the Number class.
These methods “convert” objects into primitive type

values.

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum \j‘}a

The Static valueOf Methods

The numeric wrapper classes have a useful class
method, valueOf(String s). This method creates a new
object initialized to the value represented by the
specified string. For example:

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12"); (

Jaga

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum

The Methods for Parsing Strings into Numbers

You have used the parselnt method in the Integer class to
parse a numeric string into an int value

and the parseDouble method in the Double class to parse
a numeric string into a double value.

Each numeric wrapper class has two overloaded parsing
methods to parse a numeric string into an appropriate ((
numeric value.

ava“

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum \i/

Automatic Conversion Retween Primitive
Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(2), Equivalent Integer[] intArray =Jd2, 4, 3};
new Integer(4), new Integer(3)};
/
(@) New JDK 1.5 boxing (b)

Integer[] intArray = {1, 2, 3}:
System.out.println(intArray[0] + intArray[1] + intArray[2]):

_—— (Y

Unboxing ——)

Vis versa is also true.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum \j}»

Biginteger and BigDecimal

If you need to compute with very large integers or high precision
floating-point values, you can use the Biglnteger and BigDecimal

classes in the java.math package.

Both are immutable. Both extend the Number class and implement
the Comparable interface.

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum \j}»

Biginteger and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");
Biginteger b = new Biginteger("2");
Biginteger ¢ = a.multiply(b); // 9223372036854775807 * 2

System.out.printin(c);

LargeFactorial -

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal. ROUND_UP); o

System.out.printin(c); Java

liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum J\@

w7

package test;

import java.util.Scanner;
import java.math. *;

public class LargeFactorial {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int n = input.nextInt();
System.out.println(n + "! is \n" + factorial(n));
input.close();

}

public static BigInteger factorial(long n) {

BigInteger result = BigInteger.ONE; // Assign 1 to
result

for (int i = 1; i <= n; i++) // Multiply each i
result = result.multiply(BigInteger.valueOf(i));

return result;

}
liang introbduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

