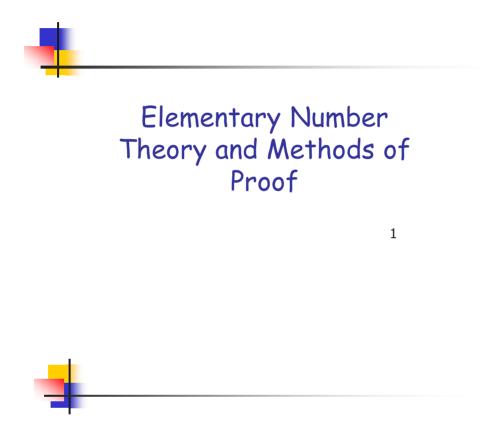
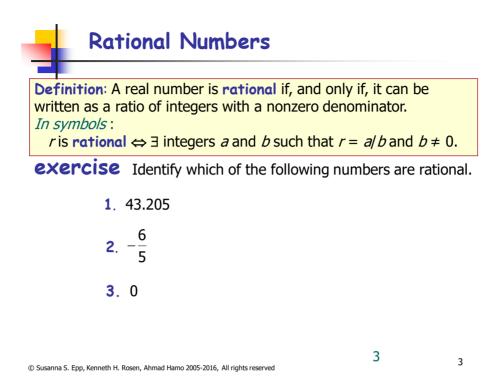
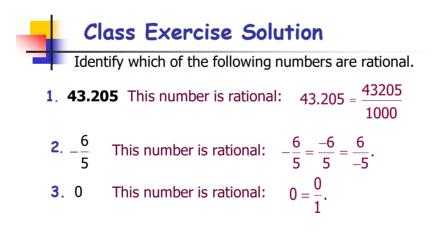
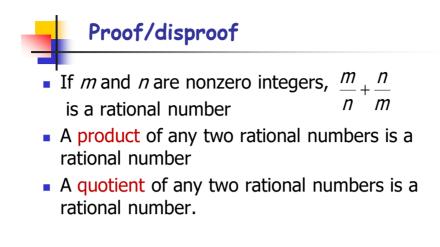
COMP 233 Discrete Mathematics



4.2 Direct Proof and Counterexample II: Rational Numbers







© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Another Example

Example: Suppose *m* and *n* are nonzero integers. Is $\frac{m}{n} + \frac{n}{m}$ a rational number? Explain.

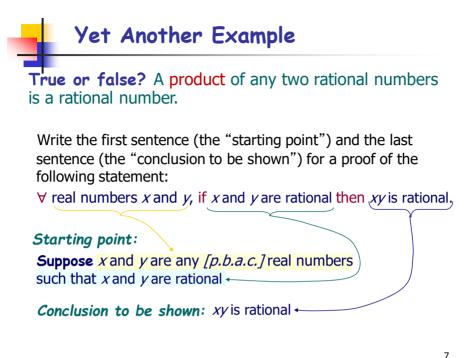
Solution: By algebra, $\frac{m}{n} + \frac{n}{m} = \frac{m^2}{mn} + \frac{n^2}{mn} = \frac{m^2 + n^2}{mn}$.

- Now both m²+ n² and mn are integers because products and sums of integers are integers.
- Also *mn* is nonzero by the zero product property

Thus $\frac{m}{n} + \frac{n}{m}$ is a rational number.

Zero Product Property: If any two nonzero real numbers are multiplied, the product is nonzero.

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved



© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Example, cont.

True or false? A product of any two rational numbers is a rational number.

(\forall real numbers x and y, if x and y are rational then xy is rational.)

Solution: This is true.

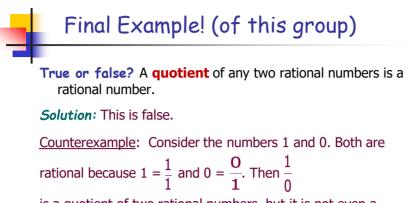
<u>Proof</u>: Suppose *x* and *y* are any rational numbers. *[We must show that xy is rational.]*

By definition of rational, x = a/b and y = c/d for some integers a, b, c, and d with $b \neq 0$ and $d \neq 0$. Then $xy = \frac{a}{d} \cdot \frac{c}{d}$ by substitution

 $\frac{ac}{bd}$ by algebra.

But *ac* and *bd* are integers because they are products of integers, and $bd \neq 0$ by the zero product property.

<u>Thus xy is a ratio of integers with a nonzero denominator</u>, and hence xy is rational by definition of rational. QED

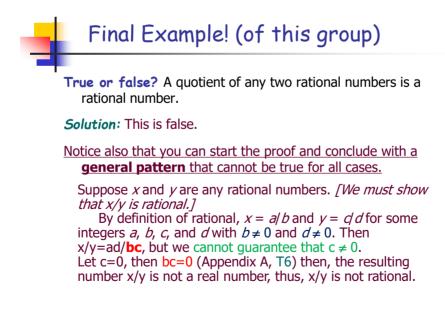


is a quotient of two rational numbers, but it is not even a

real number. So it is not a rational number.

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

9



10

A corollary is a statement whose truth can be immediately deduced from a theorem that has already been proved. Theorem 4.2.2 Example:

The sum of any two rational numbers is rational.

Derive the following as a *corollary* of Theorem 4.2.2:

Corollary 4.2.3

Corollary

The double of a rational number is rational.

\forall real numbers r, if R(r) then R(2r)

Proof:

Suppose r is any rational number. Then 2r = r + r is a sum of two rational numbers. So, by Theorem 4.2.2, 2r is rational.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Example: Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following properties of even and odd integers:

- 1. The sum, product, and difference of any two even integers are even.
- 2. The sum and difference of any two odd integers are even.
- 3. The product of any two odd integers is odd.
- 4. The product of any even integer and any odd integer is even.
- 5. The sum of any odd integer and any even integer is odd.
- 6. The difference of any odd integer minus any even integer is odd.
- 7. The difference of any even integer minus any odd integer is odd.
- Use the properties listed above to prove that if a is any even integer and b is any odd Example integer, then $\frac{a^2+b^2+1}{2}$ is an integer.
- Solution Suppose a is any even integer and b is any odd integer. By property 3, b^2 is odd, and by property 1, a^2 is even. Then by property 5, $a^2 + b^2$ is odd, and because 1 is also odd, the sum $(a^2 + b^2) + 1 = a^2 + b^2 + 1$ is even by property 2. Hence, by definition of even, there exists an integer k such that $a^2 + b^2 + 1 = 2k$. Dividing both sides by 2 gives $\frac{a^2+b^2+1}{2} = k$, which is an integer. Thus $\frac{a^2+b^2+1}{2}$ is an integer [as was to be shown1.

Home Work!