COMP 233 Discrete Mathematics

Elementary Number Theory and Methods of Proof

1

4.3 Direct Proof and Counterexample III: Divisibility

² © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Definition: If n and d are integers, and $d \neq 0$:

 \Leftrightarrow

 n equals d times some integer

$$
\exists \text{ an integer } k \text{ s.t } n = dk.
$$

These are different ways to describe the relationship

This is the definition

Notes

CAUTION!

Note: $d \mid n \Leftrightarrow \exists$ an integer k such that $n = d$ k. **Thus:** $d \nmid n \Leftrightarrow \forall$ integers $k, n \neq dk$ \Leftrightarrow n/d is not an integer **Example**: Does 5 | 12? *Solution***:** No: 12/5 is not an integer.


```
 5 | 12 is a sentence: 
"5 divides 12."
```
4

Exercises

- **1**. Is 18 divisible by 6?
- **2**. Does 3 divide 15?

3. Does 5 | 30?

d **|** ⁿ d **divides** ⁿ d **is a divisor of** ⁿ d **is a factor of** ⁿ ⁿ **is divisible by** d ⁿ **is a multiple of** d

 \exists an integer k so that $n = d$ k.

- **4**. Is 32 a multiple of 8?
- **5**. If k is any integer, does k divide 0? **6.** If *m* and *n* are integers, is $10m + 25n$ divisible by 5?

Exercises

1. Is 18 divisible by 6? Answer: Yes, $18 = 6.3$.

2. Does 3 divide 15? Answer: Yes, 15 = 3⋅5.

3. Does 5 | 30? Answer: Yes, $30 = 5.6$.

4. Is 32 a multiple of 8? Answer: Yes, $32 = 8.4$.

5. If k is any integer, does k divide 0? Answer: Yes, $0 = k_0$.

6. If *m* and *n* are integers, is $10m + 25n$ divisible by 5? Answer: Home Work!

d **|** ⁿ d **divides** ⁿ d **is a divisor of** ⁿ d **is a factor of** ⁿ ⁿ **is divisible by** d ⁿ **is a multiple of** d

 \exists an integer k so that $n = d$ k.

6

The "**transitivity of divisibility**" theorem \forall integers a, b, and c, if a | b and b | c, then a | c.

If a and b are positive integers and $a \mid b$, then $a \leq b$.

Prove: integers a, b, and c, if a | b and b | c, then a | c.

Write the first sentence (the "starting point") and the last sentence (the "conclusion to be shown") for a proof of the following statement:

 \forall integers a, b, and c, if a | b and b | c then a | c.

Conclusion to be shown: a C *Starting point:* **Suppose** a, b, and c are any [p.b.a.c.] integers such that $a \mid b$ and $b \mid c$.

Proof

Prove: \forall integers a, b, and c, if a | b and b | c, then a | c.

(Note: The full proof is on page 151)

Starting point for this proof:

- Suppose a, b, and c are [pbac particular but arbitrarily chosen integers] such that $a \mid b$ and $b \mid c$.
- *Ending point (what must be shown):* ^a| ^c.

Since a|b and b|c then $b = as$ and $c = bt$ for some integers s and t.

To show that a|c, we need to show that $c = a \cdot (some integer)$ We know that $c=bt$, then we can substitute the expression for b into the equation for c. Thus, $c = ast$. s and t are integers, so st is an integer. Let $st=k$, then $c=ak$. Therefore a|c by definition.

Proof – Cont.

Proof:

Suppose a, b, and c are *[particular but arbitrarily chosen]* integers such that a divides b and b divides c . [We must show that a divides c .] By definition of divisibility,

 $b = ar$ and $c = bs$ for some integers r and s.

By substitution

$$
c = bs
$$

= $(ar)s$
= $a(rs)$ by basic algebra.

Let $k = rs$. Then k is an integer since it is a product of integers, and therefore

 $c = ak$ where k is an integer.

Thus a divides c by definition of divisibility. [This is what was to be shown.]

Proof1: **If a** and *b* are positive integers and $a \mid b$, then $a \leq b$.

- Let a, b, be [p.b.a.c] integers, s.t. a|b
- We need to show that $a \leq b$
- **b=ak**, for some positive integer k

b-a=ak-a=a(k-1)

but k is a positive integer (property T25 - Appendix A)

Thus, $k-1$ is either 0 or >0

If $k-1=0$ then $b=a$ if $k-1>0$ then $b-a>0 =$ $b>a$

Thus, $b>=a$, which is equivalent to $a<=b$ (by definition -Appendix A) And this is what we needed to show

T25. If $ab > 0$, then both a and b are positive or both are negative.

Theorem: A Positive Divisor of a Positive Integer

Proof2: **If a** and *b* are positive integers and $a \mid b$, then $a \leq b$.

Let a, b, be [p.b.a.c] integers, s.t. a|b We need to show that $a \leq b$

 $b = a.k$ Thus $1 \leq k$ Thus $a \leq a, k = b$

 $a.1 \le a.k$ multiply both sides with a.

Thus $a \leq b$

Prime and Composite Numbers

Definition:

- An integer n is **prime** if, and only if, $n > 1$ and the only positive **divisors** of *n* are 1 and *n*.
- An integer *n* is **composite** if, and only if, it is not prime, i.e., $n > 1$ and $n = rs$ for some positive integers r and s where neither r nor s is 1.

Note: An integer *n* is **composite** if, and only if, $n > 1$ and $n = rs$ for some positive integers r and s where $1 < r < n$ and $1 < s < n$.

Theorem (Divisibility by a Prime):

Given any integer $n > 1$, there is a prime number p so that $p \mid n$.

Idea of Proof: Suppose *n* is any integer with $n > 1$. If *n is prime*, we are done. If not, $n = rs$, where r and s are integers with $1 < r < n$ and $1 < s < n$. If either r or s is prime, we are done. \leftarrow Why? def. of divisibility If not, $r = r_1 s_1$, where r_1 and s_1 are integers with $1 < r_1 < r$ and $1 < s_1 < r$. If either r_1 or s_1 is prime, we are done. \leftarrow Why? transitivity of If not, repeat with r_1 in place of r. Etc. This process must terminate eventually because each successive factor is a positive factor of n and n has only a finite number of factors. **Given any integer** *n* **> 1, there is a prime** number p so that $p \mid n$. Why? *n = n*1 so *n* | *n* Why? def. of composite divisibility theorem

Ref: Sec. 3.3

Counterexamples and Divisibility Is the following **proposed divisibility property** universally true? **For all integers a and b, if a|b and b|a Then a=b. Answer: No**

Counterexample: Let $a = 2$ and $b = -2$. Then

a | b since 2 | (-2) and b | a since (-2) | 2, but $a \neq b$ since $2 \neq -2$.

Therefore, the statement is false.

Unique Factorization Theorem (*aka* Fundamental Theorem of Arithmetic***)**

أي رقم أكبر من 1 اما ان يكون عدد اولي أو حصل ضرب أعداد أولية

Unique Factorization Theorem for the Integers: Given any integer $n > 1$, either *n* is prime or *n* can be written as a product of prime numbers in a way that is unique, except, possibly, for the order in which the numbers are written.

Ex. 1: $500 = 5.100 = 5.25.4 = 5.5.5.2.2 = 2.5.5.2.5$ $= 2²5³$ \leftarrow standard factored form

 $\mathbf{Ex}. \quad 2: 500^3 = (2^2 5^3)^3 = (2^2 5^3)(2^2 5^3)(2^2 5^3) = 2^6 5^9$

*aka: also known as

Ref: Sec. 3.3

Standard factored form

Because of the unique factorization theorem, any integer $n > 1$ can be put into a **standard factored form** in which the prime factors are written in ascending order from left to right

Definition. Given any integer *n* > 1, the **standard factored form** of *n* is an expression of the form

$$
n=p_1^{e_1}p_2^{e_2}p_3^{e_3}\cdots p_k^{e_k},
$$

where *k* is a positive integer; *p* 1 , *p* 2 ,..., *p k* are prime numbers; *e* 1 ,*e* 2 ,...,*e k* are positive integers; and *p* 1 < *p* 2 < ··· < *p k* .

Write 3300 in standard factored form.

First find all the factors of 3300. Then write them in ascending order:

$$
3300 = 100.33
$$

= 4.25.3.11
= 2.2.5.5.3.11
= 2².3¹.5².11¹.

Using Unique Factorization to Solve a Problem

Suppose m is an integer such that 8. 7. 6. 5. 4. 3. 2. $m = 17$. 16. 15. 14. 13. 12. 11. 10

Does 17 | *m?*

Solution:

Since 17 is one of the prime factors of the right-hand side of the equation, it is also a prime factor of the left-hand side (by the unique factorization of integers theorem). But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).

Hence 17 must occur as one of the prime factors of m , and so 17 | m .

Example: using the Unique Factorization to Solve a Problem

Example: Find the smallest positive integer n so that $8! \cdot n$ is a perfect square.

Solution: First, suppose that m is a perfect square. That means $m = s²$ for some integer s. By the Fundamental Theorem of Arithmetic, there is a positive integer k, primes p_1, p_2, \ldots, p_k and positive integers $e_1, e_2, \ldots e_k$ such that

$$
s=p_1^{e_1}\cdot p_2^{e_2}\cdot\cdots\cdot p_k^{e_k}.
$$

Then

$$
\begin{aligned} m &= s^2 \\ &= \left[p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_k^{e_k} \right]^2 \\ &= p_1^{2e_1} \cdot p_2^{2e_2} \cdot \dots \cdot p_k^{2e_k} .\end{aligned}
$$

The point is, the unique factorization of a perfect square has exponents that are all even numbers.

²¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Example: using the Unique Factorization to Solve a Problem – cont.

$$
8! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8
$$

= 2 \cdot 3 \cdot 2 \cdot 2 \cdot 5 \cdot 2 \cdot 3 \cdot 7 \cdot 2 \cdot 2 \cdot 2
= 2⁷ \cdot 3² \cdot 5¹ \cdot 7¹.

Now, we want $8! \cdot n = 2^7 \cdot 3^2 \cdot 5^1 \cdot 7^1 \cdot n$ to be a perfect square, so the smallest value of *n* that would do so would be $n = 2 \cdot 5 \cdot 7 = 70$. In that case, $8! \cdot n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 7^2$, which is a perfect square.