COMP 233 Discrete Mathematics

Elementary Number Theory and Methods of Proof

1

4.3 Direct Proof and Counterexample III: Divisibility

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Divisibility

Definition: If *n* and *d* are integers, and $d \neq 0$:

 \Leftrightarrow

d | n d divides n d is a divisor of n d is a factor of n n is divisible by d n is a multiple of d

n equals *d* times some integer

$$\exists$$
 an integer k s.t $n = dk$.

These are different ways to describe the relationship This is the definition

Notes

CAUTION!

Note: $d \mid n \Leftrightarrow \exists$ an integer k such that n = dk. Thus: $d \nmid n \Leftrightarrow \forall$ integers k, $n \neq dk$ $\Leftrightarrow n/d$ is not an integer Example: Does 5 | 12? Solution: No: 12/5 is not an integer. • 5/12 is a number: (five-twelfths) 5/12 \cong 0.4167

■ 5 | 12 is a **sentence**: "5 divides 12."

4

Exercises

- 1. Is 18 divisible by 6?
- 2. Does 3 divide 15?

3. Does 5 | 30?

d | n d divides n d is a divisor of n d is a factor of n n is divisible by d n is a multiple of d

 \exists an integer k so that n = dk.

- **4**. Is 32 a multiple of 8?
- 5. If k is any integer, does k divide 0?
 6. If m and n are integers, is 10m + 25n divisible by 5?

Exercises

1. Is 18 divisible by 6? *Answer*: Yes, 18 = 6.3.

- **2**. Does 3 divide 15? *Answer*: Yes, 15 = 3.5.
- **3**. Does 5 | 30? *Answer*: Yes, 30 = 5.6.
- **4**. Is 32 a multiple of 8? *Answer*: Yes, 32 = 8.4.
- **5**. If *k* is any integer, does *k* divide 0? *Answer*: Yes, $0 = k \cdot 0$.
- 6. If *m* and *n* are integers, is 10*m* + 25*n* divisible by 5?
 Answer: Home Work!

d | n d divides n d is a divisor of n d is a factor of n n is divisible by d n is a multiple of d

 \exists an integer k so that n = dk.

6

The **"transitivity of divisibility"** theorem \forall integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

• If *a* and *b* are positive integers and $a \mid b$, then $a \leq b$.

Prove: ∀ integers a, b, and c, if a | b and b | c, then a | c.

Write the first sentence (the "starting point") and the last sentence (the "conclusion to be shown") for a proof of the following statement:

 \forall integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c* then *a* | *c*.

Starting point: Suppose a, b, and c are any [p.b.a.c.] integers such that $a \mid b$ and $b \mid c$. Conclusion to be shown: $a \mid c$

8

Proof

Prove: \forall integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(Note: The full proof is on page 151)

Starting point for this proof:

Suppose a, b, and c are [pbac – particular but arbitrarily chosen integers] such that a | b and b | c.

Ending point (what must be shown): $a \mid c$.

Since a|b and b|c then b = as and c = bt for some integers s and \underline{t} .

To show that a|c, we need to show that c = a (some integer)
We know that c=bt, then we can <u>substitute</u> the expression for b into the equation for c. Thus, c=ast. s and t are integers, so st is an integer. Let st=k, then c=ak. Therefore a|c by definition.

Proof - Cont.

Proof:

Suppose *a*, *b*, and *c* are [particular but arbitrarily chosen] integers such that *a* divides *b* and *b* divides *c*. [We must show that a divides *c*.] By definition of divisibility,

b = ar and c = bs for some integers r and s.

By substitution

$$c = bs$$

= (ar)s
= a(rs) by basic algebra.

Let k = rs. Then k is an integer since it is a product of integers, and therefore

c = ak where k is an integer.

Thus a divides c by definition of divisibility. [This is what was to be shown.]

If *a* and *b* are <u>positive integers</u> and $a \mid b$, then $a \leq b$. <u>Proof1</u>:

- Let a, b, be [p.b.a.c] integers, s.t. a|b
- We need to show that a<=b
- **b**=**ak**, for some <u>positive integer k</u>

b-a=ak-a=a(k-1)

but k is a positive integer (property T25 - Appendix A)

Thus, k-1 is either 0 or >0

If k-1=0 then b=a. if k-1>0 then b-a>0 => b>a

Thus, $b \ge a$, which is equivalent to $a \le b$ (by definition -Appendix A) And this is what we needed to show

T25. If ab > 0, then both a and b are positive or both are negative.

Theorem: A Positive Divisor of a Positive Integer

If *a* and *b* are <u>positive integers</u> and *a* | *b*, then $a \le b$. <u>Proof2</u>:

Let a, b, be [p.b.a.c] integers, s.t. a|b We need to show that a<=b

b = a.kThus $1 \le k$ $a.1 \le a.k$ Thus $a \le a.k = b$ Thus $a \le b$

multiply both sides with a.

Prime and Composite Numbers

Definition:

- An integer *n* is prime if, and only if, *n* > 1 and the only positive divisors of *n* are 1 and *n*.
- An integer *n* is composite if, and only if, it is not prime;
 i.e., *n* > 1 and *n* = *rs* for some positive integers *r* and *s* where neither *r* nor *s* is 1.

Note: An integer *n* is **composite** if, and only if, n > 1 and n = rs for some positive integers *r* and *s* where 1 < r < n and 1 < s < n.

Theorem (Divisibility by a Prime):

Given any integer n > 1, there is a prime number p so that $p \mid n$.

Given any integer n > 1, there is a prime number p so that $p \mid n$. **Idea of Proof**: Suppose *n* is any integer with n > 1. *If n is prime*, we are done. \leftarrow Why? n = n·1 so n | n *If not,* n = rs, where r and s are integers with \leftarrow Why? def. of composite 1 < r < n and 1 < s < n. If either r or s is prime, we are done. \leftarrow Why? def. of divisibility If not, $r = r_1 s_1$, where r_1 and s_1 are integers with $1 < r_1 < r$ and $1 < s_1 < r$. If either r_1 or s_1 is prime, we are done. \leftarrow Why? transitivity of divisibility theorem *If not*, repeat with r_1 in place of r. Etc. This process must terminate eventually because each successive factor is a positive factor of *n* and *n* has only a <u>finite number</u> of factors.

Ref: Sec. 3.3

Counterexamples and Divisibility Let the following proposed divisibility property universally true? For all integers a and b, if a | b and b | a Then a=b. Answer: No

Counterexample: Let a = 2 and b = -2. Then

 $a \mid b \text{ since } 2 \mid (-2) \text{ and } b \mid a \text{ since } (-2) \mid 2, \text{ but } a \neq b \text{ since } 2 \neq -2.$

Therefore, the statement is false.

Unique Factorization Theorem (aka* Fundamental Theorem of Arithmetic)

أي رقم أكبر من 1 اما ان يكون عدد اولي أو حصل ضرب أعداد أولية

Unique Factorization Theorem for the Integers: Given any integer *n* > 1, either *n* is prime or *n* can be written as a product of prime numbers in a way that is unique, except, possibly, for the order in which the numbers are written.

Ex. 1:
$$500 = 5.100 = 5.25.4 = 5.5.5.2.2 = 2.5.5.2.5$$

= $2^25^3 \leftarrow \text{standard factored form}$

Ex. 2: $500^3 = (2^25^3)^3 = (2^25^3)(2^25^3)(2^25^3) = 2^65^9$

*aka: also known as

Ref: Sec. 3.3

Standard factored form

Because of the unique factorization theorem, any integer n > 1can be put into a **standard factored form** in which the prime factors are written in ascending order from left to right

Definition. Given any integer n > 1, the standard factored form of n is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k},$$

where k is a positive integer; $p_1, p_2, ..., p_k$ are prime numbers; $e_1, e_2, ..., e_k$ are positive integers; and $p_1 < p_2 < \cdots < p_k$. $1 \quad 2 \quad k$

Write 3300 in standard factored form.

First find all the factors of 3300. Then write them in ascending order:

$$3300 = 100 \cdot 33$$

= 4 \cdot 25 \cdot 3 \cdot 11
= 2 \cdot 2 \cdot 5 \cdot 5 \cdot 3 \cdot 11
= 2² \cdot 3¹ \cdot 5² \cdot 11¹.

Using Unique Factorization to Solve a Problem

Suppose *m* is an integer such that 8.7.6.5.4*.3*.2.*m* = 17.16.15.14.13.12.11.10

Does 17 | *m*?

Solution:

Since 17 is one of the prime factors of the right-hand side of the equation, it is also a prime factor of the left-hand side (by the unique factorization of integers theorem). But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).

Hence 17 must occur as one of the prime factors of *m*, and so 17 | *m*.

Example: using the Unique Factorization to Solve a Problem

Example: Find the smallest positive integer n so that $8! \cdot n$ is a perfect square.

Solution: First, suppose that *m* is a perfect square. That means $m = s^2$ for some integer *s*. By the Fundamental Theorem of Arithmetic, there is a positive integer *k*, primes p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that

$$s=p_1^{e_1}\cdot p_2^{e_2}\cdot \cdots \cdot p_k^{e_k}.$$

Then

$$m = s^2$$

= $[p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_k^{e_k}]^2$
= $p_1^{2e_1} \cdot p_2^{2e_2} \cdot \dots \cdot p_k^{2e_k}.$

The point is, the unique factorization of a perfect square has exponents that are all even numbers.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2005-2016, All rights reserved

Example: using the Unique Factorization to Solve a Problem - cont.

$$8! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$$
$$= 2 \cdot 3 \cdot 2 \cdot 2 \cdot 5 \cdot 2 \cdot 3 \cdot 7 \cdot 2 \cdot 2 \cdot 2$$
$$= 2^7 \cdot 3^2 \cdot 5^1 \cdot 7^1.$$

Now, we want $8! \cdot n = 2^7 \cdot 3^2 \cdot 5^1 \cdot 7^1 \cdot n$ to be a perfect square, so the smallest value of *n* that would do so would be $n = 2 \cdot 5 \cdot 7 = 70$. In that case, $8! \cdot n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 7^2$, which is a perfect square.