

Sequences and Mathematical Induction

1

5.1 Sequences

Outline

- Finding terms from an explicit formula and vise verse;
- Separating off/adding on a Final Term and change of variable;
- Summation/Product notation to expanded form and vise verse and finding sum using closed form
- Sequences in Computer Programming;
- Proof by Mathematical Induction (I and II)
 - Proving any property P(n) of a sequence

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Outline cont.

Given an integer variable n, we can consider a variety of properties P(n) that might be true or false for various values of n. For instance, we could consider

- $P(n): 1 + 3 + 5 + 7 + \dots + (2n-1) = n^2$
- P(*n*): divisibility properties: $4^n 1$ is divisible by 3
- P(n): inequality properties: $2n + 1 < 2^n$
- P(n): formula for sum of integers

P(n): formula for sum of geometric sequence

less trivial properties

- P(n): n cents can be obtained using 3¢ and 5¢ coins.
- P(n): two C programs give the same result

A **proof by mathematical induction** shows that a given property P(n) is true for all integers greater than or equal to some <u>initial integer</u>.

2

3

Each individual element a_k is called a **term**. The k in a_k is called a **subscript** or **index**

• Definition

A **sequence** is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.

5

6

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Determine the next 2 terms of the sequence: 4, 8, 16, 32, 64, ...

Determine the next 2 terms of the sequence:2, 8, 32, 128, ...

Induce the formula that could be used to determine any term in the sequence

 $c_i = (-1)^j$ for all integers $i \ge 0$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Find an explicit formula for a sequence that has the following initial terms:

 $\frac{1}{3}$, $-\frac{2}{4}$, $\frac{3}{5}$, $-\frac{4}{6}$, $\frac{5}{7}$, $-\frac{6}{8}$,...

Solutions: The sequence satisfies the formulas

for all integers $n \ge 0$, $a_n = (-1)^n \frac{n+1}{n+3}$

for all integers $n \ge 1$, $a_n = (-1)^{n-1} \frac{n}{n+2}$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Examples Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following: **a.** $\sum_{k=1}^{5} a_k$ **b.** $\sum_{k=2}^{2} a_k$ **c.** $\sum_{k=1}^{2} a_{2,k}$ Solution **a.** $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$ **b.** $\sum_{k=2}^{2} a_k = a_2 = -1$ **c.** $\sum_{k=1}^{2} a_{2k} = a_{2 \cdot 1} + a_{2 \cdot 2} = a_2 + a_4 = -1 + 1 = 0$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: When the Terms of a Summation Are Given by a Formula

Compute the following summation:

$$\sum_{k=1}^{5} k^2.$$

Solution

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

11

- Changing from Summation Notation to Expanded Form
- Changing from Expanded Form to Summation Notation
- Separating Off a Final Term
- Telescoping

→These concepts are very important to understand computer loops

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Changing from Summation Notation to Expanded Form

When the <u>upper limit</u> of a summation is a variable, an ellipsis is used to write the summation in **expanded form**.

Write the following summation in expanded form:

$$\sum_{i=0}^{1} \frac{(-1)^{i}}{i+1}$$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Changing from Expanded Form to Summation Notation
Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

Solution The general term of this summation can be expressed as $\frac{k+1}{n+k}$ for integers k from 0 to n. Hence

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}.$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

15

Separating Off a Final Term and Adding On a
Final Term
$$\Rightarrow recursive definition$$
a. Rewrite $\sum_{i=1}^{n+1} \frac{1}{i^2}$ by separating off the final term.
b. Write $\sum_{k=0}^{n} 2^k + 2^{n+1}$ as a single summation.
Solution
a. $\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}$
b. $\sum_{k=0}^{n} 2^k + 2^{n+1} = \sum_{k=0}^{n+1} 2^k$

When solving problems, it is often useful to rewrite a summation using the recursive form of the definition, either by separating off the final term of a summation or by adding a final term to a summation.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

k=0

Telescoping

A **telescoping series** is a series whose partial sums eventually only have a fixed number of terms after cancellation [wiki]. A **telescoping sums** are sums that can be written as a simple expression.

Example:
$$\sum_{i=1}^{n} i - (i+1) = (1-2) + (2-3) + \dots + (n - (n+1))$$

= $1 - (n+1)$

=-n

This is very useful in programing:

[©] Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Telescoping

Some sums can be transformed into telescoping sums, which then can be rewritten as a simple expression. For instance, observe that

$$\frac{1}{k} - \frac{1}{k+1} = \frac{(k+1) - k}{k(k+1)} = \frac{1}{k(k+1)}.$$
 For (k=1;k<=n;k++)
S=S+ 1/k*(k+1);

Use this identity to find a simple expression for $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

Solution

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}.$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \ge 0$,

19

19

$$1 + r + r^{2} + r^{3} + \cdots + r^{n} = \frac{r^{n+1} - 1}{r - 1}.$$

Exercises: find the closed form
of the following - Homework
a.
$$11+2+3+\dots+100 = \frac{100(100+1)}{2} = 50(101) = 5050$$

b. $1+2+3+\dots+k = \frac{k(k+1)}{2}$
c. $1+2+3+\dots+(k-1) = \frac{(k-1)((k-1)+1)}{2} = \frac{(k-1)k}{2}$
d. $4+5+6+\dots+(k-1) = (1+2+3+\dots+(k-1))-(1+2+3)$
 $= \frac{k(k-1)}{2}-(1+2+3) = \frac{k(k-1)}{2}-6$
e. $3+3^2+3^3+\dots+3^k = (1+3+3^2+3^3+\dots+3^k)-1 = \frac{3^{k+1}-1}{3-1}-1$
 $= \frac{3^{k+1}-1}{2}-1 = \frac{3^{k+1}-1}{2}-\frac{2}{2} = \frac{3^{k+1}-3}{2}$
f. $3+3^2+3^3+\dots+3^k = 3(1+3+3^2+\dots+3^{k-1})$
 $= 3\left(\frac{3^{(k-1)+1}-1}{3-1}\right) = \frac{3(3^k-1)}{2}$

Product notation

• Definition

If *m* and *n* are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$, read the **product from** *k* equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We write

 $\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.$

Recursive definition for the product notation:

$$\prod_{k=m}^{m} a_k = a_m \quad \text{and} \quad \prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{n-1} a_k\right) \cdot a_n \quad \text{for all integers } n > m.$$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

21

Example: Computing Products

Compute the following products:

a.
$$\prod_{k=1}^{5} k$$
 b. $\prod_{k=1}^{1} \frac{k}{k+1}$

Solution

a.
$$\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$
 b. $\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

Exercises – Homework Write the following using product notation

$$(2^2 - 1) \cdot (3^2 - 1) \cdot (4^2 - 1)$$

$$(1-t) \cdot (1-t^2) \cdot (1-t^3) \cdot (1-t^4)$$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

Factorial Notation

• Definition

For each positive integer *n*, the quantity *n* factorial denoted *n*!, is defined to be the product of all the integers from 1 to *n*:

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

0! =1	1!=1
$2! = 2 \cdot 1 = 2$	$3! = 3 \cdot 2 \cdot 1 = 6$
$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$	$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$	$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040$
$8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$	$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
= 40,320	= 362,880

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n \ge 1. \end{cases}$$

Example using this definition:

a.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$
 b. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$

c.
$$\frac{(n+1)!}{n!} = \frac{(n+1)\cdot n!}{n!} = n+1$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

25

More Exercises - Homework d. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4}$ by multiplying each num denominator by just what by multiplying each numerator and denominator by just what is necessary to obtain a common denominator $=\frac{3}{3\cdot 2!\cdot 4!}+\frac{4}{3!\cdot 4\cdot 3!}$

 $=\frac{3}{3!\cdot 4!}+\frac{4}{3!\cdot 4!}$

 $=\frac{7}{3!\cdot 4!}$

 $=\frac{7}{144}$

by rearranging factors

because $3 \cdot 2! = 3!$ and $4 \cdot 3! = 4!$

by the rule for adding fractions with a common denominator

e.
$$\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$$
$$= n^3 - 3n^2 + 2n$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

In Section 9.5 we will explore many uses of *n* choose *r* for solving problems involving counting, and we will prove the following computational formula:

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Use for the factorial notation

n choose *r* is always an **integer** (because it is a number of subsets), you can be sure that all the factors in the denominator of the formula will be canceled out by factors in the numerator. Examples:

Use the formula for computing $\binom{n}{r}$ to evaluate the following expressions:

a.
$$\binom{8}{5}$$
 b. $\binom{4}{0}$ c. $\binom{n+1}{n}$
a. $\binom{8}{5} = \frac{8!}{5!(8-5)!}$
 $= \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot (\cdot 3 \cdot 2 \cdot 1)}$ always cancel common factors
b. $\binom{4}{4} = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)} = 1$ c. Look at page

c. Look at page 239 textbook.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Properties of Summations and products

Theorem 5.1.1

If $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and *c* is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

2.
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k \quad \text{generalized distributive law}$$

3.
$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k).$$

The proof of the theorem is discussed in Section 5.6

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

29

Example: Using Properties of Summation

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write the following expression as a single summation

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k$$

$$= \sum_{k=m}^n (k+1) + 2 \cdot \sum_{k=m}^n (k-1) \qquad \text{by substitution}$$

$$= \sum_{k=m}^n (k+1) + \sum_{k=m}^n 2 \cdot (k-1) \qquad \text{by Theorem 5.1.1 (2)}$$

$$= \sum_{k=m}^n ((k+1) + 2 \cdot (k-1)) \qquad \text{by Theorem 5.1.1 (1)}$$

$$= \sum_{k=m}^n (3k-1) \qquad \text{by algebraic simplification}$$

Example: Using Properties of Product

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write the following expression as a single product

$$\left(\prod_{k=m}^{n} a_{k}\right) \cdot \left(\prod_{k=m}^{n} b_{k}\right)$$

$$= \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right) \quad \text{by substitution}$$

$$= \prod_{k=m}^{n} (k+1) \cdot (k-1) \quad \text{by Theorem 5.1.1 (3)}$$

$$= \prod_{k=m}^{n} (k^{2}-1) \quad \text{by algebraic simplification}$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Programing LoopsAny difference between these loops?1. for i := 1 to n2. for j := 0 to n - 13. for k := 2 to n + 1print a[i]print a[j + 1]print a[k - 1]next inext jnext k

What about these loops?

s := a[1]	s := 0
for $k := 2$ to n	for $k := 1$ to n
s := s + a[k]	s := s + a[k]
next k	next k

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Change of Variable

Example: Transform $\sum_{k=1}^{n} k^{n}$ by making the change of variable j = k - 1.

- 1. When k = 1, then j = 1 1 = 0
- 2. When k = n, then j = n 1
- 3. $j = k 1 \implies k = j + 1$ Thus $k^n = (j + 1)^n$

So:
$$\sum_{k=1}^{n} k^n = \sum_{j=0}^{n-1} (j+1)^r$$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Homework

Application: Algorithm to Convert from Base 10 to Base 2 Using Repeated Division by 2

Page 240 textbook

All questions in the exams will be loops

Thus, I suggest: Convert all previous examples into loops and play with them

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved