

Set Theory

- "Algebraic" method
 - Set Identities (Theorem 6.2.2)
- Set Partition, Power set, Cartesian product

6.1. Set Theory: Definitions and the Element Method of Proof

 $\textcircled{\sc c}$ Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

- In philosophy, an instance has no instances.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

4

Basic Concepts and Notations

Cantor suggested a set as a:

"collection into a whole M of definite and separate objects of our intuition or our thought".

M= {Ali, Hasan, Khalid }

Each object is called an element (or member of) of M.

Ali \in M (Ali belongs to M)

Rami \notin M (Rami does not belong to M)

Roster Notation:

Roster notation is a complete listing of all the elements of the set.

 $A = \{a, b, c, d\}$ and

 $B = \{2, 4, 6, 8, ..., 20\}$

are examples of roster notation that define sets with 4 and 10 elements, respectively.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

5

A Glimpse into Set Theory "Set" is an undefined term. We say that sets contain elements and are completely determined by the elements they contain. **So**: Two sets are equal \Leftrightarrow they have exactly the same elements. **Ex**: Let $A = \{1, 3, 5\}$ How do you $B = \{5, 1, 3\}$ such that read this the set $C = \{1, 1, 3, 3, 5\}$ out loud? of all $D = \{x \in \mathbb{Z} \mid x \text{ is an odd integer and } 0 < x < 6\}$ How are A, B, C, and D related? Answer: They are all equal. **Notation:** $x \in A$ is read "x is an element of A" (or "x is in A") $x \notin A$ is read "x is not an element of A" (or "x is not in A"). 6

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

A Glimpse into Set Theory cont.	
The order of elements is irrelevant {Ali, Adam, Sara} = {Adam, Sara, Ali}	
Redundancy is does not affect the set {Ali, Adam, Adam, Sara}	
A set can be an element inside another set $\{1, \{1\}\}$ has two elements	
Notation of elements	
{Ali} ≠ Ali different elements	
© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved	7

- 1. The set of all <u>natural numbers</u> or positive integers {1, 2, 3, ...} is denoted by N.
- 2. The set of <u>integers</u> {..., -3, -2, -1, 0, 1, 2, 3, ...} is denoted by Z.
- 3. The set of <u>rational numbers</u> is denoted by Q.
- 4. The set of <u>real numbers</u> is denoted by R.
- 5. The set of <u>complex numbers</u> is denoted by C.
- 6. The set of positive real numbers is denoted by R⁺

Ex: Let $A = \{2,4,5\}$ and $B = \{1,2,3,4,6,7\}$. Is $A \subseteq B$? *Answer:* No, because 5 is in *A* but 5 is not in *B*.

Ex: Let $C = \{2,4,7\}$ and $B = \{1,2,3,4,6,7\}$. Is $C \subseteq B$? *Answer:* Yes, because every element in *C* is in *B*.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Notations Symbol Meaning Upper case designates set name Lower case designates set elements enclose elements in set { } ∈ (or ∉) is (or is not) an element of is a subset of (includes equal sets) \subseteq is a proper subset of \subset is not a subset of ¢ is a superset of \supset or: such that (if a condition is true) the cardinality of a set

 $A \not\subseteq B \Leftrightarrow \exists x . x \in A \text{ and } x \notin B$

Notations:

A = B		A equals B
$A \subseteq B$	$\mathbf{B} \supset \mathbf{A}$	A is subset of B
$A \subseteq B$	$\mathbf{B}\supseteq\mathbf{A}$	A is subset or equal of B
$A \notin B$	$\mathbf{B} \not\supseteq \mathbf{A}$	A is not a subset of B
A ⊈ B	$\mathbf{B} \not\supseteq \mathbf{A}$	A is not a subset but not equal of B
$A \subsetneq B$	$\mathbf{B} \supseteq \mathbf{A}$	A is a subset but not equal of B

<u>Examples:</u> Person \supset Man, $Z \supset Z^+$, $R \supset Z$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

15

Subsets: Proof and Disproof

Set *A* to be a subset of a set *B* as a formal universal conditional statement:

 $A \subseteq B \Leftrightarrow \forall x, \text{ if } x \in A \text{ then } x \in B.$

The negation is, therefore, existential:

 $A \not\subseteq B \Leftrightarrow \exists x \text{ such that } x \in A \text{ and } x \notin B.$

A proper subset of a set is a subset that is not equal to its containing set.

A is a **proper subset** of $B \Leftrightarrow$ (1) $A \subseteq B$, and (2) there is at least one element in B that is not in A.

Proving and Disproving Subset Relations

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z} \}$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z} \}.$

Prove that $A \subseteq B$.

Please loot at details on page 338 example 6.1.2

Suppose *x* is a particular but arbitrarily chosen element of *A*. Show that $x \in B$, means show that $x = 3 \cdot (integer)$.

x = 6r + 12 $= 3 \cdot (2r + 4).$ Let s = 2r + 4.Also, 3s = 3(2r + 4)

Therefore, *x* is an element of *B*.

17

Proving and Disproving Subset Relations

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z} \}$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z} \}.$

Disprove that B \subseteq **A**.

To disprove a statement means to show that it is false, and to show it is false that $B \subseteq A$, you must find an element of B that is not an element of A.

let x = 3. Then $x \in B$ because $3 = 3 \cdot 1$, but $x \notin A$, because there is no integer r such that 3 = 6r + 12. For if there were such an integer, then

	6r + 12 = 3	by assumption	but 3/2 is not an integer
\Rightarrow	2r + 4 = 1	by dividing both sides by 3	Thus $3 \in B$ but $3 \notin A$.
\Rightarrow	2r = 3	by subtracting 4 from both sides	and so B $\not\subset$ A
\Rightarrow	r = 3/2	by dividing both sides by 2,	

2. **show** that *x* is an element of *Y*.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

b. Is A = D? c. Is A = C?

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

a. Is A = B?

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$ Is A = B? $B = \{n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b\}$

Yes. To prove this, both subset relations $A \subseteq B$ and $B \subseteq A$ must be proved.

Part 1, Proof That $A \subseteq B$:

Part 2, Proof That B \subseteq *A*:

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Part 1, Proof That $A \subseteq B$ Suppose x is a particular but arbitrarily chosen element of A. [We must show that $x \in B$. By definition of B, this means we must show that $x = 2 \cdot (\text{some integer}) - 2.]$ By definition of A, there is an integer a such that x = 2a. [Given that x = 2a, can x also be expressed as $2 \cdot (\text{some integer}) - 2?$ *I.e., is there an integer, say b, such that* 2a = 2b - 2? *Solve for b to* obtain b = (2a + 2)/2 = a + 1. Check to see if this works.] Let b = a + 1. [First check that b is an integer.] Then b is an integer because it is a sum of integers. [Then check that x=2b-2.] Also 2b - 2 = 2(a + 1) - 2 = 2a + 2 - 2 = 2a = x, Thus, by definition of B, x is an element of B[which is what was to be shown]. **Part 2**, **Proof That** $B \subseteq A$: This part of the proof is left as exercise 2 at the end of this section. 22 © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

24

Operations on Sets				
• Definition				
Let A and B be subsets of a universal set U .				
1. The union of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.				
2. The intersection of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.				
3. The difference of <i>B</i> minus <i>A</i> (or relative complement of <i>A</i> in <i>B</i>), denoted $B - A$, is the set of all elements that are in <i>B</i> and not <i>A</i> .				
4. The complement of A, denoted A^c , is the set of all elements in U that are not in A.				
Symbolically: $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\},\$				
$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \},\$				
$B - A = \{ x \in U \mid x \in B \text{ and } x \notin A \},\$				
$A^c = \{ x \in U \mid x \notin A \}.$				

25

Class Exercise Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$ and suppose that the "universal set" $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Find $A \cup B = \{1, 2, 3, 4, 5\}$ $A \cap B = \{3\}$ $A - B = \{1, 2\}$ $A^{c} = \{4, 5, 6, 7, 8\}$

26

Let **A** be the set of all the people in the room who live in Ramallah and **B** be the set of all people in the room who live outside Ramallah. What is $A \cap B$?

Answer: This set contains no elements at all.

Notation: The symbol Ø denotes a set with no elements. (One can prove that there is only one such set. We call it the *empty set* or the *null set*.)

```
© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved
```

27

27

The Empty SetThe empty set is not the same thing as nothing; rather, it is a setwith nothing inside it and a set is always something. This issue can beovercome by viewing a set as a bag—an empty bag undoubtedly stillexists.Example: the set $D = \{x \in \mathbb{R} \mid 3 < x < 2\}$.Axioms about the empty set: $\forall A \cdot \emptyset \subseteq A$ $\forall A \cdot A \times \emptyset = \emptyset$ $\forall A \cdot A \cup \emptyset \subseteq A$ $\forall A \cdot A \times \emptyset = \emptyset$ $\forall A \cdot A \cap \emptyset \subseteq \emptyset$ Note: \subseteq denotes subset or equal

 $A \subseteq B$ denotes **proper subset** (subset but not equal)

Interval Notation for subsets of real numbers Notation

29

Given real numbers *a* and *b* with $a \le b$:

 $(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$ $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ $(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$ $[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}.$

The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

> $(a, \infty) = \{x \in \mathbf{R} \mid x > a\}$ $[a, \infty) = \{x \in \mathbf{R} \mid x \ge a\}$ $(-\infty, b) = \{x \in \mathbf{R} \mid x < b\}$ $[-\infty, b] = \{x \in \mathbf{R} \mid x \le b\}.$

Example:

Let the universal set be the set \mathbf{R} of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbf{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$$

Example: Find $A \cup B$, $A \cap B$, B - A, and A^c .

 $A \cup B = \{x \in \mathbb{R} \mid x \in (-1, \ b] \text{ or } x \in [0, \ 1)\} = \{x \in \mathbb{R} \mid x \in (-1, \ 1)\} = (-1, \ 1).$

 $A \cap B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ and } x \in [0, 1)\} = \{0\}.$

 $B - A = \{x \in \mathbb{R} \mid x \in [0, 1) \text{ and } x \notin (-1, 0]\} = \{x \in \mathbb{R} \mid 0 < x < 1\} = (0, 1)$

$$\begin{array}{cccc} -2 & -1 & 0 & 1 & 2 \\ \hline \bullet & \bullet & \bullet & \bullet \\ B - A \end{array}$$

A^c Homework!

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

31

Unions and Intersections of an Indexed Collection of Sets

• Definition Unions and Intersections of an Indexed Collection of Sets Given sets $A_0, A_1, A_2, ...$ that are subsets of a universal set U and given a nonnegative integer n, $\bigcup_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, ..., n\}$ Note $\bigcup_{i=0}^{n} A_i \text{ is read "the union of the A-sub-i from } i$ equals zero to n." $\bigcup_{i=0}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i\}$ $\bigcap_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i\}$ An alternative notation for $\bigcup_{i=0}^{n} A_i$ is $A_0 \cup A_1 \cup \ldots \cup A_n$

Example: Finding Unions and Intersections of More than Two Sets

For each positive integer *i*, let $A_i = \left\{ x \in \mathbb{R} \mid -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$

- A_1 : set of all real numbers between -1 and 1
- A_2 : set of all real numbers between -1/2 and 1/2
- A_3 : set of all real numbers between 1/3 and 1/3

Find
$$A_1 \cup A_2 \cup A_3 = (-1,1)$$
, because $\left(-\frac{1}{2}, \frac{1}{2}\right) \left(-\frac{1}{3}, \frac{1}{3}\right)$ included

Find $A_1 \cap A_2 \cap A_3 = \left(-\frac{1}{3}, \frac{1}{3}\right)$, because (-1,1) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ are included

Find $\bigcup_{i=1}^{\infty} A_i = (-1,1)$ Find $\bigcap_{i=1}^{\infty} A_i = \{0\}$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Partitions of Sets (Disjoint)

• Definition

Two sets are called **disjoint** if, and only if, they have no elements in common. Symbolically:

A and B are disjoint $\Leftrightarrow A \cap B = \emptyset$.

Example: Disjoint Sets

Let $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words, $\{1, 3, 5\} \cap \{2, 4, 6\} = \emptyset$.

Mutually Disjoint Sets

Definition

Sets $A_1, A_2, A_3...$ are **mutually disjoint** (or **pairwise disjoint** or **nonoverlapping**) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common. More precisely, for all i, j = 1, 2, 3, ...

 $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Example: Mutually Disjoint Sets

- a. Let $A_1 = \{3, 5\}, A_2 = \{1, 4, 6\}$, and $A_3 = \{2\}$. Are A_1, A_2 , and A_3 mutually disjoint?
- a. Yes. A_1 and A_2 have no elements in common, A_1 and A_3 have no elements in common, and A_2 and A_3 have no elements in common.
- b. Let $B_1 = \{2, 4, 6\}, B_2 = \{3, 7\}$, and $B_3 = \{4, 5\}$. Are B_1, B_2 , and B_3 mutually disjoint?
- b. No. B_1 and B_3 both contain 4.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

35

Partitions of Sets

• Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3 ...\}$ is a **partition** of a set A if, and only if,

- 1. A is the union of all the A_i
- 2. The sets A_1, A_2, A_3, \ldots are mutually disjoint.

Example: Partition of Set

Let \mathbf{Z} be the set of all integers and let

 $T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},\$

 $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}, \text{ and }$

$$T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}.$$

Is $\{T_0, T_1, T_2\}$ a partition of **Z**?

- a. Yes. By inspection, $A = A_1 \cup A_2 \cup A_3$ and the sets A_1, A_2 , and A_3 are mutually disjoint.
- b. Yes. By the quotient-remainder theorem, every integer *n* can be represented in exactly one of the three forms

n = 3k or n = 3k + 1 or n = 3k + 2,

for some integer k. This implies that no integer can be in any two of the sets T_0 , T_1 , or T_2 . So T_0 , T_1 , and T_2 are mutually disjoint. It also implies that every integer is in one of the sets T_0 , T_1 , or T_2 . So $\mathbf{Z} = T_0 \cup T_1 \cup T_2$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Power Set of a Set

Find the power set of the set $\{x, y\}$. That is, find $\mathscr{P}(\{x, y\})$.

Solution $\mathscr{P}(\{x, y\})$ is the set of all subsets of $\{x, y\}$. In Section 6.2 we will show that \emptyset is a subset of every set, and so $\emptyset \in \mathscr{P}(\{x, y\})$. Also any set is a subset of itself, so $\{x, y\} \in \mathscr{P}(\{x, y\})$. The only other subsets of $\{x, y\}$ are $\{x\}$ and $\{y\}$, so

$$\mathscr{P}(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.$$

Definition

Let *n* be a positive integer and let $x_1, x_2, ..., x_n$ be (not necessarily distinct) elements. The **ordered** *n*-tuple, $(x_1, x_2, ..., x_n)$, consists of $x_1, x_2, ..., x_n$ together with the ordering: first x_1 , then x_2 , and so forth up to x_n . An ordered 2-tuple is called an **ordered pair**, and an ordered 3-tuple is called an **ordered triple**.

Two ordered *n*-tuples $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are **equal** if, and only if, $x_1 = y_1, x_2 = y_2, ..., x_n = y_n$.

Symbolically:

 $(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \Leftrightarrow x_1 = y_1, x_2 = y_2, \dots, x_n = y_n.$

In particular,

 $(a, b) = (c, d) \Leftrightarrow a = c \text{ and } b = d.$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

39

Example: Ordered n-tuples

a. Is (1, 2, 3, 4) = (1, 2, 4, 3)?

No. By definition of equality of ordered 4-tuples,

$$(1, 2, 3, 4) = (1, 2, 4, 3) \Leftrightarrow 1 = 1, 2 = 2, 3 = 4, and 4 = 3$$

b. Is $\left(3, (-2)^2, \frac{1}{2}\right) = \left(\sqrt{9}, 4, \frac{3}{6}\right)$?

Yes. By definition of equality of ordered triples,

$$(3, (-2)^2, \frac{1}{2}) = (\sqrt{9}, 4, \frac{3}{6}) \quad \Leftrightarrow \quad 3 = \sqrt{9} \text{ and } (-2)^2 = 4 \text{ and } \frac{1}{2} = \frac{3}{6}$$

• Definition

Given sets A_1, A_2, \ldots, A_n , the **Cartesian product** of A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \ldots \times A_n$, is the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$.

Symbolically:

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$

In particular,

 $A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1 \text{ and } a_2 \in A_2\}$

is the Cartesian product of A_1 and A_2 .

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Cartesian Products

Let $A_1 = \{x, y\}, A_2 = \{1, 2, 3\}$, and $A_3 = \{a, b\}$.

- a. Find $A_1 \times A_2$. b. Find $(A_1 \times A_2) \times A_3$. c. Find $A_1 \times A_2 \times A_3$.
- a. $A_1 \times A_2 = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}$
- b. The Cartesian product of A_1 and A_2 is a set, so it may be used as one of the sets making up another Cartesian product. This is the case for $(A_1 \times A_2) \times A_3$.

$$(A_1 \times A_2) \times A_3 = \{(u, v) \mid u \in A_1 \times A_2 \text{ and } v \in A_3\} \text{ by definition of Cartesian produc} \\ = \{((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a), ((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b), ((y, 1), b), ((y, 2), b), ((y, 2), b), ((y, 3), b)\}$$

c. The Cartesian product $A_1 \times A_2 \times A_3$ is superficially similar

Let **ST** represent the set of **students**, **SM** represent the set of **smart**, **P** represent the set of **Palestinians**, **A** represent the set of **Americans**, and **W** represent the set of **women**. Let **WI** represent the set of **Winners**. Formalize the following in Set notation:

1. There are **no** smart students from Palestine

 \forall sets P, ST, SM, P ∩ ST ∩ SM = \emptyset

2. There are no smart students from Palestine among the winners

 \forall sets P, ST, SM, WI, WI \cap P \cap ST \cap SM = \bigotimes

students ¥ sets ST, FO, ST ∩ FO = ∅

4. "If every student is smart and every smart is not-foolish, then there are no foolish students"

∀ sets ST, SM, FO, if ST ⊆ SM and SM ⊆FO^c, then ST \cap FO = Ø

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved