

Set Theory

1

Set Partition, Power set, Cartesian product

6.1. Set Theory: Definitions and the Element Method of Proof

³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Set Versus ElementIn Set theory \rightarrow **Set** VS. Element \leftarrow Mathematical Set In JAVA > Class vs. Object In Logic/Philosophy > Concept vs. Instance - The **extension** of a set is its elements. - The **order** of elements is irrelevant - In set theory: an element itself might be a set.

- In philosophy, an instance has no instances.

Basic Concepts and Notations

Cantor suggested a set as a:

"collection into a whole M of definite and separate objects of our intuition or our thought".

M= {Ali, Hasan, Khalid }

Each object is called an element (or member of) of M.

Ali $\in M$ (Ali belongs to M)

Rami $\notin M$ (Rami does not belong to M)

Roster Notation:

Roster notation is a complete listing of all the elements of the set.

 $A = \{a, b, c, d\}$ and

 $B = \{2, 4, 6, 8, \dots, 20\}$

are examples of roster notation that define sets with 4 and 10 elements, respectively.

⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

"Set" is an undefined term. We say that sets contain elements and are completely determined by the elements they contain. **So:** Two sets are equal \Leftrightarrow they have exactly the same elements. **Ex**: Let $A = \{1, 3, 5\}$ $B = \{5, 1, 3\}$ $C = \{1, 1, 3, 3, 5\}$ $\widehat{D} = \{x \in \mathbb{Z} \mid x \text{ is an odd integer and } 0 < x < 6\}$ How are A , B , C , and D related? Answer: They are all equal. **Notation:** $x \in A$ is read "x is an element of A" (or "x is in A") $x \notin A$ is read "x is not an element of A" (or "x is not in A"). How do you read this out loud? **A Glimpse into Set Theory** the set of all such that

- 1. The set of all natural numbers or positive integers ${1, 2, 3, ...}$ is denoted by N.
- 2. The set of integers ${..., -3, -2, -1, 0, 1, 2, 3, ...}$ is denoted by Z.
- 3. The set of rational numbers is denoted by Q .
- \blacksquare 4. The set of real numbers is denoted by R.
- 5. The set of complex numbers is denoted by C.
- 6. The set of positive real numbers is denoted by R^+

Ex: Let $A = \{2,4,5\}$ and $B = \{1,2,3,4,6,7\}$. Is $A \subset B$? Answer: No, because 5 is in A but 5 is not in B .

Ex: Let $C = \{2, 4, 7\}$ and $B = \{1, 2, 3, 4, 6, 7\}$. Is $C \subset B$? Answer: Yes, because every element in C is in B .

¹³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Symbol Meaning Upper case designates set name Lower case designates set elements { } enclose elements in set \in (or \notin) is (or is not) an element of \subseteq is a subset of (includes equal sets) \subset is a proper subset of σ is not a subset of \supset is a superset of | or : such that (if a condition is true) | | the cardinality of a set **Notations**

 $A \nsubseteq B \Leftrightarrow \exists x \cdot x \in A \text{ and } x \notin B$

Notations:

Examples: Person \supset Man, $Z \supset Z^+$, $R \supset Z$

¹⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Subsets: Proof and Disproof

Set A to be a subset of a set B as a formal universal conditional statement:

 $A \subseteq B \Leftrightarrow \forall x, \text{ if } x \in A \text{ then } x \in B.$

The negation is, therefore, existential:

 $A \nsubseteq B \Leftrightarrow \exists x \text{ such that } x \in A \text{ and } x \notin B.$

A *proper subset* of a set is a subset that is not equal to its containing set.

A is a **proper subset** of $B \Leftrightarrow$ (1) $A \subseteq B$, and (2) there is at least one element in B that is not in A .

Proving and Disproving Subset Relations

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}\$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$

Prove that $A \subseteq B$.

Please loot at details on page 338 example 6.1.2

Suppose x is a particular but arbitrarily chosen element of A . Show that $x \in B$, means show that $x = 3$ (integer).

 $x = 6r + 12$ $= 3(2r + 4)$. Let $s = 2r + 4$. Also, $3s = 3(2r + 4)$

Therefore, x is an element of B . ¹⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proving and Disproving Subset Relations

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}\$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$

Disprove that B ⊆ **A.**

To disprove a statement means to show that it is false, and to show it is false that $B \subseteq A$, you must find an element of B that is not an element of A.

let x = 3. Then $x \in B$ because 3 = 3·1, but $x \notin A$, because there is no integer r such that $3 = 6r + 12$. For if there were such an integer, then

2. show that x is an element of Y .

¹⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Define sets A and B as follows:

 $A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$ $B = \{n \in \mathbb{Z} \mid n = 2b - 2$ for some integer b Is $A = B$?

.

Yes. To prove this, both subset relations $A \subseteq B$ and $B \subseteq A$ must be proved.

Part 1, Proof That $A \subseteq B$:

Part 2, Proof That $B \subseteq A$:

²¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Part 1, Proof That A⊆ **B**Suppose x is a particular but arbitrarily chosen element of A . [We must show that $x \in B$. By definition of B, this means we must show that $x = 2$ (some integer) - 2.] By definition of A, there is an integer a such that $x = 2a$. [Given that $x = 2a$, can x also be expressed as $2 \cdot$ (some integer) – 2? *I.e., is there an integer, say b, such that* $2a = 2b - 2$? *Solve for b to obtain* $b = (2a + 2)/2 = a + 1$. *Check to see if this works.*] Let $b = a + 1$. [First check that b is an integer.] Then b is an integer because it is a sum of integers. [Then check that $x=2b-2$.] Also $2b - 2 = 2(a + 1) - 2 = 2a + 2 - 2 = 2a = x$, Thus, by definition of B , x is an element of B [which is what was to be shown]. **Part 2, Proof That B** \subseteq A: This part of the proof is left as exercise 2 at the end of this section. ²² © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Class Exercise Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$ and suppose that the "universal set" $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Find $A \cup B = \{1, 2, 3, 4, 5\}$ $A \cap B = \{3\}$ $A - B = \{1, 2\}$ $A^c = \{4, 5, 6, 7, 8\}$

Let **A** be the set of all the people in the room who live in Ramallah and **B** be the set of all people in the room who live outside Ramallah. What is $A \cap B$?

Answer: This set contains no elements at all.

Notation: The symbol \varnothing denotes a set with no elements. (One can prove that there is only one such set. We call it the *empty set* or the *null set.*)

```
27 © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved
```
27

The empty set is not the same thing as nothing; rather, it is a set with nothing inside it and a set is always something. This issue can be overcome by **viewing a set as a bag—an empty bag undoubtedly still exists. The Empty Set** Example: the set $D = \{x \in \mathbb{R} \mid 3 < x < 2\}.$ ∀A . A ∩ ∅ ⊆∅ ∀A . ∅ ⊆A ∀A . A ∪ ∅ ⊆A $\forall A \cdot A \times \emptyset = \emptyset$ Axioms about the empty set:

> Note: ⊆ denotes subset or equal A ⊊ B denotes **proper subset** (subset but not equal)

Interval Notation for subsets of real numbers

Given real numbers a and b with $a \leq b$:

 $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$ $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$ $[a, b] = \{x \in \mathbf{R} \mid a < x \leq b\}$ [a, b) = { $x \in \mathbf{R}$ | $a \le x < b$ }.

The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

> $(a, \infty) = \{x \in \mathbb{R} \mid x > a\}$ $[a, \infty) = {x \in \mathbf{R} \mid x \geq a}$ $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$ $[-\infty, b) = \{x \in \mathbf{R} \mid x \leq b\}.$

Example:

• Notation

Let the universal set be the set R of all real numbers and let

$$
A = (-1, 0) = \{x \in \mathbb{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbb{R} \mid 0 \le x < 1\}.
$$
\n
$$
\begin{array}{ccccccc}\n-2 & -1 & 0 & 1 & 2 \\
\hline\n & & & & & & & & & & \\
\hline\n & & & & & & & \\
\hline\n & & & & & & & & \\
\hline\n & & & & & & & & \\
\hline\n & & & & & & &
$$

Example: Find $A \cup B$, $A \cap B$, $B - A$, and A^c .

 $A \cup B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ or } x \in [0, 1)\} = \{x \in \mathbb{R} \mid x \in (-1, 1)\} = (-1, 1).$

$$
\begin{array}{c|cccc}\n-2 & -1 & 0 & 1 & 2 \\
\leftarrow & & \leftarrow & & \\
 & & A \cup B & & & \\
\end{array}
$$

 $A \cap B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ and } x \in [0, 1)\} = \{0\}.$

$$
\begin{array}{cccc}\n-2 & -1 & 0 & 1 & 2 \\
\leftarrow & & & \\
 & & A \cap B & & \n\end{array}
$$

 $B - A = \{x \in \mathbb{R} \mid x \in [0, 1) \text{ and } x \notin (-1, 0] \} = \{x \in \mathbb{R} \mid 0 < x < 1\} = (0, 1)$

$$
\begin{array}{cccc}\n-2 & -1 & 0 & 1 & 2 \\
\leftarrow & & & \rightarrow & & \\
 & B-A & & & \n\end{array}
$$

 A^c Homework!

³¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Unions and Intersections of an Indexed Collection of Sets

• Definition **Unions and Intersections of an Indexed Collection of Sets** Given sets A_0 , A_1 , A_2 ,... that are subsets of a universal set U and given a nonnegative integer n , **Note** $\bigcup A_i$ is read "the $\bigcup_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, ..., n\}$ union of the A-sub-i from i equals zero to n." $\bigcup_{i=0}^{i=0} A_i = \{x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i\}$ $\bigcap_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2, ..., n\}$ $\bigcap_{i=0}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for all nonnegative integers } i\}.$ An alternative notation for $\bigcup_{i=0}^{n} A_i$ is $A_0 \cup A_1 \cup ... \cup A_n$
 \circ Susanna S. Epp. Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Finding Unions and Intersections of More than Two Sets

For each positive integer *i*, let $A_i = \{x \in \mathbb{R} \mid -\frac{1}{i} < x < \frac{1}{i}\} = A_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$

- A_1 : set of all real numbers between -1 and 1
- A_2 : set of all real numbers between -1/2 and 1/2
- A_3 : set of all real numbers between 1/3 and 1/3

Find
$$
A_1 \cup A_2 \cup A_3
$$
 = (-1,1), because $\left(-\frac{1}{2}, \frac{1}{2}\right)\left(-\frac{1}{3}, \frac{1}{3}\right)$ included

Find $A_1 \cap A_2 \cap A_3$ $= \left(-\frac{1}{3}, \frac{1}{3}\right)$, because (-1,1) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ are included

Find $\bigcup_{i=1}^{\infty} A_i = (-1,1)$ Find $\bigcap_{i=1}^{\infty} A_i = \{0\}$

³³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Partitions of Sets (Disjoint)

• Definition

Two sets are called **disjoint** if, and only if, they have no elements in common. Symbolically:

A and B are disjoint \Leftrightarrow $A \cap B = \emptyset$.

Example: Disjoint Sets

Let $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words, $\{1, 3, 5\} \cap \{2, 4, 6\} = \emptyset.$

Mutually Disjoint Sets

• Definition

Sets A_1, A_2, A_3 ... are mutually disjoint (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common. More precisely, for all $i, j = 1, 2, 3, ...$

 $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Example: Mutually Disjoint Sets

- a. Let $A_1 = \{3, 5\}, A_2 = \{1, 4, 6\}, \text{ and } A_3 = \{2\}.$ Are $A_1, A_2, \text{ and } A_3$ mutually disjoint?
- a. Yes. A_1 and A_2 have no elements in common, A_1 and A_3 have no elements in common, and A_2 and A_3 have no elements in common.
- b. Let $B_1 = \{2, 4, 6\}, B_2 = \{3, 7\}, \text{ and } B_3 = \{4, 5\}.$ Are $B_1, B_2, \text{ and } B_3 \text{ mutually}$ disjoint?
- b. No. B_1 and B_3 both contain 4.

³⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Partitions of Sets

• Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3, ...\}$ is a **partition** of a set A if, and only if,

- 1. A is the union of all the A_i
- 2. The sets A_1 , A_2 , A_3 , ... are mutually disjoint.

Example: Partition of Set

Let \overline{Z} be the set of all integers and let

 $T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},\$

 $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\},\$ and

$$
T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}.
$$

Is $\{T_0, T_1, T_2\}$ a partition of **Z**?

- a. Yes. By inspection, $A = A_1 \cup A_2 \cup A_3$ and the sets A_1, A_2 , and A_3 are mutually disjoint.
- b. Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms

$$
n = 3k
$$
 or $n = 3k + 1$ or $n = 3k + 2$,

for some integer k. This implies that no integer can be in any two of the sets T_0 , T_1 , or T_2 . So T_0 , T_1 , and T_2 are mutually disjoint. It also implies that every integer is in one of the sets T_0 , T_1 , or T_2 . So $\mathbb{Z} = T_0 \cup T_1 \cup T_2$.

³⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

$$
\frac{3}{2}
$$

Example: Power Set of a Set

Find the power set of the set $\{x, y\}$. That is, find $\mathcal{P}(\{x, y\})$.

Solution $\mathscr{P}(\{x, y\})$ is the set of all subsets of $\{x, y\}$. In Section 6.2 we will show that \emptyset is a subset of every set, and so $\emptyset \in \mathcal{P}(\{x, y\})$. Also any set is a subset of itself, so $\{x, y\} \in \mathcal{P}(\{x, y\})$. The only other subsets of $\{x, y\}$ are $\{x\}$ and $\{y\}$, so

$$
\mathscr{P}(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}.
$$

• Definition

Let *n* be a positive integer and let $x_1, x_2, ..., x_n$ be (not necessarily distinct) elements. The **ordered** *n***-tuple**, $(x_1, x_2, ..., x_n)$, consists of $x_1, x_2, ..., x_n$ together with the ordering: first x_1 , then x_2 , and so forth up to x_n . An ordered 2-tuple is called an ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered *n*-tuples $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are **equal** if, and only if, $x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n$.

Symbolically:

 $(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n) \Leftrightarrow x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n.$

In particular,

 $(a, b) = (c, d) \Leftrightarrow a = c$ and $b = d$.

³⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Ordered n-tuples

a. Is $(1, 2, 3, 4) = (1, 2, 4, 3)$?

No. By definition of equality of ordered 4-tuples,

$$
(1, 2, 3, 4) = (1, 2, 4, 3) \Leftrightarrow 1 = 1, 2 = 2, 3 = 4, \text{ and } 4 = 3
$$

b. Is $\left(3, (-2)^2, \frac{1}{2}\right) = \left(\sqrt{9}, 4, \frac{3}{6}\right)$?

Yes. By definition of equality of ordered triples,

$$
(3, (-2)^2, \frac{1}{2}) = (\sqrt{9}, 4, \frac{3}{6}) \quad \Leftrightarrow \quad 3 = \sqrt{9} \text{ and } (-2)^2 = 4 \text{ and } \frac{1}{2} = \frac{3}{6}.
$$

Cartesian product • Definition

Given sets A_1, A_2, \ldots, A_n , the **Cartesian product** of A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \ldots \times A_n$, is the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n.$

Symbolically:

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \ldots, a_n) | a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.$

In particular,

 $A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1 \text{ and } a_2 \in A_2\}$

is the Cartesian product of A_1 and A_2 .

⁴¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Cartesian Products

Let $A_1 = \{x, y\}, A_2 = \{1, 2, 3\}, \text{ and } A_3 = \{a, b\}.$

- a. Find $A_1 \times A_2$. b. Find $(A_1 \times A_2) \times A_3$. c. Find $A_1 \times A_2 \times A_3$.
- a. $A_1 \times A_2 = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}\$
- b. The Cartesian product of A_1 and A_2 is a set, so it may be used as one of the sets making up another Cartesian product. This is the case for $(A_1 \times A_2) \times A_3$.

$$
(A_1 \times A_2) \times A_3 = \{(u, v) \mid u \in A_1 \times A_2 \text{ and } v \in A_3\} \text{ by definition of Cartesian product}
$$

= $\{((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),$
 $((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),$
 $((y, 1), b), ((y, 2), b), ((y, 3), b)\}$

c. The Cartesian product $A_1 \times A_2 \times A_3$ is superficially similar

Let **ST** represent the set of **students**, **SM** represent the set of **smart**, **P** represent the set of **Palestinians**, **A** represent the set of **Americans**, and **W** represent the set of **women**. Let **WI** represent the set of **Winners.** Formalize the following in Set notation:

1. There are no smart students from Palestine

 \forall sets P, ST, SM, P ∩ ST ∩ SM = \varnothing

2. There are no smart students from Palestine among the winners

 \forall sets P, ST, SM, WI, WI∩ P∩ ST ∩ SM = \emptyset

 \forall sets ST, FO, ST \cap FO = \varnothing

4. "If every student is smart and every smart is not-foolish, then there are no foolish students"

 \forall sets ST, SM, FO, if ST ⊆ SM and SM ⊆FO°, then ST ∩ FO = ∅