

6.2 Properties of Sets and Element Argument

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

2

• Fill in the blanks: If *A* and *B* are sets, $x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B$ $x \in A \cap B \Leftrightarrow x \in A \text{ or } x \in B$ $x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B$ $x \in A \cap B \Leftrightarrow x \in A \text{ and } x \notin B$ $x \in A^{c} \Leftrightarrow x \notin A$ • Is {3} \in {{1}, {2}, {3}}? Is {3} \subseteq {1, 2, 3}? Is {3} \in {1, 2, 3}? *Answers:* Yes, Yes, No • When is an *if-then* statement false? *Answer:* when the hypothesis is true and the conclusion is false • What is a negation for a statement of the form

 $\forall x \text{ in D, if } P(x) \text{ then } Q(x)?$

Answer: $\exists x \text{ in } D$ such that P(x) and not-Q(x)

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Set Identities

- An **identity** is an equation that is <u>universally true</u> for all elements in some set.
- <u>Example</u>

$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$

is an identity for real numbers, because it is true for all real numbers a and b.

- The collection of set properties in the next theorem consists entirely of set identities
- They are <u>equations that are true</u> for all sets in some universal set.

6

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a) $(A \cup B) \cup C = A \cup (B \cup C)$ and (b) $(A \cap B) \cap C = A \cap (B \cap C)$.

3. Distributive Laws: For all sets, A, B, and C,

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and

(b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

4. Identity Laws: For all sets A,

(a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.

5. Complement Laws:

(a)
$$A \cup A^c = U$$
 and (b) $A \cap A^c = \emptyset$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Theorem 6.2.2 Set Identities - Cont.

6. Double Complement Law: For all sets A,

 $(A^c)^c = A.$

7. Idempotent Laws: For all sets A,

(a)
$$A \cup A = A$$
 and (b) $A \cap A = A$.

8. Universal Bound Laws: For all sets A,

(a)
$$A \cup U = U$$
 and (b) $A \cap \emptyset = \emptyset$.

9. De Morgan's Laws: For all sets A and B,

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.

11. Complements of U and Ø:

(a) $U^c = \emptyset$ and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

$$A - B = A \cap B^c.$$

8

[©] Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proving Set Equality

To prove that a set X equals a set Y,

prove that X is a subset of Y **and** Y is a subset of X.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proving Set Properties 3

Element Proof That a Set Equals the Empty Set To prove that a set X equals the empty set \emptyset ,

suppose that this supposition leads to a contradiction.

show that X is not empty, i.e., suppose \exists an element X in X

9

Answer: Show that every element in the one set is in the other. (Element method of proof)

© Susanna S. Epp, Kenneth H. Rosen	, Ahmad Hamo 2020, All rights reserved
------------------------------------	--

Thus $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

11

Suppose $x \in A \cup (B \cap C)$. $x \in A$ or $x \in B \cap C$. (by def. of union) <u>Case 1 ($x \in A$):</u> then $x \in A \cup B$ (by def. of union) and $x \in A \cup C$ (by def. of union) $\therefore x \in (A \cup B) \cap (A \cup C)$ (def. of intersection) <u>Case 2 ($x \in B \cap C$):</u> then $x \in B$ and $x \in C$ (def. of intersection) As $x \in B$, $x \in A \cup B$ (by def. of union) As $x \in C$, $x \in A \cup C$, (by def. of union) $\therefore x \in (A \cup B) \cap (A \cup C)$ (def. of intersection)

In both cases, $x \in (A \cup B) \cap (A \cup C)$. **Thus:** $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ by definition of subset

$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$:

Suppose $x \in (A \cup B) \cap (A \cup C)$. $x \in A \cup B$ and $x \in A \cup C$. (def. of intersection) <u>Case 1 ($x \in A$):</u> then $x \in A \cup (B \cap C)$ (by def. of union) <u>Case 2 ($x \notin A$):</u> then $x \in B$ and $x \in C$, (def. of intersection) Then, $x \in B \cap C$ (def. of intersection) $\therefore x \in A \cup (B \cap C)$

In both cases $x \in A \cup (B \cap C)$. **Thus:** $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ by definition of subset,

Conclusion: Since both subset relations have been proved, it follows by definition of set equality that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

13

Proof of a De Morgan's Law for Sets

Prove that for all sets A and B, $(A \cup B)^c = A^c \cap B^c$.

Starting Point: Suppose A and B are arbitrarily chosen sets.

To Show: $(A \cup B)^c = A^c \cap B^c$ To do this, you must show that $(A \cup B)^c \subseteq A^c \cap B^c$ and that $A^c \cap B^c \subseteq (A \cup B)^c$. To show the first containment means to show that

 $\forall x, \text{ if } x \in (A \cup B)^c \text{ then } x \in A^c \cap B^c.$

And to show the second containment means to show that

$$\forall x, \text{ if } x \in A^c \cap B^c \text{ then } x \in (A \cup B)^c.$$

Since each of these statements is universal and conditional, for the first containment, you

suppose $x \in (A \cup B)^c$,

and then you **show** that $x \in A^c \cap B^c$. And for the second containment, you

suppose
$$x \in A^c \cap B^c$$
,

and then you

show that $x \in (A \cup B)^c$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Cont... Proof: $A^{c} \cap B^{c} \subseteq (A \cup B)^{c}$

Suppose $x \in A^{c} \cap B^{c}$. intersection, $x \in A^{c}$ and $x \in B^{c}$, and by definition of complement, $x \notin A$ and $x \notin B$. In other words, x is not in A and x is not in B. By <u>De Morgan's laws of logic</u> this implies that it is **false** that (xis in A or x is in B), which can be written $x \notin A \cup B$ by definition of union. Hence, by definition of complement, $x \in (A \cup B)^{c}$. It follows that $A^{c} \cap B^{c} \subseteq (A \cup B)^{c}$ by definition of subset.

Proof of De Morgan's Law:
$$(A \cap B)^c = A^c \cup B^c$$

To show equality, we must show
1) $(A \cap B)^c \leq A^c \cup B^c$
2) $(A \cap B)^c \geq A^c \cup B^c$ or $A^c \cup B^c \leq (A \cap B)^c$
lemma 1: $(A \cap B)^c \leq A^c \cup B^c$
Proof using element argument
Suppose x is any element s.t. $x \in (A \cap B)^c$
We want to show that $x \in A^c \cup B^c$.
Since $x \in (A \cap B)^c$, we know that $x \notin (A \cap B)$
by the definition of complement.
This means x is not in BOTH A and B.by duf
of intersection.
Then $x \notin A$ or $x \notin B$. This means $x \in A^c \odot x \in B^c$
by the definition of complement.
Then $x \notin A$ or $x \notin B$. This means $x \in A^c \odot x \in B^c$
by the definition of $x \in A^c \cup B^c$.
Which was to be shown. So $(A \cap B)^c \leq A^c \cup B^c$.

Proof of De Morgan's Law: $(A \cap B)^c = A^c \cup B^c$

Lemma 2: A^c UB^c
$$\leq$$
 (A ∩ B)^c
Proof using the element argument.
Suppose x is any element s.t. $x \in A^{c} UB^{c}$.
We want to show that $x \in (A \cap B)^{c}$.
Since we know that $x \in A^{c} UB^{c}$, we know that
 $x \in A^{c}$ or $x \in B^{c}$ by the def of union. Then
 $x \notin A$ or $x \notin B$ by the def of compliment.
Since $x \notin A$ or $x \notin B$, we know $x \notin A \cap B$ by
the def of intersection. So $x \in (A \cap B)^{c}$ by the
def of compliment. Which was to be shown.
 $\therefore A^{c} UB^{c} \leq (A \cap B)^{c}$.
Since $(A \cap B)^{c} \leq A^{c} UB^{c}$ and
 $A^{c} UB^{c} \leq (A \cap B)^{c}$, we can conclude
that $(A \cap B)^{c} = A^{c} UB^{c}$ by the definition
of set equality.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example
Use Element argument method to prove properties on defined sets:
1. Let A = {x ∈ Z | x = 5a + 1 for some integer a} B = {y ∈ Z | y = 10b - 9 for some integer b}.
a. Is A ⊂ B? Justify your answer.

b. Is $B \subseteq A$? Justify your answer.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

A = {*x* ∈ ℤ | *x* = 5*a* + 1 for some integer *a*} *B* = {*y* ∈ ℤ | *y* = 10*b* − 9 for some integer *b*} a. Is *A* ⊆ *B*? Answer: No The reason is that 6 ∈ *A* because 6 = 5 · 1 + 1. But 6 ∉ *B* because if 6 = 10*b* − 9, then 15 = 10*b*, which implies that *b* = 1.5, and 1.5 is not an integer. So there is at least one element of *A* that is not in *B*, and hence *A* is not a subset of *B*.

19

19

b. Is $B \subseteq A$? **Answer**: Yes

Proof:

Suppose y is any [pbac] element in B. Then y = 10b - 9 for some integer b. But 10b-9=10b-10+1 = 5(2b-2)+1 (by algebra) Note that 2b - 2 is an integer b/c products and differences of integers are integers. So, by definition of A, y is an element in A. [This argument shows that **any** element in B is also in A. Hence B is a subset of A.]

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

```
21 21
```

Example Use Element argument method to prove properties on defined sets: Define sets A and B as follows: $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$ Prove that $A \subseteq B$. Suppose x is a p.b.a.c. element of A. Show that $x \in B$, i.e., show that x = 3 (some integer). x = 6r + 12(Since $x \in A$) = 3(2r+4).Let s = 2r + 4. But s is integer Also, 3s = 3(2r + 4)= 6r + 12= xTherefore, *x* is an element of *B*. 22 © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

• **Prove:** A set with no elements is a subset of every set (Theorem 6.2.4). I.e., if *E* is a set with no elements and *A* is any set, then $E \subseteq A$.

Proof by Contradiction:

Suppose not. [We take the negation of the theorem and suppose it to be true.] That is, Suppose: E with no elements, and E \subseteq A. assuming (E \subseteq A) means there *x* \in E and this x \notin A [by definition of subset].

But there can be no such element since E has no elements. This is a contradiction.

Hence the supposition that there are sets E and A, where E has no elements and E \subseteq A, is false, and so the theorem is true.

© Susanna S	. Epp, Kenne	th H. Rosen, Ahm	ad Hamo 2020,	All rights reserved
-------------	--------------	------------------	---------------	---------------------

Exercise (6.2 Q21 - Find the mistake)

"Theorem:" For all sets A and B, $A^c \cup B^c \subseteq (A \cup B)^c$.

"Proof: Suppose *A* and *B* are sets, and $x \in A^c \cup B^c$. Then $x \in A^c$ or $x \in B^c$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in (A \cup B)^c$ by definition of complement, and hence $A^c \cup B^c \subseteq (A \cup B)^c$."

The "proof" claims that because $x \notin A$ or $x \notin B$, it follows that $x \notin A \cup B$. But it is possible for " $x \notin A$ or $x \notin B$ " to be true and " $x \notin A \cup B$ " to be false. For example, let $A = \{1, 2\}$, $B = \{2, 3\}$, and x = 3. Then since $3 \notin \{1, 2\}$, the statement " $x \notin A$ or $x \notin B$ " is true. But since $A \cup B = \{1, 2, 3\}$ and $3 \in \{1, 2, 3\}$, the statement " $x \notin A \cup B$ " is false.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Exercise 6.2 Q24

Fill in the blanks in the following proof that for all sets *A* and *B*, $(A - B) \cap (B - A) = \emptyset$.

Proof: Let A and B be any sets and suppose $(A - B) \cap (B - A) \neq \emptyset$. That is, suppose there were an element x in <u>(a)</u>. By definition of <u>(b)</u>, $x \in A - B$ and $x \in \underline{(c)}$. Then by definition of set difference, $x \in A$ and $x \notin B$ and $x \in \underline{(d)}$ and $x \notin \underline{(e)}$. In particular $x \in A$ and $x \notin \underline{(f)}$, which is a contradiction. Hence [the supposition that $(A - B) \cap (B - A) \neq \emptyset$ is false, and so] <u>(g)</u>.

(a)
$$(A - B) \cap (B - A)$$
 (b) intersection (c) $B - A$
(d) B (e) A (f) A (g) $(A - B) \cap (B - A) = \emptyset$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Use Element argument method to prove properties on undefined sets:

1. For all sets A, B, and C, $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

3. Given sets *A* and *B*, what would you suppose and what would you show to prove that $(A \cap B) \cap B^{c} = \emptyset$?

 $\textcircled{\sc c}$ Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Prove: For all sets A, B, and C, $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

29

29

 $(A - B) \cup (C - B) \subseteq (A \cup C) - B$: Suppose that x is any element in $(A - B) \cup (C - B)$. [We must show that $x \in (A \cup C) - B$.] By definition of union, $x \in A - B$ or $x \in C - B$. **Case 1** $(x \in A - B)$: Then, by definition of set difference, $x \in A$ and $x \notin B$. But because $x \in A$, we have that $x \in$ $A \cup C$ by definition of union. Hence $x \in A \cup C$ and $x \notin B$, **Case 2** $(x \in C - B)$: Then, by definition of set difference, $x \in C$ and $x \notin B$. But because $x \in C$, we have that $x \in$ $A \cup C$ by definition of union. Hence $x \in A \cup C$ and $x \notin B$, **Case 2** $(x \in C - B)$: Then, by definition of set difference, $x \in C$ and $x \notin B$. But because $x \in C$, we have that $x \in$ $A \cup C$ by definition of union. Hence $x \in A \cup C$ and $x \notin B$, and so, by definition of set difference, $x \in (A \cup C) - B$. Thus, in both cases, $x \in (A \cup C) - B$ [as was to be shown]. So $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proof that $(A \cup C) - B \subseteq (A - B) \cup (C - B)$:

Suppose that x is any element in $(A \cup C) - B$. [We must show that $x \in (A - B) \cup (C - B)$.] By definition of set difference, $x \in (A \cup C)$ and $x \notin B$.

And, by definition of union, $x \in A$ or $x \in C$, and in both cases, $x \notin B$.

Case 1 $(x \in A \text{ and } x \notin B)$: Then, by definition of set difference, $x \in A - B$, and so by definition of union, $x \in (A - B) \cup (C - B)$.

Case 2 ($x \in C$ and $x \notin B$): Then, by definition of set difference, $x \in C - B$, and so by definition of union, $x \in (A - B) \cup (C - B)$.

In both cases, $x \in (A - B) \cup (C - B)$ [as was to be shown]. So $(A \cup C) - B \subseteq (A - B) \cup (C - B)$.

 $\textcircled{\sc c}$ Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

31

Given sets *A* and *B*, what would you suppose and what would you show to prove that: $(A \cap B) \cap B^{c} = \emptyset$?

In general: How do you show that a set equals the empty

set?

Answer: Show that the set has no elements. Go by contradiction. Suppose the set has an element. Show that this supposition leads to a contradiction.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Home Exercises

Prove:

1. Given sets *A*, *B*, and *C*, prove/disprove that for all sets *A*, *B*, and *C*, $(A \cap B) \cup C = A \cap (B \cup C)$. We proved the forward direction

previously

2. For all sets *A* and *B*, if $A \subseteq B$ then $A - B = \emptyset$.

Ex: The description of the shaded region in the following figure using the operations on set is,

- (a) $(C (A \cap C) \cup (C \cap B)) \cup (A \cap B)$ (b) $A \cup B \cup C - (C \cup (A \cap B))$
- (c) $(C ((A \cap C) \cup (C \cap B))) \cup (A \cap B)$

33

33

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

34

Proof & Cartesian product

Recall that the **Cartesian product** (or simply the **product**) $A \times B$ of two sets A and B is defined as

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

If $A = \emptyset$ or $B = \emptyset$, then $A \times B = \emptyset$.

Before looking at several examples of proofs concerning Cartesian products of sets, it is important to keep in mind that an arbitrary element of the Cartesian product $A \times B$ of two sets A and B is of the form (a, b), where $a \in A$ and $b \in B$.

Example:

Prove for sets A, B, C and D that If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

Proof:

Let $(x, y) \in A \times B$. Then $x \in A$ and $y \in B$ by definition of Cartesian product. Since $A \subseteq C$ and $B \subseteq D$, it follows that $x \in C$ and $y \in D$ by definition of subset. Hence, $(x, y) \in C \times D$ by definition of Cartesian product.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved