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COMP 233 Discrete Mathematics

Set Theory
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6.2 Properties of Sets and
Element Argument
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Theorem 6.2.1 Some Subset Relations 

 Inclusion of Intersection: For all sets A and B, 

(a) A ∩B ⊆ A    and    (b) A ∩B ⊆ B. 

 Inclusion in Union: For all sets A and B,
(a) A ⊆ A ∪ B     and    (b) B ⊆ A ∪ B. 

 Transitive Property of Subsets: For all sets A, B, and C, 
if A ⊆ B and B ⊆ C, then A ⊆ C 
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Warm-up: Proving set properties

 How do we read {x  U | x  A or x  B} out loud? 
What is a shorthand notation for this set?

Answers: The set of all x in U such that x is in A or x is in B.

A  B

 If A and B are sets, what does it mean to say that A  B?

Answer: Every element in A is also in B.

 x, if x is in A then x is in B.

 If A and B are sets, what does it mean to say that A is not a subset 
of B?

Answer: There is at least one element in A that is not in B.

 x such that x is in A but x is not in B.

 If A and B are sets, what does it mean to say that A = B?

Answer: A is a subset of B and B is a subset of A.
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Warm-up: Proving set properties

 Fill in the blanks: If A and B are sets, 

x  A  B 

x  A  B 

x  A – B 

x  Ac 

 Is {3}  {{1}, {2}, {3}}?  Is {3}  {1, 2, 3}?  Is {3}  {1, 2, 3}?   

Answers:

 When is an if-then statement false?

Answer: when the hypothesis is true and the conclusion is false

 What is a negation for a statement of the form 

 x in D, if P(x) then Q(x)?

Answer:  x in D such that P(x) and not-Q(x)

x  A or x  B

x  A and x  B

x  A and x  B

x  A

Yes,  Yes,  No
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Set Identities

• An identity is an equation that is universally true for 
all elements in some set. 

• Example

a + b = b + a 
is an identity for real numbers, because it is true for
all real numbers a and b. 

• The collection of set properties in the next theorem 
consists entirely of set identities

• They are equations that are true for all sets in some
universal set.
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Theorem 6.2.2 Set Identities

8
© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Theorem 6.2.2 Set Identities- Cont.
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Proving Set Properties 1 & 2

Element Argument to Prove Subset Relations

To prove that a set X is a subset of a set Y,

suppose

show

Proving Set Equality

To prove that a set X equals a set Y,

prove

that x is a particular but arbitrarily chosen 
element of X , and

that x is an element of Y. 

that X is a subset of Y  and Y is a subset of X.
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Proving Set Properties 3

Element Proof That a Set Equals the Empty Set

To prove that a set X equals the empty set ,

suppose

show
that X is not empty, i.e., suppose  an element x in X

that this supposition leads to a contradiction.
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Given sets A, B, and C, what would you suppose and what would you 

show to prove that (A  B)  C   A  (B  C)?

In general: How do you show that one set is a subset of 
another set?

Answer: Show that every element in the one set is in the 
other. (Element method of proof)

Use Element argument method to prove properties on 
undefined sets: 

Element argument method 
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Example: Proof of a Distributive Law

Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). That is:

Prove: A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

Prove: (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C)

Thus (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C).

Suppose x ∈ A ∪ (B ∩ C). [Show x ∈ (A ∪ B) ∩ (A ∪ C).]
...

Thus x ∈ (A ∪ B) ∩ (A ∪ C).

Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). [Show x ∈ A ∪ (B ∩ C).]
...

Thus x ∈ A ∪ (B ∩ C).

Hence (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).
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A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C): (A ∪ B) ∩ (A ∪ C) ⊆A ∪ (B ∩ C):

Conclusion: Since both subset relations have been proved, it follows by 
definition of set equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
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Proof of a De Morgan’s Law for Sets
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Proof: Suppose x ∈ (A ∪ B)c. That is x ∉ A ∪ B. 
But to say that  x ∉ A ∪ B means that it is false that: 

(x is in A or x is in B).

By De Morgan’s laws of logic, this implies that x is not in A

and x is not in B, which can be written x ∉ A and x ∉ B.

Hence x ∈ Ac and x ∈ Bc by definition of complement.

It follows, by definition of intersection, that x ∈ Ac ∩ Bc.

So (A ∪ B) c ⊆ Ac ∩ Bc by definition of subset.
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Cont…    Proof: Ac ∩ Bc ⊆ (A ∪ B)c

Suppose x ∈ Ac ∩ Bc.

intersection, x ∈ Ac and x ∈ Bc, and by definition of

complement, x ∉ A and x ∉ B.

In other words, x is not in A and x is not in B.

By De Morgan’s laws of logic this implies that it is false that (x

is in A or x is in B),

which can be written x ∉ A ∪ B by definition of union.

Hence, by definition of complement, x ∈ (A ∪ B)c .

It follows that Ac ∩ Bc ⊆ (A ∪ B)c by definition of subset.
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Example 

Use Element argument method to prove properties on 
defined sets: 

1. Let A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}.

a. Is A  B? Justify your answer.

b. Is B  A? Justify your answer.
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A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}

a. Is A  B ?  Answer: 

The reason is that 6  A because 6 = 5∙1 + 1.

But 6 B because 

if 6 = 10b – 9, then 15 = 10b, which implies that b = 1.5, and 1.5 is 

not an integer.

So there is at least one element of A that is not in B, and hence A

is not a subset of B.

No
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A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}

Proof:

Suppose y is any [pbac] element in B. 

Then y = 10b – 9 for some integer b.

But 10b-9=10b-10+1 = 5(2b-2)+1 (by algebra)

Note that 2b – 2 is an integer b/c products and differences of 

integers are integers. 

So, by definition of A, y is an element in A. 

[This argument shows that any element in B is also in A. 

Hence B is a subset of A.]

b. Is B  A ? Answer: Yes
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Example

Define sets A and B as follows:
A = {m ∈ Z | m = 6r + 12 for some r ∈ Z} 
B = {n ∈ Z | n = 3s for some s ∈ Z}. 

Prove that A⊆B. 

Suppose x is a p.b.a.c. element of A. 

Therefore, x is an element of B. 

Show that x ∈ B, i.e., show that x = 3·(some integer).

x  =  6r + 12 (Since x ∈A)
= 3·(2r + 4). 

Let     s  = 2r + 4. But s is integer ….
Also, 3s = 3(2r + 4) 

= 6r + 12 
= x

Use Element argument method to prove properties on defined sets: 
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Example

Define sets A and B as follows:
A = {m ∈ Z | m = 2a for some integer a}
B = {n ∈ Z | n = 2b − 2 for some integer b}
Prove that A = B

Yes. To prove this, both subset relations A ⊆ B and B ⊆ A must be 
proved. 

Part 1, Proof That A ⊆ B:
…..

Part 2, Proof That B ⊆ A: 
…..

Use Element argument method to prove properties on 
defined sets: 
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Properties of the Empty set 

 Prove: A set with no elements is a subset of every set (Theorem 6.2.4). 
I.e., if E is a set with no elements and A is any set, then E  A.
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Properties of The “Empty Set” 

Prove: There is only one set with no elements.

Suppose E1 and E2 are both sets with no elements. 

By Theorem 6.2.4, E1 ⊆ E2 since E1 has no elements. 

Also E2 ⊆ E1 since E2 has no elements. 

Thus E1 = E2 by definition of set equality. 

Corollary 6.2.5 Uniqueness of the Empty Set
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Proving a Conditional Statement

■

■

■

■

∀   sets ST, SM, and FO,
if ST ⊆ SM and SM ⊆FOc, then ST ∩ FO = .

“If every student is smart and every smart is not foolish, then there are  
no foolish students”

Proof: Suppose not: i.e., there are sets ST,SM,FO s.t.

ST ⊆ SM and SM ⊆FOc, but ST ∩ FO ≠ 

This means that there is an element x in ST ∩FO.

■

■

■

■

■

Then  

since

Also, since  

So,

Thus,

x ∈   ST and x ∈  FO

ST ⊆ SM then x ∈ SM    

SM ⊆ FOc, then x ∈ FOc     

x FO

x ∈   FO and x  FO,

(By definition of intersection).  

(by definition of subset).

(by definition of subset).  

(by definition of complement )  

which is a contradiction.

■ So the supposition that there is an element x in ST ∩ FO is 

false,  and thus ST ∩ FO =  [as was to be shown].
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Exercise (6.2 Q21 - Find the mistake )
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Exercise 6.2 Q24
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Exercises

Use Element argument method to prove properties on undefined 
sets: 

1. For all sets A, B, and C, (A – B)  (C – B)  (A  C) – B.

3.Given sets A and B, what would you suppose and what would you show 
to prove that (A  B)  B c = ? 
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Prove: For all sets A, B, and C, (A – B)  (C – B)  (A  C) – B.
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Given sets A and B, what would you suppose and 
what would you show to prove that:

(A  B)  B c = ? 

Exercise
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Exercise 

Given sets A and B, what would you suppose and what would you 
show to prove that (A  B)  B c = ? 

In general: How do you show that a set equals the empty 
set?

Answer: Show that the set has no elements. Go by 
contradiction. Suppose the set has an element. Show that 
this supposition leads to a contradiction. 
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Home Exercises

Prove:
1. Given sets A, B, and C,  prove/disprove that for all sets A, B, and 
C,  
(A  B)  C  =  A  (B  C). We proved the forward direction 
previously

2. For all sets A and B, if A  B then A – B = .

Ex: The description of the shaded region in the following figure 
using the operations on set is,
(a)   (C - (A ∩ C) ∪ (C ∩ B)) ∪ (A ∩ B)
(b)   A ∪ B ∪ C - (C ∪ (A ∩ B))
(c)   (C - ((A ∩ C) ∪ (C ∩ B))) ∪ (A ∩ B)
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Proof & Cartesian product

Prove for sets A, B,C and D that

If A ⊆ C and B ⊆ D, then A × B ⊆ C × D.

Example:

Let (x, y) ∈ A × B. Then x ∈ A and y ∈ B  by definition of Cartesian product.
Since A ⊆ C and B ⊆ D, it follows that x ∈ C  and y ∈ D by definition of subset.
Hence, (x, y) ∈ C × D by definition of Cartesian product.

Proof:


