

6.2 Properties of Sets and Element Argument

Transitive Property of **Subsets**: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Warm-up: Proving set properties Fill in the blanks: If A and B are sets, $x \in A \cup B \Leftrightarrow \quad x \in A \text{ or } x \in B$ $x \in A \cap B \Leftrightarrow \quad x \in A$ and $x \in B$ $x \in A - B \Leftrightarrow x \in A$ and $x \notin B$ $x \in A^c \Leftrightarrow x \notin A$ Is $\{3\} \in \{\{1\}, \{2\}, \{3\}\}$? Is $\{3\} \subseteq \{1, 2, 3\}$? Is $\{3\} \in \{1, 2, 3\}$? *Answers:* Yes, Yes, No When is an *if-then* statement false? Answer: when the hypothesis is true and the conclusion is false ■ What is a negation for a statement of the form \forall x in D, if P(x) then Q(x)?

Answer: \exists x in D such that P(x) and not-Q(x)

⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Set Identities

- An **identity** is an equation that is universally true for all elements in some set.
- **Example**

a + b = b + a

is an identity for real numbers, because it is true for all real numbers a and b.

- The collection of set properties in the next theorem consists entirely of set identities
- They are equations that are true for all sets in some universal set.

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U .

1. Commutative Laws: For all sets A and B.

(a)
$$
A \cup B = B \cup A
$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a) $(A \cup B) \cup C = A \cup (B \cup C)$ and (b) $(A \cap B) \cap C = A \cap (B \cap C)$.

3. Distributive Laws: For all sets, A , B , and C ,

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

4. Identity Laws: For all sets A,

(a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.

5. Complement Laws:

(a)
$$
A \cup A^c = U
$$
 and (b) $A \cap A^c = \emptyset$.

⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Theorem 6.2.2 Set Identities- Cont.

6. Double Complement Law: For all sets A,

 $(A^c)^c = A.$

7. Idempotent Laws: For all sets A,

(a)
$$
A \cup A = A
$$
 and (b) $A \cap A = A$.

8. Universal Bound Laws: For all sets A,

(a)
$$
A \cup U = U
$$
 and (b) $A \cap \emptyset = \emptyset$.

9. De Morgan's Laws: For all sets A and B,

(a)
$$
(A \cup B)^c = A^c \cap B^c
$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.

11. Complements of U and Ø:

(a) $U^c = \emptyset$ and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

$$
A - B = A \cap B^c.
$$

⁸ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proving Set Equality

To prove that a set X **equals** a set Y_t

prove that X is a subset of Y and Y is a subset of X .

Proving Set Properties 3

Element Proof That a Set Equals the Empty Set To prove that a set X **equals the empty set** \emptyset ,

suppose that this supposition leads to a **contradiction**.

show that X is not empty, i.e., suppose \exists an element x in X

Suppose $x \in (A \cup B) \cap (A \cup C)$. [Show $x \in A \cup (B \cap C)$.] **... Thus** $x \in A \cup (B \cap C)$.

Hence $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Thus $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$.

$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C):$ (A ∪ B) $\cap (A \cup C) \subseteq A \cup (B \cap C):$

Suppose $x \in A \cup (B \cap C)$. $x \in A$ or $x \in B \cap C$. (by def. of union) Case 1 ($x \in A$): then $x \in A \cup B$ (by def. of union) and $x \in A \cup C$ (by def. of union) \therefore x∈(A∪B)∩(A∪C) (def. of intersection) **Case 2** ($x \in B \cap C$): then $x \in B$ and $x \in C$ (def. of intersection) As $x \in B$, $x \in A \cup B$ (by def. of union) As $x \in C$, $x \in A \cup C$, (by def. of union) \therefore x∈(A∪B)∩(A∪C) (def. of intersection)

In both cases, $x \in (A \cup B) \cap (A \cup C)$. Thus: $A\cup(B\cap C)\subseteq(A\cup B)\cap(A\cup C)$ by definition of subset

Suppose $x \in (A \cup B) \cap (A \cup C)$. $x \in A \cup B$ and $x \in A \cup C$. (def. of intersection) Case 1 ($x \in A$): then $x \in A \cup (B \cap C)$ (by def. of union) Case 2 ($x \notin A$): then $x \in B$ and $x \in C$, (def. of intersection) Then, $x \in B \cap C$ (def. of intersection) \therefore $x \in A \cup (B \cap C)$

In both cases $x \in A \cup (B \cap C)$. Thus: $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ by definition of subset,

Conclusion: Since both subset relations have been proved, it follows by definition of set equality that A ∪ (B \cap C) = (A ∪ B) \cap (A ∪ C).

¹³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proof of a De Morgan's Law for Sets

Prove that for all sets A and B, $(A \cup B)^c = A^c \cap B^c$.

Starting Point: Suppose A and B are arbitrarily chosen sets.

To Show: $(A \cup B)^c = A^c \cap B^c$ To do this, you must show that $(A \cup B)^c \subseteq A^c \cap B^c$ and that $A^c \cap B^c \subseteq (A \cup B)^c$. To show the first containment means to show that

 $\forall x$, if $x \in (A \cup B)^c$ then $x \in A^c \cap B^c$.

And to show the second containment means to show that

 $\forall x$, if $x \in A^c \cap B^c$ then $x \in (A \cup B)^c$.

Since each of these statements is universal and conditional, for the first containment, you

suppose $x \in (A \cup B)^c$,

and then you show that $x \in A^c \cap B^c$. And for the second containment, you

suppose
$$
x \in A^c \cap B^c
$$
,
show that $x \in (A \cup B)^c$.

and then you

Proof that $(A \cup B)^c \subseteq A^c \cap B^c$: Proof: Suppose $x \in (A \cup B)^c$. That is $x \notin A \cup B$. But to say that $x \notin A \cup B$ means that it is false that: $(x \text{ is in } A \text{ or } x \text{ is in } B).$ By De Morgan's laws of logic, this implies that x is not in A and x is not in B, which can be written $x \notin A$ and $x \notin B$. Hence $x \in A^c$ and $x \in B^c$ by definition of complement. It follows, by definition of intersection, that $x \in A^c \cap B^c$. So $(A \cup B)^c \subseteq A^c \cap B^c$ by definition of subset.

¹⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Cont... Proof: $A^c \cap B \subseteq (A \cup B)^c$

Suppose $x \in A^c \cap B$. intersection, $x \in A^c$ and $x \in B$, and by definition of complement, $x \notin A$ and $x \notin B$. In other words, x is not in A and x is not in B . By De Morgan's laws of logic this implies that it is **false** that (x is in A or x is in B), which can be written $x \notin A \cup B$ by definition of union. Hence, by definition of complement, $x \in (A \cup B)^c$. It follows that $A^c \cap B \subseteq (A \cup B)^c$ by definition of subset.

Proof of De Morgan's Law:
$$
(A \cap B)^{c} = A^{c} \cup B^{c}
$$

\nTo show equality, we must show
\n1) $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$
\na) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\nb) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\nb) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n1) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n2) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n3) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n4) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n5) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n6) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n7) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n8) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n9) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n10) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n10) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n11) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n12) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n13) $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$
\n14) $(A \cap B)^{c} \supset$

Proof of De Morgan's Law: $(A \cap B)^c = A^c \cup B^c$

Lemma 2:
$$
A^c \cup B^c \subseteq (A \cap B)^c
$$

\nProof using the element argument.
\nSuppose x is any element s.t. $x \in A^c \cup B^c$,
\nWe want to show that $x \in (A \cap B)^c$.
\nSince we know that $x \in A^c \cup B^c$, we know that
\n $x \in A^c$ or $x \in B^c$ by the det of union. Then
\n $x \notin A$ or $x \notin B$ by the def of complinear.
\nSince $x \notin A$ or $x \notin B$, we know $x \notin A \cap B$ by
\nthe def of infexsection, $S_0 \times \in (A \cap B)^c$ by the
\ndef of complement. Which was to be shown,
\n $\therefore A^c \cup B^c \subseteq (A \cap B)^c$, we can conclude
\n $A^c \cup B^c \subseteq (A \cap B)^c$, we can conclude
\n $A^c \cup B^c \subseteq (A \cap B)^c$, we can conclude
\n $A^c \cup B^c \subseteq (A \cap B)^c$, we can conclude
\nof set equality.
\n \blacksquare
\nAssama S. Ep, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved
\n18

b. Is $B \subset A$? Justify your answer.

¹⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

 $A = \{x \in \mathbb{Z} \mid x = 5a + 1 \text{ for some integer } a\}$ *B* = { $y \in \mathbb{Z}$ | $y = 10b - 9$ for some integer b } **a.' Is** $A \subseteq B$ **? Answer:** No The reason is that $6 \in A$ because $6 = 5 \cdot 1 + 1$. But 6 \notin B because if $6 = 10b - 9$, then $15 = 10b$, which implies that $b = 1.5$, and 1.5 is not an integer. So there is at least one element of A that is not in B , and hence A is not a subset of B .

19

b. Is $B \subset A$? Answer: Yes

Proof:

Suppose y is any [pbac] element in B . Then $v = 10b - 9$ for some integer b. But $10b-9=10b-10+1 = 5(2b-2)+1$ (by algebra) Note that $2b - 2$ is an integer b/c products and differences of integers are integers. So, by definition of A , y is an element in A . *[This argument shows that any element in B is also in A. Hence B is a subset of A.]*

²¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

```
21
```
²² © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved **Example** Define sets A and B as follows: $A = {m \in \mathbf{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbf{Z}}$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$ **Prove that A**⊆**B.** Suppose x is a p.b.a.c. element of A . Therefore, x is an element of B . Show that $x \in B$, i.e., show that $x = 3$ (some integer). $x = 6r + 12$ (Since $x \in A$) $= 3(2r + 4)$. Let $s = 2r + 4$. But s is integer ... Also, $3s = 3(2r + 4)$ $= 6r + 12$ $=$ x **Use Element argument method to prove properties on defined sets:**

Prove: A set with no elements is a subset of every set **(Theorem 6.2.4).** I.e., **if** E is a set with no elements **and** A is any set, then $E \subset A$.

Proof by Contradiction:

Suppose not. [We take the negation of the theorem and suppose it to be true.] That is, Suppose: E with no elements, and $E \nsubseteq A$. assuming (E \subseteq A) means there xEE and this $x \notin A$ [by definition of subset].

But there can be no such element since E has no elements. This is a contradiction.

Hence the supposition that there are sets E and A, where E has no elements and $E \nsubseteq A$, is false, and so the theorem is true.

²⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Exercise (6.2 Q21 - Find the mistake)

"Theorem:" For all sets A and B, $A^c \cup B^c \subset (A \cup B)^c$.

"**Proof:** Suppose A and B are sets, and $x \in A^c \cup B^c$. Then $x \in A^c$ or $x \in B^c$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in (A \cup B)^c$ by definition of complement, and hence $A^c \cup B^c \subseteq$ $(A \cup B)^c$."

The "proof" claims that because $x \notin A$ or $x \notin B$, it follows that $x \notin A \cup B$. But it is possible for " $x \notin A$ or $x \notin B$ " to be true and " $x \notin A \cup B$ " to be false. For example, let $A = \{1, 2\}$, $B = \{2,3\}$, and $x = 3$. Then since $3 \notin \{1,2\}$, the statement " $x \notin A$ or $x \notin B$ " is true. But since $A \cup B = \{1, 2, 3\}$ and $3 \in \{1, 2, 3\}$, the statement " $x \notin A \cup B$ " is false.

²⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Exercise 6.2 Q24

Fill in the blanks in the following proof that for all sets A and B, $(A - B) \cap (B - A) = \emptyset$.

Proof: Let A and B be any sets and suppose $(A - B)$ $(B - A) \neq \emptyset$. That is, suppose there were an element x in (a) . By definition of (b) , $x \in A - B$ and $x \in (c)$. Then by definition of set difference, $x \in A$ and $x \notin B$ and $x \in \frac{d}{dx}$ and $x \notin \frac{e}{dx}$. In particular $x \in A$ and $x \notin \frac{f}{dx}$, which is a contradiction. Hence [the supposition that $(A - B) \cap (B - A) \neq \emptyset$ is false, and so] (g) .

(a)
$$
(A - B) \cap (B - A)
$$
 (b) intersection (c) $B - A$
(d) B (e) A (f) A (g) $(A - B) \cap (B - A) = \emptyset$

Use Element argument method to prove properties on undefined sets:

1. For all sets A, B, and C, $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

3. Given sets A and B, what would you suppose and what would you show to prove that $(A \cap B) \cap B^c = \emptyset$?

²⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Prove: For all sets A, B, and C, $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

29

 $(A - B) \cup (C - B) \subseteq (A \cup C) - B$: Suppose that x is any element in $(A - B) \cup (C - B)$. We must show that $x \in (A \cup C) - B$.] By definition of union, $x \in A - B$ or $x \in C - B$. *Case 1* ($x \in A - B$): Then, by definition of set difference, $x \in A$ and $x \notin B$. But because $x \in A$, we have that $x \in A$ $A \cup C$ by definition of union. Hence $x \in A \cup C$ and $x \notin B$, *Case 2 (x* \in *C – B)*: Then, by definition of set difference. $x \in C$ and $x \notin B$. But because $x \in C$, we have that $x \in C$ $A \cup C$ by definition of union. Hence $x \in A \cup C$ and $x \notin B$, and so, by definition of set difference, $x \in (A \cup C) - B$. Thus, in both cases, $x \in (A \cup C) - B$ [as was to be shown]. So $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.

Proof that $(A \cup C) - B \subseteq (A - B) \cup (C - B)$:

Suppose that x is any element in $(A \cup C) - B$. We must show that $x \in (A - B) \cup (C - B)$. By definition of set difference, $x \in (A \cup C)$ and $x \notin B$.

And, by definition of union, $x \in A$ or $x \in C$, and in both cases, $x \notin B$.

Case 1 ($x \in A$ and $x \notin B$): Then, by definition of set difference, $x \in A - B$, and so by definition of union, $x \in (A - B) \cup (C - B)$.

Case 2 (x \in C c and x \in B): Then, by definition of set difference, $x \in C - B$, and so by definition of union, $x \in (A - B) \cup (C - B)$.

In both cases, $x \in (A - B) \cup (C - B)$ [as was to be shown]. So $(A \cup C) - B \subseteq (A - B) \cup (C - B)$.

³¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Exercise

Given sets A and B , what would you suppose and what would you show to prove that: $(A \cap B) \cap B^c = \emptyset?$

Given sets A and B , what would you suppose and what would you show to prove that $(A \cap B) \cap B^c = \emptyset$?

In general: How do you show that a set equals the empty set?

Answer: Show that the set has no elements. Go by contradiction. Suppose the set has an element. Show that this supposition leads to a contradiction.

³³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

33

Prove:

1. Given sets A, B, and C, prove/disprove that for all sets A, B, and C_{I}

 $(A \cap B) \cup C = A \cap (B \cup C)$. We proved the forward direction previously

2. For all sets A and B, if $A \subseteq B$ then $A - B = \emptyset$.

Ex: The description of the shaded region in the following figure using the operations on set is,

- (a) (C (A ∩ C) ∪ (C ∩ B)) ∪ (A ∩ B) (b) A ∪ B ∪ C - (C ∪ (A ∩ B))
- (c) (C ((A ∩ C) ∪ (C ∩ B))) ∪ (A ∩ B)

³⁴ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Proof & Cartesian product

Recall that the **Cartesian product** (or simply the **product**) $A \times B$ of two sets A and B is defined as

$$
A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.
$$

If $A = \emptyset$ or $B = \emptyset$, then $A \times B = \emptyset$.

Before looking at several examples of proofs concerning Cartesian products of sets, it is important to keep in mind that an arbitrary element of the Cartesian product $A \times B$ of two sets A and B is of the form (a, b) , where $a \in A$ and $b \in B$.

Example:

Prove for sets A, B, C and D that If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

Proof:

Let $(x, y) \in A \times B$. Then $x \in A$ and $y \in B$ by definition of Cartesian product. Since $A \subseteq C$ and $B \subseteq D$, it follows that $x \in C$ and $y \in D$ by definition of subset. Hence, $(x, y) \in C \times D$ by definition of Cartesian product.