

Functions

1

Outline

- Introduction and Motivation
 - Domain/co-domain, image, inverse image, ordered pairs
 - Equality of functions
- Function Properties
 - One-to-One
 - Onto
 - One-to-One correspondence
- Proving/disproving Function properties P(x)
 - Direct proof method
 - Counter example

7.1: Functions Defined on General Sets

Introduction and Motivation

- Domain/co-domain, image, inverse image, ordered pairs
- Equality of functions

Slightly Informal Definition of Function

Definition: A function *f* from a set *X* to a set *Y* is a relation between elements of *X*, called inputs, and elements of *Y*, called outputs, with the properties that:

a) every input has a related output

b) no input has more than one related output.

The notation $f: X \to Y$ means that f is a function from X to Y. X is called the **domain** of the function and Y is called its **co-domain**.

Given an input element x in X, there is a <u>unique output</u> element y that is related to x by f. We say that "f **sends** x to y."

The unique element y to which f sends x is denoted f(x) and is called f of x, or the **output** of f for the input x, or the **value** of f at x, or the **image** of x under f.

The **range** of *f* is $\{y \in Y \mid y = f(x) \text{ for some } x \text{ in } X\}$. The **inverse image** of an element *y* in *Y* is $\{x \in X \mid y = f(x)\}$.

Definition of Function: Examples

Example: Which of the following arrow diagrams define functions? What are the ranges of those that are functions? For each function, what is the inverse image of v?

- f: Z → Z defined by f(n) = 3n. The domain and codomain are both the set of integers. However, the range is only the set of integer multiples of 3.
- 2. $g : \{1, 2, 3\} \rightarrow \{a, b, c\}$ defined by g(1) = c, g(2) = a and g(3) = a. The domain is the set $\{1, 2, 3\}$, the codomain is the set $\{a, b, c\}$ and the range is the set $\{a, c\}$. Note that g(2) and g(3) are the same element of the codomain. This is okay since each element in the domain still has only one output.
- 3. $h: \{1, 2, 3, 4\} \rightarrow \mathbb{N}$ defined by the table:

x	1	2	3	4
h(x)	3	6	9	12

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Functions in programming

The domain and codomain of functions are often specified in programming language.

7

Examples: Representing Functions

Functions Defined on a Cartesian Product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a,b) of integers,

M(a,b) = ab

Then M is the multiplication function that sends each pair of real numbers to the product of the two.

R(a, b) = (-a, b)

R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Let $J = \{0, 1, 2\}$, and define functions f and g from J to J as follows: For all x in J

 $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does f = g?

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \mod 3$	$(x+2)^2$	$g(x) = (x+2)^2 \mod 3$
0	1	$1 \mod 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \mod 3 = 0$
2	7	$7 \mod 3 = 1$	16	$16 \mod 3 = 1$

Equal functions

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

11

Sum/difference of Functions Let F: $\mathbf{R} \to \mathbf{R}$ and G: $\mathbf{R} \to \mathbf{R}$ be functions. Define new functions $\mathbf{F} + \mathbf{G}$: $\mathbf{R} \to \mathbf{R}$ and $\mathbf{G} + \mathbf{F}$: $\mathbf{R} \to \mathbf{R}$ as follows: F and G must have same Domains and Codomains For all $x \in \mathbf{R}$, (F + G)(x) = F(x) + G(x) and (G + F)(x) = G(x) + F(x). Does F + G = G + F?

F + G(x) = F(x) + G(x) by definition of F + G= G(x) + F(x) by the commutative law for addition of real numbers = (G + F)(x) by definition of G + F

Hence F + G = G + F.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: f1+f2 and f1f2

Let f1 and f2 be functions from R to R such that: $f1(x)=x^2$ and $f2(x)=x-x^2$. What are the functions f1+f2 and f1f2 ?

Solution: From the definition of the sum and product of functions, it follows that:

 $(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$ $(f_1 f_2)(x) = x^2(x - x^2) = x^3 - x^4.$

The Identity Function on a Set

Given a set X, define a function I_X from X to X by $I_X(x) = x$, for all x in X.

The function I_X is called the **identity function on** X because it sends each element of X to the element that is identical to it.

Thus the identity function can be pictured as a machine that sends each piece of input directly to the output chute without changing it in any way. Examples: Function defined on a power Set

P(A) denotes the set of all subsets of the set A. Define a function $F: P(\{a, b, c\}) \rightarrow \mathbb{Z}^{nonneg}$ as follows: For each $X \in P(\{a, b, c\})$, F(X) = the number of elements in X.

Draw an arrow diagram for F.

Examples : Boolean Function

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to $\{0, 1\}$ as follows:

For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2.$

Describe *f* using an input/output table.

$$f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1$$

 $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$

 $f(0, 0, 1) = (0 + 0 + 1) \mod 2 = 1 \mod 2 = 1$

A Boolean Function

Input			Output
<i>x</i> ₁	x_2	<i>x</i> ₃	$(x_1 + x_2 + x_3) \mod 2$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Well-defined functions

 It can sometimes happen that what appears to be a function defined by a rule is not really a function at all.

17

- A function is <u>not well defined</u> if it fails to satisfy at least one of the requirements of being a function
- Example:
- Define a function f : R → R by specifying that for all real numbers x, f(x) is the real number y such that x²+y² =1.
- There are two reasons why this function is <u>not well defined</u>:
- For almost all values of x either
- (1) there is no y that satisfies the given equation or
- (2) there are two different values of y that satisfy the equation
- Consider when x=2: there is no real number y such that $x^2 + y^2 = 1$
- Consider when x=0: both y = -1 and y = 1 satisfy the equation $x^2 + y^2 = 1$

Well-defined functions

- A function is not well defined if it fails to satisfy at least one of the requirements of being a function
- Example: $f: \mathbf{Q} \to \mathbf{Z}$ defines this formula:

$$f\left(\frac{m}{n}\right) = m$$
 for all integers *m* and *n* with $n \neq 0$.

Is fa well defined function?

No, Example:

$$f\left(\frac{1}{2}\right) = 1$$
 and $f\left(\frac{3}{6}\right) = 3$,
 $f\left(\frac{1}{2}\right) \neq f\left(\frac{3}{6}\right)$.

Can we define the following Sequence as a function? How? $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots, \frac{(-1)^n}{n+1}, \dots$

This sequence is a function defined on set of integers that are greater than or equal to a particular integer.

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots, \frac{(-1)^n}{n+1}, \dots$$

can be thought of as the function f from the nonnegative integers to the real numbers that associates $0 \to 1, 1 \to -\frac{1}{2}, 2 \to \frac{1}{3}, 3 \to -\frac{1}{4}, 4 \to \frac{1}{5}$, and, in general, $n \to \frac{(-1)^n}{n+1}$.

$$g: \mathbf{Z}^+ \to \mathbf{R}$$
 by $g(n) = \frac{(-1)^{n+1}}{n}$, for each $n \in \mathbf{Z}^+$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Logarithms and Logarithmic Functions

Definition Logarithms and Logarithmic Functions

Let b be a positive real number with $b \neq 1$. For each positive real number x, the **logarithm with base b of x**, written $\log_b x$, is the exponent to which b must be raised to obtain x. Symbolically,

$$\log_b x = y \iff b^y = x.$$

The **logarithmic function with base** *b* is the function from \mathbf{R}^+ to \mathbf{R} that takes each positive real number *x* to $\log_b x$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Logarithmic Function with Base b

Find the following:

- a. $\log_3 9$ b. $\log_2(\frac{1}{2})$ c. $\log_{10}(1)$ d. $\log_2(2^m)$ (*m* is any real number)
- e. $2^{\log_2 m} (m > 0)$

Solution

- a. $\log_3 9 = 2$ because $3^2 = 9$.
- b. $\log_2\left(\frac{1}{2}\right) = -1$ because $2^{-1} = \frac{1}{2}$.
- c. $\log_{10}(1) = 0$ because $10^0 = 1$.
- d. $\log_2(2^m) = m$

Because the exponent to which 2 must be raised to obtain 2^m is m.

e. $2^{\log_2 m} = m$

Because $\log_2 m$ is the exponent to which 2 must be raised to obtain m.

21

We have known that if S is a nonempty, finite <u>set</u> of characters, then a string over S is a finite sequence of elements of S.

<u>The number of characters in a string</u> is called the **length** of the string. The null string over S is the "string" with no characters.

It is usually denoted ε and is said to have length 0.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

23

• Definition

If $f: X \to Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

 $f(A) = \{y \in Y \mid y = f(x) \text{ for some } x \text{ in } A\}$

and $f^{-1}(C) = \{x \in X \mid f(x) \in C\}.$

f(A) is called the **image of** A, and $f^{-1}(C)$ is called the **inverse image of** C.

Example: The Action of a Function on Subsets of a Set

Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d, e\}$, and define $F : X \rightarrow Y$ by the following arrow diagram:

Let $A = \{1,4\}, C = \{a,b\}$, and $D = \{c, e\}$. Find $F(A), F(X), F^{-1}(C)$, and $F^{-1}(D)$.

Solution:

 $F(A) = \{b\}$ $F(X) = \{a, b, d\}$ $F^{-1}(C) = \{1, 2, 4\}$ $F^{-1}(D) = \emptyset$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

25

Example 7.1.14 Interaction of a Function with Union Page 392

Let *X* and *Y* be sets, let *F* be a function from *X* to *Y*, and let *A* and *B* be any subsets of *X*. Prove that $F(A \cup B) \subseteq F(A) \cup F(B)$.

Thus to prove that $F(A \cup B) \subseteq F(A) \cup F(B)$, you only need **show** that if **y** is any element in $F(A \cup B)$, then **y** is an element of $F(A) \cup F(B)$.

Suppose $y \in F(A \cup B)$. [We must show that $y \in F(A) \cup F(B)$.] By definition of function, y = F(x) for some $x \in A \cup B$. By definition of union, $x \in A$ or $x \in B$.

Case 1, $x \in A$: In this case, y = F(x) for some x in A. Hence $y \in F(A)$, and so by definition of union, $y \in F(A) \cup F(B)$.

Case 2, $x \in B$: In this case, y = F(x) for some x in B. Hence $y \in F(B)$, and so by definition of union, $y \in F(A) \cup F(B)$.

Thus in either case $y \in F(A) \cup F(B)$ [as was to be shown].

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

7.2 One-to-One and Onto, Inverse Functions

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

- Give $F: X \rightarrow Y$
- 1. $\forall x \in X, \exists y \in Y \text{ s.t. } (x,y) \in F.$
- 2. $\forall x \in X \land \forall y, z \in Y \text{ s.t.}$ if $(x, y) \in F$ and $(x, z) \in F$ then y = z.

27

Properties a Function can have

Injective vs. Surjective

A function is **surjective (onto)** provides every element of the codomain is a the image of **at least one** element from the domain.

A function is **injective (one-to-one)** provides every element of the codomain is a the image of **at most one** element from the domain.

Function Properties: Examples

Example: onto function

 A function is said to be onto (surjective):iff there is no element in the co-domain that is not matched to an element of the domain

Many-to-One

Example: one-to-one function

One-to-one Correspondences & Inverse Functions

Definition: A **one-to-one correspondence** from a set X to a set Y is a <u>function</u> from X to Y that is both one-to-one and onto.

Definition & Theorem: If $F: A \rightarrow B$ is a function that is 1-1 and onto, then for all y in B, there is a **unique** x in A that is sent to y by F.

Thus there is a 1-1, onto function from *B* to *A*, called the **inverse** function for *F*, and denoted F^{-1} .

Picture:

One-to-One Correspondence

• Definition

A **one-to-one correspondence** (or **bijection**) from a set X to a set Y is a function $F: X \to Y$ that is both one-to-one and onto.

Inverse Functions

Theorem 7.2.2

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $F^{-1}: Y \to X$ that is defined as follows: Given any element y in Y,

 $F^{-1}(y)$ = that unique element x in X such that F(x) equals y. In other words,

 $F^{-1}(y)=x \quad \Leftrightarrow \quad y=F(x).$

 \rightarrow Is it always that the inverse of a function is a function?

Inverse Functions Given an arrow diagram for a function. Draw the arrow diagram for the inverse of this function

The function $f: \mathbb{R} \to \mathbb{R}$ defined by the formula f(x) = 4x - 1, for all **real** numbers x

Solution For any [particular but arbitrarily chosen] y in **R**, by definition of f^{-1} ,

 $f^{-1}(y)$ = that unique real number *x* such that f(x) = y.

But

$$f(x) = y$$

$$\Leftrightarrow \quad 4x - 1 = y \qquad \text{by definition of } f$$

$$\Leftrightarrow \qquad x = \frac{y + 1}{4} \qquad \text{by algebra.}$$

Hence $f^{-1}(y) = \frac{y+1}{4}$.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

39

Direct proof or Counter example

- Whether a Function is One-to-one
- Whether a Function is Onto
- Whether a Function is One-to-Onto correspondence

Review: Formal Definitions of One-to-one and Onto

Given a function f from a set X to a set Y, f is onto if, and only if,

 \forall *y* in *Y*, \exists *x* in *X* such that *y* = *f*(*x*).

Given a function f from a set X to a set Y, f is not onto if, and only if,

 $\exists y$ in Y such that $\forall x$ in X, $y \neq f(x)$.

Given a function f from a set X to a set Y, f is one-to-one if, and only if,

 $\forall x_1 \text{ and } x_2 \text{ in } X_r \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2.$

 Given a function f from a set X to a set Y, f is not one-to-one if, and only if,

 $\exists x_1 \text{ and } x_2 \text{ in } X \text{ s. th. } f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$

How to prove or disprove?

Suppose that $f : A \to B$. To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y. To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y). To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y. To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

How to prove: One-to-one Functions on Infinite Sets?

Now suppose *f* is a function defined on an <u>infinite</u> set *X*. By definition, *f* is one-to-one if, and only if, the following universal statement is true:

$\forall x1, x2 \in X, \text{ if } f(x1) = f(x2) \text{ then } x1 = x2$

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$

and **show** that $x_1 = x_2$.

To show that f is not one-to-one, you will ordinarily

find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Writing Up the Proof That a Function is One-to-one

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula

f(n) = 2n + 1 for all integers *n*.

<u>Claim</u>: *f* is one-to-one.

 $(\Leftrightarrow \forall x_1 \text{ and } x_2 \text{ in } X_r \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2.)$

Proof: Suppose n_1 and n_2 are any integers such that $f(n_1) = f(n_2)$.[Show that $n_1 = n_2$.]To answer, must use the definition of f.By definition of f, $2n_1 + 1 = 2n_2 + 1$ So $2n_1 = 2n_2$ and thus $n_1 = n_2$. QED

Proving That a Function is One-to-one

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula f(n) = 3n - 2 for all integers *n*. <u>Claim</u>: *f* is one-to-one. $(\Leftrightarrow \forall n_1 \text{ and } n_2 \text{ in } \mathbb{Z}, \text{ if } f(n_1) = f(n_2) \text{ then } n_1 = n_2.)$

Proof: Suppose n_1 and n_2 are any integers such that $f(n_1) = f(n_2)$.[Show that $n_1 = n_2$.]By definition of f_r $3n_1 - 2 = 3n_2 - 2$ So $3n_1 = 3n_2$ and thus $n_1 = n_2$.QED

Proving that a Function is Not One-to-one

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula

 $f(n) = n^2$ for all integers *n*.

Is f one-to-one? ($\Leftrightarrow \forall x_1 \text{ and } x_2 \text{ in } X_r \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2.$)

Answer: No.

Counterexample:

Let $n_1 = 2$ and $n_2 = -2$. Then by definition of g,

$$g(n_1) = g(2) = 2^2 = 4$$
 and also
 $g(n_2) = g(-2) = (-2)^2 = 4.$

Hence

$$g(n_1) = g(n_2) \quad \text{but} \quad n_1 \neq n_2,$$

and so g is not one-to-one.

 $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$

- 1. There exists real number x such that y = f(x)?
- 2. Does f really send x to y?

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Now suppose F is a function from a set X to a set Y, and suppose Y is infinite. By definition, F is onto if, and only if, the following universal statement is true:

 $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

Thus to prove F is onto, you will ordinarily use the method of generalizing from the generic particular:

suppose that y is any element of Y

and **show** that there is an element *X* of *X* with F(x) = y.

To prove F is not onto, you will usually

find an element y of Y such that $y \neq F(x)$ for any x in X.

47

Example: Onto Functions on Infinite Sets

If $f: \mathbf{R} \to \mathbf{R}$ is the function defined by the rule f(x) = 4x - 1 for all real numbers x, then f is onto.

Proof:

Let $y \in \mathbf{R}$. [We must show that $\exists x \text{ in } \mathbf{R} \text{ such that } f(x) = y$.] Let x = (y + 1)/4. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

$$f(x) = f\left(\frac{y+1}{4}\right)$$
 by substitution
$$= 4 \cdot \left(\frac{y+1}{4}\right) - 1$$
 by definition of f
$$= (y+1) - 1 = y$$
 by basic algebra.

[This is what was to be shown.]

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

49

Evaluating Whether a Function is Onto

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula f(n) = 3n - 2 for all integers *n*. Is *f* onto? ($\Leftrightarrow \forall m$ in $\mathbb{Z} \exists n$ in \mathbb{Z} such that m = f(n).) **Scratch work**: *Start* as if to prove that it is: Suppose *m* is any element of the co-domain. I.e., *m* is any integer. *Then ask:* Must there be an element *n* of the domain (i.e., an integer *n*) such that f(n) = m? To answer, must use the definition of *f*. Def. of $f \Rightarrow 3n - 2 = m \Rightarrow 3n = m + 2 \Rightarrow n = \frac{m+2}{3}$ Will it always be true that *n* is an integer? No. *Example?* m = 0Therefore, the answer will be no, *f* is not onto.

50

Evaluating Whether a Function is Onto

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula

f(n) = 2n + 1 for all integers *n*.

Is *f* onto? ($\Leftrightarrow \forall y$ in *Y*, $\exists x$ in *X* such that y = f(x).) **Scratch work**: *Start* as if to prove that it is: Suppose *m* is any element of the co-domain. I.e., *m* is any integer. *Then ask:* Must there be an element *n* of the domain (i.e., an integer *n*) such that f(n) = m? To answer, need to use the definition of *f*. Def. of $f \Rightarrow 2n+1 = m \Rightarrow 2n = m-1 \Rightarrow n = \frac{m-1}{2}$ Will it always be true that *n* is an integer? No. Example? m = 2Therefore, the answer will be no, *f* is not onto.

51

Proving that a Function is Onto

Define a function $g: \mathbb{Z} \to \mathbb{Z}$ by the formula g(n) = 2 - n for all integers *n*. Is *g* onto? ($\Leftrightarrow \forall m$ in \mathbb{Z} , $\exists n$ in \mathbb{Z} such that m = g(n).) **Proof**: (Given an integer *m*, can we find an integer *n* such that m = 2 - n?)

1. Suppose *m* is any integer. Let n = 2 - m.

2. Then g(n) = g(2 - m) = 2 - (2 - m) = 2 - 2 + m = m. QED

Showing That a Function is Not Onto

Define $f: \mathbb{Z} \twoheadrightarrow \mathbb{Z}$ by the formula f(n) = 3n - 2 for all integers *n*. Is *f* onto? ($\Leftrightarrow \forall m \mathbb{Z}$, $\exists \mathbb{Z}$ in such that m = f(n).) **Answer**: No. **Counterexample:** Let m = 0, and note that $f(n) \neq 0$ for any integer *n*. To see why this is true, suppose it is not. That is, suppose that f(n) = 0 for some integer *n*. Then 3n - 2 = 0

so 3n = 2and so n = 2/3, which is not an integer. Thus *n* is an integer and *n* is not an integer, which is a contradiction. Hence the supposition is false, and, therefore, there is no integer *n* with *f* (n) = 0. Thus *f* is not onto.

Proving that a Function is Not Onto

Define $f: \mathbb{Z} \to \mathbb{Z}$ by the formula

f(n) = 2n + 1 for all integers *n*.

Is f onto?

Answer: No

Counterexample: Let m = 2. Suppose there is an integer n such that f(n) = 2. By definition of f,

 $2n+1=2 \implies 2n=1 \implies n=1/2$

But 1/2 is not an integer. So there is no integer *n* with f(n) = 2.

Proving One-to-One correspondence

Example: Define $f : \mathbb{Z} \to \mathbb{Z}$ by the formula

f(n) = 2n + 1 for all integers n.

- a. Prove that f is one to one.
- b. Prove that f is onto ($\Leftrightarrow \forall y \text{ in } Y, \exists x \text{ in } X \text{ such that } y = f (x)$.)
- c. find the inverse function

Reducing Co-Domain

Given a function that is not onto, <u>it is always possible</u> to define a related, similar function that is onto <u>by reducing the co-domain</u> to be the range and keeping the rest of the definition the same.

Example: Let \mathbb{Z}^{odd} be the set of all odd integers.or simply (By definition of odd, m = 2n + 1 for all integers.Define $f: \mathbb{Z} \to \mathbb{Z}^{odd}$ by theformula
f(n) = 2n + 1 for all integers.or simply (By definition of odd, m = 2n + 1 for some integer n. But then by definition of f, for all m, there is n s.t. m = f(n).Proof: Suppose m is any odd integer s.t. 2n + 1 = m.
 $\Rightarrow 2n = m - 1 \Rightarrow n = \frac{m-1}{2}$.Is $\frac{m-1}{2} \in \mathbb{Z}$? Yes! Basically, because m is odd.
(I.e., m = 2k + 1 for some integer k, and so $k = \frac{m-1}{2}$.) QED

Thus, we proved that f is a one-to-one correspondence

 $f^{\textbf{-1}}(m) = \ \frac{m-\textbf{1}}{\textbf{2}} \text{ for all } m \in \mathbf{Z}^{odd} \ .$

Examples

- f is a function from {a, b, c} to {1, 2, 3} with f(a)=2, f(b)=3, f(c)=1. Is it invertible? What is it its inverse?
- Let f: Z→Z such that f(x)=x+1, Is f invertible? If so, what is its inverse?

y=x+1, x=y-1, f⁻¹(y)=y-1

- Let f: $R \rightarrow R$ with $f(x) = x^2$, Is it invertible?
 - Since f(2)=f(-2)=4, f is not one-to-one, and so not invertible

Theorem – Homework !

If X and Y are sets and $F: X \to Y$ is one-to-one and onto, then $F^{-1}: Y \to X$ is also one-to-one and onto.

Proof:

 F^{-1} is one-to-one: Suppose y_1 and y_2 are elements of Y such that $F^{-1}(y_1) = F^{-1}(y_2)$. [We must show that $y_1 = y_2$.] Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$, and by definition of F^{-1} ,

	$F(x) = y_1$	since $x = F^{-1}(y_1)$
and	$F(x) = y_2$	since $x = F^{-1}(y_2)$.

Consequently, $y_1 = y_2$ since each is equal to F(x). This is what was to be shown.

 F^{-1} is onto: Suppose $x \in X$. [We must show that there exists an element y in Y such that $F^{-1}(y) = x$.] Let y = F(x). Then $y \in Y$, and by definition of F^{-1} , $F^{-1}(y) = x$. This is what was to be shown.

Examples of functions

- Hash functions
- String Functions
- Cartesian Products Functions (2 variables)
- Logarithmic functions

Example: Hash Functions

Hash functions are functions that when given an input, map it to a certain value.

Define a function *Hash* from the set of all Palestinian ids *I* to the set M={0, 1, 2, 3, 4, 5, 6} as follows:

Hash(n) = n mod 7 for all Palestinian ids n
Is Hash one-to-one?

no, 14 and 7 both give mod of 0 when divided by 7.

Example: String Functions

String functions take a sequence of characters as input (e.g., 0's and 1's or a's and b's etc.). Let S be the set of all strings of d's and b's, and define N: $S \rightarrow Z$ by N(s) = the number of *d*s in *s*, for all $s \in S$.

- Is None-to-one? Prove or give a counterexample.
- Is Nonto? Prove or give a counterexample.

Example: Cartesian Products Functions

Define a function $F: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$F(x, y) = (x + y, x - y).$$

Is F a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

Proof that F is one-to-one: Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that

$$F(x_1, y_1) = F(x_2, y_2).$$
[We must show that $(x_1, y_1) = (x_2, y_2)$.] By definition of F,
 $(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2).$
For two ordered pairs to be equal, both the first and second components must be equal.
Thus x_1, y_1, x_2 , and y_2 satisfy the following system of equations:
 $x_1 + y_1 = x_2 + y_2$ (1)
 $x_1 - y_1 = x_2 - y_2$ (2)

Adding equations (1) and (2) gives that

For two

 $2x_1 = 2x_2$, and so $x_1 = x_2$.

Substituting $x_1 = x_2$ into equation (1) yields

 x_1

$$+ y_1 = x_1 + y_2$$
, and so $y_1 = y_2$.

Thus, by definition of equality of ordered pairs, $(x_1, y_1) = (x_2, y_2)$ [as was to be shown].

The Exponential and Logarithmic Functions

The exponential function with positive real number base $b \neq 1$ is the function that sends each positive real number x to b^x , where $b^0 = 1$ and $b^{-x} = \frac{1}{b^x}$. For any positive real number $b \neq 1$, if $b^u = b^v$ then u = v. The exponential function with base b is one-to-one. $y = 2^x$

Logarithms

Definition: Let *b* be a positive real number with $b \neq 1$. For each positive real number *x*, the **logarithm with base** *b* **of** *x*, denoted **log**_{*b*}*x*, is defined as follows:

 $log_b x = the exponent to which$ *b*must be raised to obtain*x* That is, $log_b x = y \Leftrightarrow b^y = x.$ Exercises: 1. log₂8 2. log₂2 3. log₂($\frac{1}{4}$) 4. log₂1 5. log₂(2^k) 3 1 -2 0 kr The logarithmic function with base *b* ≠ 1 is the function that sends each positive real number *x* to log_b(*x*). the exponent to which 2 must be raised to obtain 2^k Graphs of Exponential and Logarithmic Functions

Note: $(u,v) \in \text{graph of } y = 2^x \iff (v,u) \in \text{graph of } y = \log_2 x$

Laws of Exponents

If *b* and *c* are any positive real numbers with $b \neq 1$ and $c \neq 1$, and if *u* and *v* are any real numbers, then

$b^{\boldsymbol{u}}b^{\boldsymbol{v}} = b^{\boldsymbol{u}+\boldsymbol{v}}$	$Ex: 2^2 2^3 = (2 \cdot 2)(2 \cdot 2 \cdot 2) = 2^5$		
$(b^{\boldsymbol{\mu}})^{\boldsymbol{\nu}} = b^{\boldsymbol{\mu}\boldsymbol{\nu}}$	<i>Ex:</i> $(2^2)^3 = (2 \cdot 2)(2 \cdot 2)(2 \cdot 2) = 2^6$		
$\frac{b^u}{b^v} = b^{u-v}$	<i>Ex:</i> $\frac{2^2}{2^3} = \frac{2 \cdot 2}{2 \cdot 2 \cdot 2} = \frac{1}{2} = 2^{-1}$		
$(bc)^u = b^u c^u$	<i>Ex:</i> $2^{3}5^{3} = (2 \cdot 2 \cdot 2)(5 \cdot 5 \cdot 5) = (2 \cdot 5)^{3}$		

Fact: For any positive real number $b \neq 1$,

if $b^{\boldsymbol{u}} = b^{\boldsymbol{v}}$ then $\boldsymbol{u} = \boldsymbol{v}$.

Properties of Logarithms

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers b, c and x with $b \neq 1$ and $c \neq 1$:

a.
$$\log_b(xy) = \log_b x + \log_b y$$

b. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
c. $\log_b(x^a) = a \log_b x$
d. $\log_c x = \frac{\log_b x}{\log_b c}$

We want proof d!

.

Using the One-to-Oneness of the Exponential Function

Use the definition of logarithm, the laws of exponents, and the one-to-oneness of the exponential function (property 7.2.5) to prove part (d) of Theorem 7.2.1: For any positive real numbers b, c, and x, with $b \neq 1$ and $c \neq 1$,

$$\log_c x = \frac{\log_b x}{\log_b c}.$$

Solution Suppose positive real numbers *b*, *c*, and *x* are given. Let

(1)
$$u = \log_b c$$
 (2) $v = \log_c x$ (3) $w = \log_b x$.

Then, by definition of logarithm,

(1')
$$c = b^u$$
 (2') $x = c^v$ (3') $x = b^w$.

Substituting (1') into (2') and using one of the laws of exponents gives

$$x = c^v = (b^u)^v = b^{uv}$$
 by 7.2.2

But by (3), $x = b^w$ also. Hence

$$b^{uv} = b^w$$
,

and so by the one-to-oneness of the exponential function (property 7.2.5),

$$uv = w$$

Substituting from (1), (2), and (3) gives that

$$(\log_b c)(\log_c x) = \log_b x.$$

And dividing both sides by $\log_b c$ (which is nonzero because $c \neq 1$) results in

$$\log_c x = \frac{\log_b x}{\log_b c}.$$

Cartesian product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a, b) of integers,

$$M(a, b) = ab$$
 and $R(a, b) = (-a, b)$.

M is the multiplication function that sends each pair of real numbers to the product of the two. R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following:

a.
$$M(-1, -1)$$
b. $M\left(\frac{1}{2}, \frac{1}{2}\right)$ c. $M(\sqrt{2}, \sqrt{2})$ d. $R(2, 5)$ e. $R(-2, 5)$ f. $R(3, -4)$

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Functions in programming

Given the C functions below, for each function:

- Use the notation $F: S \rightarrow S$ where F(x)=y to define the function.
- Is F one-to-one correspondence? Prove or give a counterexample.
- If you answered "yes" for b above, what is formula for F⁻¹?

```
float f(float x) {
    float g(float x) {
        if (x!=0)
            return ((x+1)/x);
        }
    }
}
```