

Functions

1

Outline

- **Introduction and Motivation**
	- Domain/co-domain, image, inverse image, ordered pairs
	- **Equality of functions**
- **Function Properties**
	- **One-to-One**
	- Onto
	- **Done-to-One correspondence**
- Proving/disproving Function properties $P(x)$
	- **Direct proof method**
	- **Counter example**

7.1: Functions Defined on General Sets

Introduction and Motivation

- Domain/co-domain, image, inverse image, ordered pairs
- **Equality of functions**

Slightly Informal Definition of Function

Definition: A **function** *f* **from a set** *X* **to a set** *Y* is a relation between elements of X, called **inputs**, and elements of Y, called **outputs**, with the properties that:

a) every input has a related output

b) no input has more than one related output.

The notation $f: X \rightarrow Y$ means that f is a function from X to Y. X is called the **domain** of the function and Y is called its **co-domain**.

Given an input element x in X, there is a unique output element y that is related to x by f. We say that "f sends x to y ."

The unique element y to which f sends x is denoted $f(x)$ and is called f of x, or the **output** of f for the input x, or the **value** of f at x, or the *image* of x under f.

The **range** of f is $\{y \in Y | y = f(x) \text{ for some } x \text{ in } X\}.$ The **inverse image** of an element y in Y is $\{x \in X | y = f(x)\}.$

Definition of Function: Examples

Example: Which of the following arrow diagrams define functions? What are the ranges of those that are functions? For each function, what is the inverse image of v?

- 1. $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = 3n$. The domain and codomain are both the set of integers. However, the range is only the set of integer multiples of 3.
- 2. $g : \{1,2,3\} \rightarrow \{a,b,c\}$ defined by $g(1) = c$, $g(2) = a$ and $g(3) = a$. The domain is the set $\{1, 2, 3\}$, the codomain is the set $\{a, b, c\}$ and the range is the set $\{a, c\}$. Note that $g(2)$ and $g(3)$ are the same element of the codomain. This is okay since each element in the domain still has only one output.
- 3. $h: \{1, 2, 3, 4\} \rightarrow \mathbb{N}$ defined by the table:

⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

The domain and codomain of functions are often specified in programming language.

Examples: Representing Functions

Functions Defined on a Cartesian Product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs *(a,b)* of integers,

$M(a, b) = ab$

Then M is the multiplication function that sends each pair of real numbers to the product of the two.

R(a, b) **=** *(***-***a,b)*

 R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$.

Let $J = \{0, 1, 2\}$, and define functions f and g from J to J as follows: For all x in J

 $f(x) = (x^2 + x + 1) \text{ mod } 3$ and $g(x) = (x + 2)^2 \text{ mod } 3$.

Does *f = g?*

Equal functions

 \circ Susanna S. Epp. Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Let $F: R \rightarrow R$ and **G**: $R \rightarrow R$ be functions. Define new functions $F + G: R \rightarrow R$ and $G + F: R \rightarrow R$ as follows: For all $x \in \mathbb{R}$, $(F + G)(x) = F(x) + G(x)$ and $(G + F)(x) = G(x) + F(x)$. Sum/difference of Functions F and G must have same Domains and Codomains

Does $F + G = G + F$ **?**
 $(F + G)(x) = F(x) + G(x)$ by definition of $F + G$ $= G(x) + F(x)$ by the commutative law for addition of real numbers $=(G+F)(x)$ by definition of $G + F$

Hence $F + G = G + F$.

¹² © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: f1+f2 and f1f2

Let f1 and f2 be functions from R to R such that: $f1(x)=x^2$ and $f2(x)=x-x^2$. What are the functions $f1+f2$ and $f1f2$?

Solution: From the definition of the sum and product of functions, it follows that:

 $(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$ $(f_1 f_2)(x) = x^2(x - x^2) = x^3 - x^4$.

The Identity Function on a Set

Given a set X, define a function I_{χ} from X to X by $I_X(x) = x$, for all x in X.

The function I_X is called the **identity function on X** because it sends each element of X to the element that is identical to it.

Thus the identity function can be pictured as a machine that sends each piece of input directly to the output chute without changing it in any way.

Examples: **Function defined on a power Set**

 $P(A)$ denotes the set of all subsets of the set A. Define a function F: $P(\{a, b, c\}) \rightarrow \mathbb{Z}^{nonneg}$ as follows: For each $X \in P(\{a, b, c\})$, $F(X)$ = the number of elements in X.

Draw an arrow diagram for F.

Examples : **Boolean Function**

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to {0, 1} as follows:

For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2$.

Describe fusing an input/output table.

$$
f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1
$$

 $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$

 $f(0, 0, 1) = (0 + 0 + 1) \mod 2 = 1 \mod 2 = 1$

A Boolean Function

¹⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Well-defined functions

- It can sometimes happen that what appears to be a function defined by a rule is not really a function at all.
- A function is not well defined if it fails to satisfy at least one of the requirements of being a function
- **Example:**
- Define a function $f : R \to R$ by specifying that for all real numbers x, $f(x)$ is the real number **y** such that $x^2+y^2=1$.
- There are two reasons why this function is not well defined:
- For almost all values of x either
- (1) there is no y that satisfies the given equation or
- (2) there are two different values of y that satisfy the equation
- Consider when $x=2$: there is no real number y such that $x^2 + y^2 = 1$
- Consider when x=0 : both $y = -1$ and $y = 1$ satisfy the equation $x^2 + y^2 = 1$

Well-defined functions

- A function is not well defined if it fails to satisfy at least one of the requirements of being a function
- **Example:** $f: \mathbf{Q} \to \mathbf{Z}$ defines this formula:

$$
f\left(\frac{m}{n}\right) = m
$$
 for all integers m and n with $n \neq 0$.

Is fa well defined function?

No, Example:

$$
f\left(\frac{1}{2}\right) = 1
$$
 and $f\left(\frac{3}{6}\right) = 3$,
 $f\left(\frac{1}{2}\right) \neq f\left(\frac{3}{6}\right)$.

Sequences as Function

Can we define the following Sequence as a function? How?

This sequence is a function defined on set of integers that are greater than or equal to a particular integer.

$$
1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots, \frac{(-1)^n}{n+1}, \dots
$$

can be thought of as the function f from the nonnegative integers to the real numbers that associates $0 \to 1$, $1 \to -\frac{1}{2}$, $2 \to \frac{1}{3}$, $3 \to -\frac{1}{4}$, $4 \to \frac{1}{5}$, and, in general, $n \to \frac{(-1)^n}{n+1}$.

$$
g: \mathbf{Z}^+ \to \mathbf{R}
$$
 by $g(n) = \frac{(-1)^{n+1}}{n}$, for each $n \in \mathbf{Z}^+$.

²⁰ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Logarithms and Logarithmic Functions

• Definition Logarithms and Logarithmic Functions

Let b be a positive real number with $b \neq 1$. For each positive real number x, the logarithm with base b of x, written $\log_b x$, is the exponent to which b must be raised to obtain x . Symbolically,

$$
\log_b x = y \quad \Leftrightarrow \quad b^y = x.
$$

The **logarithmic function with base b** is the function from \mathbb{R}^+ to **R** that takes each positive real number x to $\log_b x$.

²¹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Logarithmic Function with Base *b*

Find the following:

- a. $\log_3 9$ b. $\log_2(\frac{1}{2})$ c. $\log_{10}(1)$ d. $\log_2(2^m)$ (*m* is any real number)
- e. $2^{\log_2 m} (m > 0)$

Solution

- a. $\log_3 9 = 2$ because $3^2 = 9$.
- b. $\log_2(\frac{1}{2}) = -1$ because $2^{-1} = \frac{1}{2}$.
- c. $\log_{10}(1) = 0$ because $10^0 = 1$.
- d. $log_2(2^m) = m$

Because the exponent to which 2 must be raised to obtain 2^m is m.

e. $2^{\log_2 m} = m$

Because $\log_2 m$ is the exponent to which 2 must be raised to obtain m.

We have known that if **S** is a nonempty, finite set of characters, then a string over S is a finite sequence of elements of S.

The number of characters in a string is called the **length** of the string. The null string over S is the "string" with no characters.

It is usually denoted **ε** and is said to have length 0.

²³ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

• Definition

If $f: X \to Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

 $f(A) = \{y \in Y | y = f(x) \text{ for some } x \text{ in } A\}$

 $f^{-1}(C) = \{x \in X \mid f(x) \in C\}.$ and

 $f(A)$ is called the **image of** A, and $f^{-1}(C)$ is called the **inverse image of C**.

Example: The Action of a Function on Subsets of a Set

Let $X = \{1,2,3,4\}$ and $Y = \{a, b, c, d, e\}$, and define $F: X \rightarrow Y$ by the following arrow diagram:

Let $A = \{1,4\}$, $C = \{a,b\}$, and $D = \{c, e\}$. Find $F(A)$, $F(X)$, $F^{-1}(C)$, and $F^{-1}(D)$.

Solution:

 $F(A) = \{b\}$ $F(X) = \{a, b, c\}$ $F^{-1}(C) = \{1, 2, 4\}$ $\digamma^{_1}(D)=\emptyset$

²⁵ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example 7.1.14 Interaction of a Function with Union Page 392

Let X and Y be sets, let F be a function from X to Y, and let A and B be any subsets of X. Prove that $F(A \cup B) \subseteq F(A) \cup F(B)$.

Thus to prove that **F(A** ∪ **B)** ⊆ **F(A)** ∪ **F(B),** you only need **show** that if **y** is any element in $F(A \cup B)$, then **y** is an element of $F(A) \cup F(B)$.

Suppose $y \in F(A \cup B)$. [We must show that $y \in F(A) \cup F(B)$.] By definition of function, $y = F(x)$ for some $x \in A \cup B$. By definition of union, $x \in A$ or $x \in B$.

Case 1, $x \in A$: In this case, $y = F(x)$ for some x in A. Hence $y \in F(A)$, and so by definition of union, $y \in F(A) \cup F(B)$.

Case 2, x \in *B*: In this case, $y = F(x)$ for some x in *B*. Hence $y \in F(B)$, and so by definition of union, $y \in F(A) \cup F(B)$.

Thus in either case $y \in F(A) \cup F(B)$ [as was to be shown].

²⁶ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

 $\mathcal{L}_{\mathcal{A}}$

7.2 One-to-One and Onto, Inverse Functions

²⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

- Give $F: X \rightarrow Y$
- 1. ∀*x* ∊*X,* [∃] *y* ∊ Y s.t. (x,y)∊F.
- 2. ∀*x* ∊*X* ˄ ∀ *y,z* ∊Y s.t. if (x,y)∊F and (x,z)∊F *then y =z.*

Properties a Function can have

Injective vs. Surjective

A function is **surjective (onto)** provides every element of the codomain is a the image of **at least one** element from the domain.

A function is **injective (one-to-one)** provides every element of the codomain is a the image of **at most one** element from the domain.

Function Properties: Examples

Example: onto function

A function is said to be onto (surjective): iff there is no element in the co-domain that is not matched to an element of the domain

Example: one-to-one function

One-to-one Correspondences & Inverse Functions

Definition: A one-to-one correspondence from a set X to a set Y is a **function** from X to Y that is both one-to-one and onto.

Definition & Theorem: If $F: A \rightarrow B$ is a function that is 1-1 and onto, then for all y in B, there is a **unique** x in A that is sent to y by E

Thus there is a 1-1, onto function from B to A, called the **inverse function for F**, and denoted F^{-1} .

Picture:

One-to-One Correspondence

• Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \rightarrow Y$ that is both one-to-one and onto.

Inverse Functions

Theorem 7.2.2

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-toone and onto. Then there is a function F^{-1} : $Y \to X$ that is defined as follows: Given any element y in Y ,

 $F^{-1}(y)$ = that unique element x in X such that $F(x)$ equals y. In other words,

 $F^{-1}(y)=x \Leftrightarrow y=F(x).$

 \rightarrow Is it always that the inverse of a function is a function?

Inverse Functions Given an arrow diagram for a function. Draw the arrow diagram for the inverse of this function

Finding an Inverse Function

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula $f(x) = 4x - 1$, for all **real** numbers x

Solution For any [particular but arbitrarily chosen] y in **R**, by definition of f^{-1} ,

 $f^{-1}(y)$ = that unique real number x such that $f(x) = y$.

But

$$
f(x) = y
$$

\n
$$
\Leftrightarrow 4x - 1 = y
$$
 by definition of f
\n
$$
\Leftrightarrow x = \frac{y + 1}{4}
$$
 by algebra.

Hence $f^{-1}(y) = \frac{y+1}{4}$.

³⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Direct proof or Counter example

- **Number 4 Function is One-to-one**
- **NAMA** Whether a Function is Onto
- Whether a Function is One-to-Onto correspondence

Review: Formal Definitions of One-to-one and Onto

Given a function f from a set X to a set Y , f is **onto** if, and only if,

 \forall y in Y, \exists x in X such that $y = f(x)$.

Given a function f from a set ^X to a set Y, f is **not onto** if, and only if,

 \exists y in Y such that $\forall x$ in $X, y \neq f(x)$.

 Given a function f from a set ^X to a set Y, ^f is **one-to-one** if, and only if,

 \forall x_1 and x_2 in X , if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

 Given a function f from a set ^X to a set Y, ^f is **not one-to-one** if, and only if,

 $\exists x_1$ and x_2 in X s. th. $f(x_1) = f(x_2)$ and $x_1 \neq x_2$.

How to prove or disprove?

Suppose that $f : A \rightarrow B$. To show that f is injective Show that if $f(x) = f(y)$ for arbitrary $x, y \in A$ with $x \neq y$, then $x = y$. To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$. To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$. To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

How to prove: One-to-one Functions on Infinite Sets?

Now suppose f is a function defined on an infinite set X . By definition, f is one-to-one if, and only if, the following universal statement is true:

\forall **x1, x2** ∈ **X**, if f (**x1**) = f (**x2**) then **x1** = **x2**

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$

show that $x_1 = x_2$. and

To show that f is *not* one-to-one, you will ordinarily

find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Writing Up the Proof That a Function is One-to-one

Define $f: \mathbf{Z} \to \mathbf{Z}$ by the formula

 $f(n) = 2n + 1$ for all integers n.

Claim: f is one-to-one.

 $(\Leftrightarrow \forall x_1 \text{ and } x_2 \text{ in } X \text{, if } f(x_1) = f(x_2) \text{ then } x_1 = x_2.$

<u>Proof</u>: Suppose n_1 and n_2 are any integers such that $f(n_1) = f(n_2)$. *[Show that* $n_1 = n_2$ *.]* \leftarrow To answer, must use the definition of f.] By definition of f_1 , $2n_1 + 1 = 2n_2 + 1$ So $2n_1 = 2n_2$ and thus $n_1 = n_2$. QED

Proving That a Function is One-to-one

Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by the formula $f(n) = 3n - 2$ for all integers n. **Claim:** f is one-to-one. $(\Leftrightarrow \forall n_1 \text{ and } n_2 \text{ in } \mathbb{Z}, \text{ if } f(n_1) = f(n_2) \text{ then } n_1 = n_2.$

Proof: Suppose n_1 and n_2 are any integers such that $f(n_1) = f(n_2)$. [Show that $n_1 = n_2$.] By definition of f_1 $3n_1 - 2 = 3n_2 - 2$ So $3n_1 = 3n_2$ and thus $n_1 = n_2$. QED

Proving that a Function is Not One-to-one

Define $f: \mathbf{Z} \to \mathbf{Z}$ by the formula

 $f(n) = n^2$ for all integers *n*.

Is f one-to-one? (\Leftrightarrow \forall x_1 and x_2 in X , if $f(x_1) = f(x_2)$ then $x_1 = x_2$.)

Answer: No.

Counterexample:

Let $n_1 = 2$ and $n_2 = -2$. Then by definition of g,

$$
g(n_1) = g(2) = 2^2 = 4
$$
 and also
 $g(n_2) = g(-2) = (-2)^2 = 4.$

Hence

$$
g(n_1) = g(n_2) \quad \text{but} \quad n_1 \neq n_2,
$$

and so g is not one-to-one.

 $\forall y \in Y$, $\exists x \in X$ such that $f(x) = y$.

- 1. There exists real number x such that $y = f(x)$?
- 2. Does f really send x to y?

⁴⁷ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Now suppose F is a function from a set X to a set Y , and suppose Y is infinite. By definition, F is onto if, and only if, the following universal statement is true:

 $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

Thus to prove F is onto, you will ordinarily use the method of generalizing from the generic particular:

suppose that y is any element of Y

show that there is an element X of X with $F(x) = y$. and

To prove F is *not* onto, you will usually

find an element y of Y such that $y \neq F(x)$ for any x in X.

⁴⁸ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example: Onto Functions on Infinite Sets

If $f: \mathbf{R} \to \mathbf{R}$ is the function defined by the rule $f(x) = 4x - 1$ for all real numbers x , then f is onto.

Proof:

Let $y \in \mathbb{R}$. We must show that $\exists x$ in \mathbb{R} such that $f(x) = y$. Let $x = (y + 1)/4$. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

$$
f(x) = f\left(\frac{y+1}{4}\right)
$$
 by substitution
= $4 \cdot \left(\frac{y+1}{4}\right) - 1$ by definition of f
= $(y+1) - 1 = y$ by basic algebra.

[This is what was to be shown.]

⁴⁹ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Evaluating Whether a Function is Onto

Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by the formula $f(n) = 3n - 2$ for all integers n. Is f onto? $(\Leftrightarrow \forall m$ in $\mathbb{Z} \ni n$ in \mathbb{Z} such that $m = f(n)$.) **Scratch work:** Start as if to prove that it is: Suppose m is any element of the co-domain. I.e., m is any integer. Then ask: Must there be an element n of the domain (i.e., an integer n) such that $f(n) = m$? \leftarrow To answer, must use the definition of f. Def. of $f \Rightarrow 3n-2=m \Rightarrow 3n=m+2 \Rightarrow n = \frac{m+2}{2}$ Will it always be true that n is an integer? ρ_0 . Example? $m = 0$ Therefore, the answer will be no, f is not onto. 3

Evaluating Whether a Function is Onto

Define $f: \mathbf{Z} \rightarrow \mathbf{Z}$ by the formula

 $f(n) = 2n + 1$ for all integers n.

Is f onto? (\Leftrightarrow \forall y in Y, \exists x in X such that $y = f(x)$.) **Scratch work:** Start as if to prove that it is: Suppose m is any element of the co-domain. I.e., m is any integer. Then ask: Must there be an element n of the domain (i.e., an integer n) such that $f(n) = m$? To answer, need to use the definition of f. Def. of $f \Rightarrow 2n + 1 = m \Rightarrow 2n = m - 1 \Rightarrow n = \frac{m-1}{2}$ Will it always be true that n is an integer? No. Example? $m = 2$ Therefore, the answer will be no, f is not onto. 2 m

51

Proving that a Function is Onto

Define a function $q: \mathbb{Z} \to \mathbb{Z}$ by the formula $g(n) = 2 - n$ for all integers n. Is g onto? $(\Leftrightarrow \forall m \text{ in } \mathbb{Z}, \exists n \text{ in } \mathbb{Z} \text{ such that } m = g(n).)$ **Proof:** (Given an integer m, can we find an integer n such that $m = 2 - n$?)

1. Suppose *m* is any integer. Let $n = 2 - m$.

2. Then $q(n) = q(2 - m) = 2 - (2 - m) = 2 - 2 + m = m$. QED

Showing That a Function is Not Onto

Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by the formula $f(n) = 3n - 2$ for all integers n. Is f onto? $(\Leftrightarrow \forall m \mathbb{Z}$, $\exists \mathbb{Z}$ in such that $m = f(n)$.) **Answer:** No. **Counterexample:** Let $m = 0$, and note that $f(n) \neq 0$ for any integer n. To see why this is true, suppose it is not. That is, suppose that $f(n) = 0$ for some integer *n*. Then $3n - 2 = 0$ so $3n = 2$ and so $n = 2/3$, which is not an integer. Thus n is an integer and n is not an integer, which is a contradiction. Hence the supposition is false, and, therefore, there is no integer n with f

 $(n) = 0$. Thus *f* is not onto.

Proving that a Function is Not Onto

Define $f: \mathbf{Z} \to \mathbf{Z}$ by the formula

 $f(n) = 2n + 1$ for all integers n.

Is f onto?

Answer: No

Counterexample: Let $m = 2$. Suppose there is an integer n such that $f(n) = 2$. By definition of f,

 $2n+1=2 \Rightarrow 2n=1 \Rightarrow n=1/2$

But 1/2 is not an integer. So there is no integer n with $f(n) = 2$.

Proving One-to-One correspondence

Example: Define $f: Z \rightarrow Z$ by the formula

 $f(n) = 2n + 1$ for all integers n.

- a. Prove that f is one to one.
- b. Prove that f is onto $(\Leftrightarrow \forall v \in Y, \exists x \in X)$ such that $v = f$ (x) .
- c. find the inverse function

Reducing Co-Domain

Given a function that is not onto, it is always possible to define a related, similar function that is onto by reducing the co-domain to be the range and keeping the rest of the definition the same.

Example: Let **Zodd** be the set of **all odd integers**. Define $f : Z \rightarrow Z^{odd}$ by the formula $f(n) = 2n + 1$ for all integers n. **Proof:** Suppose m is any odd integer s.t. $2n + 1 = m$. \Rightarrow 2n = m - 1 \Rightarrow n = $\frac{m-1}{n}$. Is $m-1 \in \mathbb{Z}$? Yes! Basically, because m is odd. **2** $(1.e., m = 2k + 1$ for some integer k, and so $k = \frac{m-1}{2}$. QED **2** or simply (By definition of odd, $m = 2n + 1$ for some integer n. But then by definition of f, for all m, there is n s.t. $m = f(n)$.

Thus, we proved that f is a one-to-one correspondence

 $f^{-1}(m) = \frac{m-1}{2}$ for all $m \in \mathbb{Z}^{\text{odd}}$.

Examples

- **f** is a function from $\{a, b, c\}$ to $\{1, 2, 3\}$ with $f(a)=2$, $f(b)=3$, $f(c)=1$. Is it invertible? What is it its inverse?
- Let f: $Z\rightarrow Z$ such that $f(x)=x+1$, Is f invertible? If so, what is its inverse?

y=x+1, x=y-1, f⁻¹(y)=y-1

- **Let f:** R→R with $f(x)=x^2$, Is it invertible?
	- Since $f(2)=f(-2)=4$, f is not one-to-one, and so not invertible

Theorem – Homework !

If X and Y are sets and F: $X \to Y$ is one-to-one and onto, then F^{-1} : $Y \to X$ is also one-to-one and onto.

Proof:

 F^{-1} is one-to-one: Suppose y_1 and y_2 are elements of Y such that $F^{-1}(y_1) =$ $F^{-1}(y_2)$. [We must show that $y_1 = y_2$.] Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$, and by definition of F^{-1} .

and

Consequently, $y_1 = y_2$ since each is equal to $F(x)$. This is what was to be shown.

 F^{-1} is onto: Suppose $x \in X$. [We must show that there exists an element y in Y such that $F^{-1}(y) = x$. Let $y = F(x)$. Then $y \in Y$, and by definition of F^{-1} , $F^{-1}(y) =$ x . This is what was to be shown.

Examples of functions

- **Hash functions**
- **String Functions**
- **Cartesian Products Functions (2 variables)**
- **Logarithmic functions**

Example: Hash Functions

Hash functions are functions that when given an input, map it to a certain value.

Define a function *Hash* from the set of all Palestinian ids I to the set $M = \{0, 1, 2, 3, 4, 5, 6\}$ as follows:

Hash(n) = $n \text{ mod } 7$ for all Palestinian ids n

Is Hash one-to-one?

no, 14 and 7 both give mod of 0 when divided by 7.

Example: String Functions

String functions take a sequence of characters as input (e.g., 0's and 1's or a's and b's etc.). Let S be the set of all strings of \vec{a} 's and \vec{b} 's, and define $N: S \rightarrow Z$ by

 $N(s)$ = the number of *a*'s in *s*, for all $s \in S$.

- Is N one-to-one? Prove or give a counterexample.
- I Is *N* onto? Prove or give a counterexample.

Example: Cartesian Products Functions

Define a function $F: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$
F(x, y) = (x + y, x - y).
$$

Is F a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

Proof that F is one-to-one: Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that

$F(x_1, y_1) = F(x_2, y_2)$.	Full	
$[We must show that (x_1, y_1) = (x_2, y_2)$. By definition of F ,	Proof	
$(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$.	On	
$[For two ordered pairs to be equal, both the first and second components must be equal.$	Page	
$[Thus, x_1, y_1, x_2, and y_2 satisfy the following system of equations:$	$x_1 + y_1 = x_2 + y_2$	(1)
$x_1 - y_1 = x_2 - y_2$	(2)	

Full

Adding equations (1) and (2) gives that

For tw

 $2x_1 = 2x_2$, and so $x_1 = x_2$.

Substituting $x_1 = x_2$ into equation (1) yields

 x_1

$$
+ y_1 = x_1 + y_2
$$
, and so $y_1 = y_2$.

Thus, by definition of equality of ordered pairs, $(x_1, y_1) = (x_2, y_2)$ [as was to be shown].

The Exponential and Logarithmic Functions

The **exponential function with positive real number base** $b \neq 1$ **is** the function that sends each positive real number x to b^x , where $b^0 = 1$ and $b^{-x} = \underline{1}$. b **x** $y = 2^x$ For any positive real number $b \ne 1$, if $b^{\mu} = b^{\nu}$ then $u = v$. The exponential function with base b is one-to-one.

The **logarithmic function with positive real number base** $b \neq 1$ **is** the inverse function for the exponential function with base b .

Logarithms

Definition: Let *b* be a positive real number with $b \neq 1$. For each positive real number x , the **logarithm with base** *b* **of** x , denoted $\log_b x$, is defined as follows:

That is, **Exercises:** 1. $\log_2 8$ 2. $\log_2 2$ 3. $\log_2(\frac{1}{2})$ 4. $\log_2 1$ 5. $\log_2(2^k)$ The **logarithmic function with base** $b \neq 1$ is the function that sends each positive real number x to $log_b(x)$. $\left(\frac{1}{4}\right)$ $log_b x$ = the exponent to which b must be raised to obtain x $\log_b x = y \Leftrightarrow b^y = x.$ 3 1 -2 0 k the exponent to which 2 must be raised to obtain 2 **k**

Graphs of Exponential and Logarithmic Functions

Note: $(u,v) \in \text{graph of } y = 2^x \iff (v,u) \in \text{graph of } y = \log_2 x$

Laws of Exponents

If *b* and *c* are any positive real numbers with $b \neq 1$ and $c \neq 1$, and if u and v are any real numbers, then

$$
b^{u}b^{v} = b^{u+v}
$$

\n
$$
(b^{u})^{v} = b^{uv}
$$

\n
$$
Ex: 2^{2}2^{3} = (2 \cdot 2)(2 \cdot 2 \cdot 2) = 2^{5}
$$

\n
$$
Ex: (2^{2})^{3} = (2 \cdot 2)(2 \cdot 2)(2 \cdot 2) = 2^{6}
$$

\n
$$
Ex: \frac{2^{2}}{2^{3}} = \frac{2 \cdot 2}{2 \cdot 2 \cdot 2} = \frac{1}{2} = 2^{-1}
$$

\n
$$
(bc)^{u} = b^{u}c^{u}
$$

\n
$$
Ex: 2^{3}5^{3} = (2 \cdot 2 \cdot 2)(5 \cdot 5 \cdot 5) = (2 \cdot 5)^{3}
$$

Fact: For any positive real number $b \ne 1$,

if $b^{\mu} = b^{\nu}$ then $u = v$.

Properties of Logarithms

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers b, c and x with $b \neq 1$ and $c \neq 1$:

a.
$$
\log_b(xy) = \log_b x + \log_b y
$$

\nb. $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$
\nc. $\log_b(x^a) = a \log_b x$
\nd. $\log_c x = \frac{\log_b x}{\log_b c}$

We want proof d!

÷.

Using the One-to-Oneness of the Exponential Function

Use the definition of logarithm, the laws of exponents, and the one-to-oneness of the exponential function (property 7.2.5) to prove part (d) of Theorem 7.2.1: For any positive real numbers b, c, and x, with $b \neq 1$ and $c \neq 1$,

$$
\log_c x = \frac{\log_b x}{\log_b c}.
$$

Solution Suppose positive real numbers b , c , and x are given. Let

(1)
$$
u = \log_b c
$$
 (2) $v = \log_c x$ (3) $w = \log_b x$.

Then, by definition of logarithm,

(1')
$$
c = b^u
$$
 (2') $x = c^v$ (3') $x = b^w$.

Substituting $(1')$ into $(2')$ and using one of the laws of exponents gives

$$
x = c^v = (b^u)^v = b^{uv} \text{ by } 7.2.2
$$

But by (3), $x = b^w$ also. Hence

$$
b^{uv}=b^w,
$$

and so by the one-to-oneness of the exponential function (property 7.2.5),

$$
uv=w.
$$

Substituting from (1) , (2) , and (3) gives that

$$
(\log_b c)(\log_c x) = \log_b x.
$$

And dividing both sides by $\log_b c$ (which is nonzero because $c \neq 1$) results in

$$
\log_c x = \frac{\log_b x}{\log_b c}.
$$

Cartesian product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a, b) of integers,

$$
M(a, b) = ab \quad \text{and} \quad R(a, b) = (-a, b).
$$

 M is the multiplication function that sends each pair of real numbers to the product of the two. R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following:

a.
$$
M(-1, -1)
$$

b. $M(\frac{1}{2}, \frac{1}{2})$
c. $M(\sqrt{2}, \sqrt{2})$
d. $R(2, 5)$
e. $R(-2, 5)$
f. $R(3, -4)$

⁷⁰ © Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Functions in programming

Given the C functions below, for each function:

- Use the notation $F: S \rightarrow S$ where $F(x)=y$ to define the function.
- Is F one-to-one correspondence? Prove or give a counterexample.
- If you answered "yes" for b above, what is formula for F⁻¹?

```
float g(float x) {
float f(float x) {
                                                if (x!=0)return (3*x - 4);
                                                return ((x+1)/x);
\mathcal{F}\mathcal{F}
```