* COMP 233 Discrete Mathematics

Relations

i Outline
" Binary (n-ary) Relations

® Representations of binary relations

" set of ordered pairs, arrow diagram, directed
graphs

" Properties of binary relations
" reflexivity, symmetry, transitivity
" Equivalence relations
® equivalence classes
" Inverse relations
® Proving Properties of Relations on Sets
® Equality relation, less then, divides, ...
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8.1 Relations on Sets
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i Relations on Sets

A more formal way to refer to the kind of relation defined
on sets is to call it a binary relation because it is a subset
of a Cartesian product of two sets.

At the end of this section we define an n-ary relation to
be a subset of a Cartesian product of n sets, where n is any
integer greater than or equal to two.

Such a relation is the fundamental structure used in
relational databases. However, because we focus on
binary relations in this text, when we use the term relation
by itself, we will mean binary relation.
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Relations: Motivation

FriendOf
PeI‘SO n Pe rson
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Definition of Binary Relation

Definition: A binary relation R from a set Ato a set B is a subset
of Ax B. Given an ordered pair (g, b) in Ax B, we say that ais
related to b, written @ R b, if, and only if, (g, 6) eR. In symbols:

|laRb < (ab)er |

Ex: Let A={1, 3,5, 7} and B={2, 4, 6, 8}. Define a binary
relation R from Ato Bas follows:

|aRb<:>a>b. |

a.Is2 R4? Is5 R4? Is(7,2) e R?
No Yes Yes

b. Write R as a set of ordered pairs.
R={(3,2),(5,2),(54),(7,2),(7,4),(7,6)}
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i Representing Relations: ordered pairs
= R={(3,2), (52), (54%), (7,2), (7,4), (7,6)}.

» EnrolledIn ={(Ali, COMP233), (Sana,ENG231)}

= FriendOf = {(Ali, Sana), (Sana,Ali)}
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i Representing Relations: arrow diagram

c. Draw an “arrow diagram” to represent R, where
R=A(3,2), (52), (5:4), (7,2), (7,4), (7,6)}.

Domain Co-domain

Note: An arrow diagram can be used to define a relation.
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%Represenﬁng Relations: Arrow diagram

Course

Person

EnrolledIn
—
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%Represem‘ing Relations: Arrow diagram

z LessThan Z
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The Congruence Modulo 2 Relation

Let E be a relation from Z to Z as follows:
Forall(m neZ x Z, mEns m—n iseven.

a. Is4E0?Is2E6?Is3E(-3)?Is5E 2?
Yes, 4 E 0 because 4 — 0 = 4 and 4 is even.

Yes, 2 E 6 because 2 - 6 = —4 and —4 is even.

Yes, 3 E (—3) because 3 — (—3) = 6 and 6 is even.
No, because 5 — 2 = 3 and 3 is not even.

b. List five integers that are related by E to 1.
1 because 1 —1 = 0is even,

3 because 3 -1 =2 iseven,

5 because 5 -1 =4 is even,

—1 because -1 -1 = -2 is even,

-3 because -3 — 1 = —4 is even.

¢. Prove that if n is any odd integer, thenn E 1
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The Congruence Modulo 2 Relation

Let E be a relation from Z to Z as follows:

Forall(m neZ x Z, mEns m—n iseven.
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i The Congruence Modulo 2 Relation

Let E be a relation from Z to Z as follows:
Forall(m neZ x Z, mEns m—n iseven.

¢. Prove that if m is any odd integer, then m E 1
Proof

Suppose m is any odd integer.

Then m = 2k + 1 for some integer k.

Now by definition of E, m E 1 if, and only if, m — 1 is even.
But by substitution,

m-1=(2k+1)-1= 2k,

and since k is an integer, 2k is even.

Hence m E 1 [as was to be shown]

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 13

i Congruent Modulo 2

It can be shown that integers m and n are related
by E if, and only if,

m mod 2 =n mod 2

(that is, both are even or both are odd).

When this occurs m and N are said to be
congruent modulo 2.
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N-ary Relations

Given sets Ay, As, ..., A,, an n-ary relation R on A; x A, X --- X A, is a subset
of A x Ay x --- x A,. The special cases of 2-ary, 3-ary, and 4-ary relations are
called binary, ternary, and quaternary relations, respectively.

[ “tuple or triple” }

Example: Let Al = {x, y}, A2 = {1,2,3}, and A3 = {a,b}.

Let R be the subset of
A X A, X A; represented by L

{(x1,a),(x2,a),(%3,b),(y,1,2),(¥,2,0),(y,3,b)}

15 15
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i Example: A Relation on a Power Set

LetX={a,b,c}.

Then P(X) = {2, {a}, {b},{c}.{a, b}, {a,c}.{b,c},{a,b,c}]}.
Define a relation S from P(X) to Z as follows: For all sets A and B
in P(X) (i.e., for all subsets A and B of X),

A S B & A has at least as many elements as B.

Is{a 0} S{b,c}? v/ both sets have two elements.
Is{a} S o? v {a} has one elementand 2 has zero elements,and 1 > 0.
Is{bct S{abct? X {b c}has2elementsand{a b, ¢} has 3 elementsand 2 < 3

Is{c} S {a}? v/ both sets have one element.
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Relations and Functions

Definition

A function F from a set A to a set B is a relation from A to B that satisfies the
following two properties:

1. For every element x in A4, there is an element y in B such that (x,y) € F.
2. For all elements x in 4 and y and z in B,
If (x,y) € F and (x,2) € F, then y=z.
If F is a function from A4 to B, we write
Y=F(x) © (x,y) €EF.

Example
letA={2,4,6}and B ={1, 3, 5}.
Is Relation R a Function from A to B?
R={(2,5), (4 1), (4, 3), (6, 5)}
18
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The Inverse of a Relation

* Definition

Let R be a relation from A to B. Define the inverse relation R~! from B to A as
follows:

R ={(y.x) e Bx A|(x,y) € R}.

This definition can be written operationally as follows:

Forall x € A and y € B, (y,)r)eﬁ'_1 < (x,y) €R.
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Inverse Relation R!

Let R be a relation from A to B. Define the inverse relation R!
from B to A as follows:
Ri={(yx) eBx A | (xy)€R}.

For all x€A and yeB, (y,x)ER! & (x,y)ER.

20
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Recall

Person EnrolledIn Course

EnrolledIn-!

Person —— Course
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Example — The Inverse of a Finite Relation

Let A=4{2,3,4} and B = {2,6,8} and let R be the “divides” relation from
Ato B Forall(x, WeEAX BxRye x|y x divides y.

State explicitly which ordered pairs are in Rand R-1, and draw arrow
diagrams for R and R!
R ={(2.2),(2,6).(2,8).3.6).(4.8)}
R1={(2,2),(6,2).(8,2),(6.3).(84)}

A B

R!

N
Describe Rtin words:

Forall (, e Bx AyR!lx < yisamultiple of x.

22
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So far two representation styles

Person FriendOf Person

FriendOf = {(Ali, Sana), (Sana,Ali), (Sana,Lina),(Lina, Sana)}

How would you &
Represent relations on i
As a directed graph?
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Diric‘red Graphs of a relation from a set to itself

Definition. A relation on a set A is a relation from A to A.

When a relation Ris defined on a set A, the arrow diagram of the
relation can be modified so that it becomes a directed graph.

For all points xand yin A, there is an arrow from

xtoy © xRy © (xy)eRrR

ANat % -ff f-.i _ Itisimportant to distinguish clearly
A LA™ R between a relation and the set on which it
ISAVAT 2.4 is defined.
\ j.\vg/v_":
/.:;’1 -}l" ;‘.';_
v ‘.h [
24
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Example: Directed Graph of a Relation

Let A={3, 4,5, 6, 7, 8} and define a relation R on A as follows: For
alx, ye A xRy 2| (x-y).
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i N-ary Relations

Example
LetR={(a, b,c) | (a =2b) A (b= 2c)with a, b, ceN}

What is the degree of R?

The degree of R is 3, so its elements are triples.
What are its domains?

Its domains are all equal to the set of integers.
Is (2, 4, 8) in R?

No.

Is(4,2,1)inR?

Yes.

26
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N-ary Relations and Relational Databases

N-ary relations form the mathematical foundation for relational
database theory

The following is a radically simplified version of a database
that might be used in a hospital.

Let Al be a set of positive integers, A2 a set of alphabetic
character strings, A3 a set of nhumeric character strings, and
A 4 a set of alphabetic character strings.

Define a quaternary relation R on A1 x A2 x A3 x A4 as
follows:

(a1, a2, a3, a4) € R < a patient with patient ID number al,
named a2, was admitted on date a3,with primary diagnosis a4
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Application: Relational Databases

Simplified version of a database that might be used in a hospital

Define Ron AL x A2 x A3 x A4 as follows:
(a1, a2, a3, #4) € R & a patient with patient ID number g1, named a2,
was admitted on date &3, with primary diagnosis &#4.

Patient
Eg::bt:x“;;:::;nts D Name Date Diagnosis
a Relation (011985, John Schmidt, 020710, asthma)
(574329, Tak Kurosawa, 114910, pneumonia)
(466581, Mary Lazars, 103910, appendicitis)
(008352, Joan Kaplan, 112409, gastritis)
(011985, John Schmidt, 021710, pneumonia)
Each row in the (244388, Sarah Wu, 010310, broken leg)
table is called tuple (778400, Jamal Baskers, 122709, appendicitis)

28
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:L Database Table as a Relation

S¥ NAME

BOB

S5TATUS

cITy

I //
Primary key Y 1 ’f p
3 I i H
i | | .
r S \*‘@ ShaME | STATUS CITY
51 Smith 201 London
Gor < 52 danes 10} Pans
. 83 Blake 30§ Paris
S4 Clark 20| London
S5 Adams 30| Athens
—
A
Allributes /

. Degreg —————»
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N

—
" "Tuples

=

Damains

oD = B

Relation <> Table

Tuple <-> Row or record

Attribute <-> Column or field
Cardinality <-=> Number of rows
Degree <> Number of columns
Primary key <-> Unique 1dentifier
Domatin <-> Pool of legal values 29

8.2 Reflexivity, Symmetry, and Transitivity
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Properties of Relations

Definition: Let A be a set and let R be a binary relation “on” A.

(i.e., Ris a binary relation from A to A).

Ris reflexive ,hliks V xin A, X R X.

Ris symmetric JSluis & V xand yin A4, if xR y then y R x.

Ris transitive s &V X, y,and zin A if x Ryand y Rz then xR z
Ris an equivalence relation < Ris reflexive, symmetric, and transitive.

Example: Consider the binary
relation S defined on the set
{3, 4, 6, 7, 8, 9} with directed
graph shown at the left.

a. Is S reflexive?

b. Is S symmetric?

c. Is S transitive?

d. Is S an equivalence relation?

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 31

iProperties of Relations- reflexive

Ne will now look at some useful ways to classify relations

Definition: A relation R on a set A is called reflex

a, a)<R for every element acA.

Are the following relations on {1, 2, 3, 4} reflexive?
* R={(1,1),(1,2),(2,3), G, 3) 4 49} No

* R={(1,1), (2 2), (2 3), (3, 3), (4,4} Yes
* R={(1,1), (2 2), G, 3)} No

A relation on a set A is not reflexive if there exist
some element a<A such that (a, a)¢R.

32
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%Properties of Relations - symmetric

Definitions

e A relation R on a set A is called symmetric
if (b, @)eR whenever (a, b)eR for all a, beA.

R is not Symmetric: there are elements x and y in A
such that x R y but y R x [that is, such that (x ,y) € R
but (y.x) € R].
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iProperties of Relations - transitive

Definition: A relation R on a set A is called transitive if
whenever (a, b)eR and (b, c)eR, then (a, c)eR for a,
b, ceA.

Are the following relations on {1, 2, 3, 4} transitive?
e R={(1,1),(,2),(22),(2,1),(3,3)} Yes
e R={(1,3), @, 2),(2 1)} No
e R={(2,4),(4,3),(2,3),4 1)} No

R is not transitive: there are elements x,y and zin A
such that xRy and yRz but x R z [that is, such that
(xy)€ERand (yz)ER but (x ,2) $R ] .

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 34
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Exercise

Let A = {2,3,4,6,7,9} and define a relation Ron A as:
Forallx, ye A xR y o 3|(x=)).

IsR Reflexive? J Symmetric? v Transitive?
2
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Exercise

Let A={0, 1, 2, 3} and define relation Ron A as:
R={(0,0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

Is R Reflexive? i1 Symmetric? 7 Transitive?

36
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Exercise

Let A=0, 1, 2, 3} and define relation Ron A as:
R={(0, 0), (0, 2), (0, 3), (2, 3)}

Is R Reflexive? [m Symmetric? [x Transitive? 7

30(—.2
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Exercise

Let A={0, 1, 2, 3} and define relation Ron A as:
R={(0,1),(2,3)}

Is R Reflexive?[g) Symmetric? Transitive? 7]

Qo——— o]

30c——9?)

38
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The Transitive Closure of a Relation

e Definition

on A that satisfies the following three properties:
1. R'is transitive.

2. RC R

3. If S is any other transitive relation that contains R, then R’ C S.

Let A be a set and R a relation on A. The transitive closure of R is the relation R’

Informally:
e To obtain a transitive relation from one that is

not transitive, it is necessary to add ordered

pairs. A—*ER
+ Thus, Rtis the relation obtained by adding the l

least number of ordered pairs to ensure

transitivity. Ce—1D

Original

Transitive
Closure
AT—*HB

X

Coe D

The smallest transitive relation that contains the relation.
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39

Example1: The Transitive Closure of a Relation

Let A= {0, 1, 2, 3} and consider the relation R defined

on A as follows:
R ={(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

Solution: Every ordered pair in Ris in R, so
{(0, 1), (1, 2), (2, 3)} € R

Thus the directed graph of R contains the arrows shown

below.

R — A

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved
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Example1: The Transitive Closure of a Relation

« Since there are arrows going from 0 to 1 and from 1 to 2, Rf must
have an arrow going from 0 to 2. Hence (0, 2) € R.

« Then 0, 2)€e Rtand (2, 3) € R, so since Rtis transitive, (0, 3) € R
« Also, since (1,2)€e Rftand (2,3) € R, then (1,3) € R.
« Thus R contains at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
But this relation /s transitive; hence it equals R. Note that the directed graph
of Rtis as shown below.

Y, \4
Jex 2
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8.3 Equivalence Class of Relations

Part 1: Partitioned Sets

Part 2: Equivalence Relation

Part 3: Equivalence Class

42
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Recall: Set Partition

Definition. A collection of nonempty sets {A1, A2, A3, ...} form
a partition of a set A if, and only if, A is the union of all the Ai
The sets A1, A2, A3, ... are mutually disjoint.

= Example:

u Let A = {0/1[21314}1 4 D

= one possible partition:{1,3}, {0,4}, {2} 6A
= another: {0, 3, 4}, {1}, {2} 4 b

what is the relation R induced by each partition?
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The Relation Induced by a Partition

Definition

Given a partition of a set A, the relation induced by
the partition, R, is defined on A as follows:

Forall x, ye A x R y & there is a subset A; of the
partition such that both xand yarein 4;.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 44
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Example: finding relation induced by Partition

Let A= {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
Solution Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R0 because both 3 and 0 are in {0, 3, 4},
0 R4 because both 0 and 4 are in {0, 3, 4},
4 R0 because both 4 and 0 are in {0, 3, 4},
3 R4 because both 3 and 4 are in {0, 3, 4},
4 R 3 because both 4 and 3 are in {0, 3, 4},

Also, 0 RO because both 0 and 0 are in {0, 3, 4},
3 R 3 because both 3 and 3 are in {0, 3, 4},
4 R4 because both 4 and 4 are in {0, 3, 4}.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved

Example (Contd.)

Since {1} is a subset of the partition,

1 R1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Hence

45

R=1{(0,0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0),

(3, 3), (3,4), (4, 0), (4 3), (4, 4) }.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved
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Relations induced by set partition

Theorem 8.3.1.

Let A be a set with a partition and
Let R be the relation induced by the partition.

Then R is reflexive, symmetric, and transitive

47
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Equivalence Relation

Definition

Let A be a set and R a relation on A. R is an equivalence relation
if, and only if, R is reflexive, symmetric, and transitive.

=> The relation induced by a partition is an
equivalence relation

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 48
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i Examplel

Let X be the set of all nonempty subsets of {1,2,3}. Then
X={{1},{2}, (3}, {1,2},{1,3},{2,3},{1,2,3}}
Define a relation R on X as follows: For all A and B in X,
A R B & the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 49

An Equivalence Relation on a Set of Subsets

Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X={1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all Aand Bin X, AR B&
the least element of A equals the least element of B. Prove that R
is an equivalence relation on X.

R /s reflexive: Suppose Ais a nonempty subset of X.
[We must show that AR A]. It is true to say that the
least element of A equals the least element of A. Thus,
by definition of #, AR A.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 50
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An Equivalence Relation on a Set of Subsets

R /5 symmetric:

Suppose Aand B are nonempty subsets of X and AR B.

[We must show that BR A.]

Since AR B, the least element of A equals the least element of B.

But this implies that the least element of B equals the least element
of A, and so, by definition of R, BR A.

R /s transitive.

Suppose A, B, and C are nonempty subsets of X, AR B, and

BRC.

[We must show thatAR C.]

Since AR B, the least element of A equals the least element of Band
since BR C, the least element of B equals the least element of C.
Thus the least element of A equals the least element of C, and so, by
definition of R, AR C.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 51

Example2: Equivalence of Digital Logic Circuits
Is an Equivalence Relation

Let S be the set of all digital logic circuits with a fixed number n of
inputs. Define the relation E as follows:

V(C,,C; € S,Cy E C, & C; has the same |/0O table as C,

N o | R

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 52
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Example2: Equivalence of Digital Logic Circuits
Is an Equivalence Relation

Let S be the set of all digital logic circuits with a fixed number n
of inputs.

Define a relation E on S as follows:

For all circuits C1 and C2in S, C1 E C2 & C1 has the same
input/output table as C2.

If C1 E C2, then circuit C1 is said to be equivalentto circuit C2.

Prove that E is an equivalence relation on S.

Proof: E /s reflexive: Suppose Cis a digital logic circuit in S.
[We must show that CE C.]

Certainly C has the same input/output table as itself.

Thus, by definition of E,CE C /as was to be shown].
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Example2: Equivalence of Digital Logic Circuits
Is an Equivalence Relation — cont.

E /s symmetric:

Suppose Cl and C2 are digital logic circuits in Ssuch that C1 E C2.

[We must show that C2 E C1.]

By definition of E, since C1 E C2, then Cl has the same input/output table
as C2. It follows that C2 has the same input/output table as C1.

Hence, by definition of E,C2 E C1.

E /s transitive.

Suppose C1,C2, and C3 are digital logic circuits in S such that C1 E C2

and C2 E C3. [We must show that C1 E C3.]

By definition of E, since C1 E C2 and C2 E C3, then Cl has the same

input/output table as C2 and C2 has the same input/output table as C3.It

follows that C1 has the same input/output table as C3. Hence, by definition

of E,C1E C3.

Since E is reflexive, symmetric, and transitive, E is an equivalence

relation on S.

54
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i Equality relation over real numbers

Vx,yERXRy&eSx=Yy

= Equality relation is an equivalence relation.

= What do you notice about the following set:
{1/2,2/4,3/6,-1/-2,30/60} ?
= They are equal to one another.

= In fact every real number has inf. number of
numbers that are equal to it.

= Ex. [1/2] = {1/2, 2/4,3/6,-1/-2,30/60,...}
[1/3] ={1/3,2/6,30/90,...}

55
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i Equfvalence Class of an Element

Definition: Let R be an equivalence relation from A to 4, and
suppose ais any element of A. The equivalence class of a, denoted

[a], is defined as follows: [a@] = {xe A| xis related to @ by R}.

Example: Consider the binary relation S defined on the set
{3, 4, 6, 7, 8, 9} with directed graph shown below. Find [3], [4],

(6], {71, [8], and [9].

[3]= {3,6,9}

[4]1= (4,7}
[6]= {3,6,9}
[71= {4, 7}
[8] = {8}
[9]= {3,6,9}

What are the distinct equivalence
classes of this relation?

{3I 6’ 9}’ {4I 7}’ {8}

56
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Another example

Given a set A and an Equivalence Relation R, the equivalence
classofais: [a] = {x € A |x R a}

1. 4 2 2 2 3
Given theset A = {—,—, 1,—,-,—, 2,—}
2 3 2 4°6 9

How many Equivalence classes are there under the equality relation?
[ ,;L‘] 3 A ) ‘*Y E
3
13)- ¢35 2
2
=2l @
4
a1 = 82
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‘ Equivalence Classes of an Element

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A.
If a R b, then [a] = [b].

The lemma says that if two elements of A are related by an equivalence
relation R, then their equivalence classes are the same.

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and @ and b are elements of A, then

either [a]lN[b]=0 or [a]=[b].

The lemma says that any two equivalence classes of an equivalence
relation are either mutually disjoint or identical.

o Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class § is any element a such that [a] = §
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i Proof of Lemma 8.3.3

Suppose A is a set, R is an equivalence relation on A, ¢ and b are elements of A, and
[a]l N [B] # W.

[We must show that [a] = [b].] Since [a] N [b] # @, there exists an element x in A
such that x € [a] N [p]. By definition of intersection,

x €la]l and x € [b]

and so xRa and xRb

by definition of class. Since R is symmetric [being an equivalence relation] and x R a,
then a R x. But R is also transitive [since it is an equivalence relation], and so, since
a Rxandx R b,

a R b.
Now a and b satisfy the hypothesis of Lemma 8.3.2. Hence, by that lemma,
[a] = [b].
[This is what was to be shown. ]
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Example

et A={0,1,2,3,4} and define a relation Ron A as :
R={(0,0),(0,4),(1,1),(1,3), (2 2), (3, 1), (3, 3), (40), (4,4}

Find the distinct equivalence classes of R.

[0] = {x € A|x RO} = {0, 4)
0 - [={xeAlxR1}={1,3}
R]={xeAlxR2) ={2)
é Bl={xeAlxR3}={l,3)
4 1 [4]={x € A|x R4} = {0, 4)
[0]=[4] and [1]=[3].

So, the distinct equivalence classes of R:

{0, 4}, {1,3}, and {2}
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Relations induced by set partition

Theorem 8.3.4 The Partition Induced by an Equivalence Relation

If A is a set and R is an equivalence relation on A, then the distinct equivalence
classes of R form a partition of A; that is, the union of the equivalence classes is all
of A, and the intersection of any two distinct classes is empty.

Let A be a set and let R be an equivalence relation on A. Then the
distinct equivalence classes of R form a partition of A

1. The union of the equivalence classes is all of 4, and
2. The intersection of any two distinct classes is empty.

Proof of Theorem 8.3.4is on page 469 and page 470
61 61
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Congruence to n Modulo d

Let m and n be integers and let d be a positive integer. We say that m is congruent
to n modulo d and write

m = n (mod d)
if, and only if, d|(m—n).
Symbolically: m=n(modd) < d|(m—n)

Examples: Determine which of the following congruences are true and which are false:

a. 12=7 (mod5)
a.True.12-7=5=5"1.Hence5| (12-7) and so 12 =7 (mod 5).

b. 6 =-8(mod 4)
b. False. 6 — (—8) = 14, and 4 } 14 because 14 # 4 - k for any integer k. Consequently,
6% —8(mod 4).

c.3=3 (mod7)
c.True.3-3=0=7"0.Hence7 | (3-3) andso3 =3 (mod7)
62
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‘ Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set
Z of all integers. That is, for all integers mand n,
mRne 3| (m-n)
Describe the distinct equivalence classes of R.
For each integer a,
[a={xeZ|xRa}
={xezZ|3|(x-a}
={x€ Z| x— a= 3k, for some integer A}.
Therefore,
[a] ={x € Z | x =3k + a, for some integer k}.
In particular, [0] = {x€ Z| x= 3k + 0, for some integer A}
= {x € Z| x= 3k, for some integer A}
={..-9-6,-3,0,3,6,9, ...}
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‘ Equivalence Classes of Congruence Modulo 3

[1]={x€ Z| x=3k+ 1, for some integer A}
={..-8,-5-2,1,4,7,10,.. },
[2] = {x€ Z| x=3k+ 2, for some integer A}
={..-7-4-1,2,5,8,11,.. ).
Now since 3 R0,
[3] = [O].
More generally, by the same reasoning,

[O]=[3]=[-3]=[6]=[-6]=...,and so on.
Similarly,

[11=[4]1=[-2]=[7]=[-5]=...,and so on.
And

[2]=[5]=-1=[8]=[-4]=...,and soon.
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Equivalence Classes of Congruence Modulo 3

Notice that every integer is in class [0], [1], or [2]. Hence the
distinct equivalence classes are:

{x € Z| x= 3k, for some integer A},

{x€e Z| x=3k+ 1, for some integer A}, and

{x€ Z| x=3k+ 2, for some integer A}.

In words, the three classes of congruence modulo 3 are

(1) The set of all integers that are divisible by 3,

(2) The set of all integers that leave a remainder of 1 when
divided by 3, and

(3) The set of all integers that leave a remainder of 2 when
divided by 3.
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‘ Equivalence Classes of Congruence Modulo 3

[0]={..-9-6-3,0,3,6,0,..}
[1]={..-8-5-2,1,4,7,10,...},
[2]={..-7-4-1,2,5,8,11,.. }.

Partition of Z :

Z=[0] UJ[1] U[2]
And

OlNMINE2l=9

66
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Rational Numbers are really equivalence classes

Let A be the set of all ordered pairs of integers for which the
second element of the pair is nonzero. Symbolically,
A=Z x (Z-{0}).

Define a relation Ron A as follows: For all (g, b), (c, d) € A,
(a,b)R (¢, d) & ad = bc.

The fact is that R is an equivalence relation.

a. Prove that Ris transitive. (Proofs that R is reflexive and
symmetric are left to exercise 42 at the end of the section.)
b. Describe the distinct equivalence classes of R.
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i Solution (a)

a. [We must show that for all (a, b). (c.d). (e, f) € A, if (a.b) R (c.d) and (c.d)R (e, [),
then (a,b) R (e, f).] Suppose (a, b), (c,d), and (e, f) are particular but arbitrarily
chosen elements of A such that (a,b) R (c,d) and (c,d) R (e, f).
[We must show that (a, b) R (e, f).] By definition of R,

(1) ad =bc and (2) ¢f =de.

Since the second elements of all ordered pairs in A are nonzero, b # 0, d # 0, and
f # 0. Multiply both sides of equation (1) by f and both sides of equation (2) by b to
obtain

(') adf =bcf and (2') bef = bde.
Thus
adf = bde

and, since d # 0, it follows from the cancellation law for multiplication (T7 in
Appendix A) that

af = be.

It follows, by definition of R, that (a, b) R (e, f) [as was to be shown].

68
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Solution(b)

b. There is one equivalence class for each distinct rational number. Each equivalence
class consists of all ordered pairs (a, b) that, if written as fractions a /b, would equal
each other. The reason for this is that the condition for two rational numbers to be
equal is the same as the condition for two ordered pairs to be related. For instance, the
class of (1, 2) 1s

[(1.2)] =1{(1,2). (—1.=2).(2.4), (-2, —4). (3. 6). (-3, —6), ...}

. 1 -1 2 =2 3 =3
smcei__—Z_Z_:l_g__—ﬁandsofonh. H
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Proving Properties on Relations
on Infinite Sets
70
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Proving Properties on Relations
on Infinite Sets

Outline of proof.
To prove a relation is reflexive, symmetric, or transitive, first write
down what is to be proved, in First Order Logic.

For instance, for symmetry
vx, ye A if xR ythen y R x.

Then use direct proof method
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Recall: Definition of Relation Properties
and their consequences

Let A be a set and let R be a binary relation on A. Complete
the following sentences.

Ris not reflexive < there is an element x in A such that x R x [that is, such that

(x,x) ¢ R].
R is not symmetric < there are elements x and y in A such that x R y but y R x
[that is, such that (x, y) € R but (y, x) ¢ R].

R is not transitive < there are elements x, y and z in A such thatx R yandy R z
but x R z [that is, such that (x,y) € R and (y,z) € R but
(x,2) ¢ R].
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Properties of “Less Than” relation

Define a relation R on R (the set of all real numbers) as follows:
Forall x, ye R, xRye x<y.
a. Is Rreflexive? b. Is R symmetric? c. Is R transitive?

R is not reflexive:

R is reflexive if, and only if, vx € R,x R x. By definition
of R, this means that vxe R, x < x.

But this is false: 3x € R such that x « x.

As a counterexample, let x = 0 and note that 0 <« 0.

Hence R is not reflexive.
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Properties of “Less Than” relation

Define a relation R on R (the set of all real numbers) as follows:
Forall x, ye R, xRye x<y.
a. Is Rreflexive? b. Is R symmetric? c. Is R transitive?

R is not symmetric:

Ris symmetric if, and only if, vx, y€ R, if xR ythen y R x.

By definition of R, this means that vx, y € R, if x < ythen y < x.

But this is false: 3x, y € R such that x < yand y <« x.

As a counterexample, let x= 0 and y = 1 and note that 0 < 1 but
1«0.

Hence R is not symmetric.
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Properties of “Less Than” relation

Define a relation R on R (the set of all real numbers) as follows:
Forall x, ye R, xXRye x<y.

a. Is Rreflexive? b. Is R symmetric? c. Is R transitive?
R is transitive:

R is transitive if, and only if, for all x, j, ze R, if x R yand y
Rzthen xR z

By definition of R, this means that forall x, j, ze R, if x <y
and y<zthen x <z

But this statement is true by the transitive law of order for
real numbers.

Hence R is transitive.

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 75

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 76

38



Properties of Congruence Modulo 3

Define a relation 7 on Z (the set of all integers) as follows:
For all integers mand n, mTne 3| (m— n).
This relation is called congruence modulo 3.
a. Is Treflexive? b. Is 7symmetric? c. Is 7 transitive?

T is Reflexive

Suppose m is a particular but arbitrarily chosen integer.

[We must show that m T m.]

Now m— m=0.But3 | 0since0=3"0.Hence3 | (m—- m).
Thus, by definition of 7 m T m.

Hence T is reflexive.
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Properties of Congruence Modulo 3

Define a relation 7on Z (the set of all integers) as follows:
For all integers mand n, mTne 3| (m— n).
Is Treflexive? b. Is 7 symmetric? c. Is 7 transitive?

T is Symmetric

Suppose m and n are particular but arbitrarily chosen integers that satisfy
the condition m T n. /[We must show that n T m.]

By definition of 7, since m Tnthen 3 | (m - n).

By definition of “divides,” this means that m — n = 34, for some integer &.
Multiplying both sides by —1 gives n — m = 3(=k).

Since —kis an integer, this equation shows that 3 | (n — m).

Thus, by definition of 7 n T m.

Hence T is Symmetric

© Susanna S. Epp, Kenneth H. Rosen, Ahmad Hamo 2020, All rights reserved 78



Properties of Congruence Modulo 3

Defihe a relation 7on Z (the set of all integers) as follows:
For all integers mand n, mTne 3| (m— n).
Is Treflexive? b. Is 7symmetric? c. Is 7 transitive?

T is Transitive

Suppose m, n, and p are particular but arbitrarily chosen integers that
satisfy the condition m 7T nand n T p. [We must show thatm T p.]
By definition of 7, since m Tnand n T p,then 3 | (m- n)and

3| (n-p)

By definition of “divides,” this means that m — n=3rand n - p = 35,
for some integers rand s.

Adding the two equations gives (m — n) + (n — p) = 3r + 3s, and
simplifying gives that m — p= 3(r + s).

Since r+ sis an integer, this equation shows that 3 | (m — p).

Thus, by definition of 7, m T p. Hence, T is transitive
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Exercises

1. A= {BZU students}. Define Ron A by:

X Ry < xlives within 1 mile of y.
Is Rreflexive? Is R symmetric? Is R transitive?
Is R an equivalence relation?

2. A=H{0, 1, 2, 3}. Define Ron Aby:
R=A(1,3), (2,3)}

Is Rreflexive? Is R symmetric? Is Rtransitive?

Is R an equivalence relation?
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