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Discrete Mathematic and Application 
Comp233 

Instructor 
Murad Njoum

CHAPTER 3 
THE LOGIC OF QUANTIFIED STATEMENTS

2

Predicates and Quantified Statements I
In logic, predicates  �rial��r can be obtained by removing 
some or all of the nouns from a statement. For instance, let 
P stand for “is a student at IT College” and let Q stand for 
“is a student at.” Then both P and Q are predicate 
symbols.

The sentences “x is a student at IT College” and “x is a 
student at y” are symbolized as P(x) and as Q(x, y) 
respectively, where x and y are predicate variables that 
take values in appropriate sets. 

When concrete values are substituted in place of 
predicate variables, a statement results.

Instructor: Murad Njoum
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Predicates and Quantified Statements I

For simplicity, we define a predicate to be a predicate symbol together with 
suitable predicate variables. In some other treatments of logic, such objects are 
referred to as propositional functions or open sentences.

Instructor: Murad Njoum
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Predicates and Quantified Statements I

When an element in the domain of the variable of a 
one-variable predicate is substituted for the variable, the resulting statement is 
either true or false. The set of all such elements that make the predicate true is 
called the truth set of the predicate.

Instructor: Murad Njoum
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Example 2 – Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.” Find the truth set of Q(n) if
a. the domain of n is the set Z+ of all positive integers
b. the domain of n is the set Z of all integers.

Solution:
a. The truth set is {1, 2, 4, 8} because these are exactly the positive integers 

that divide 8 evenly.

b. The truth set is {1, 2, 4, 8,−1,−2,−4,−8} because the negative integers 
−1,−2,−4, and −8 also divide into 8 without leaving a remainder.

Instructor: Murad Njoum

6

The Universal Quantifier: 
One sure way to change predicates into statements is to assign specific 
values to all their variables. 

For example, if x represents the number 35, the sentence “x is (evenly) divisible 
by 5” is a true statement since        35 = 5   7. Another way to obtain 
statements from predicates is to add quantifiers.�r�a�r V�i��   

Quantifiers are words that refer to quantities such as “some” or “all” and tell for 
how many elements a given predicate is true.

Instructor: Murad Njoum
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The Universal Quantifier: 
The symbol  denotes “for all” and is called the universal 
quantifier.

The domain of the predicate variable is generally indicated 
between the  symbol and the variable name or 
immediately following the variable name. Some other 
expressions that can be used instead of for all are for 
every, for arbitrary, for any, for each, and given any.

Instructor: Murad Njoum

8

The Universal Quantifier: 
Sentences that are quantified universally are defined as 
statements by giving them the truth values specified in the 
following definition:

Instructor: Murad Njoum
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Example 3 – Truth and Falsity of Universal Statements

a. Let D = {1, 2, 3, 4, 5}, and consider the statement

    Show that this statement is true.

b. Consider the statement

    Find a counterexample to show that this statement is    
    false.

Instructor: Murad Njoum
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Example 3 – Solution
a. Check that “x2 ≥ x” is true for each individual x in D.

Hence “ x  D, x2 ≥ x” is true.

b. Counterexample: Take x =   . Then x is in R (since    is   a real number) and

Hence “ x  R, x2 ≥ x” is false.

Instructor: Murad Njoum
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The Universal Quantifier: 
The technique used to show the truth of the universal statement in Example 
3(a) is called the method of exhaustion. 

It consists of showing the truth of the predicate separately for each individual 
element of the domain.

This method can, in theory, be used whenever the domain of the predicate 
variable is finite.

Instructor: Murad Njoum

12

The Existential Quantifier: 
The symbol  denotes “there exists” and is called the 
existential quantifier. For example, the sentence “There is 
a student in Math 140” can be written as

 a person p such that p is a student in Math 140,

or, more formally,

        p  P such that p is a student in Math 140,

where P is the set of all people. The domain of the 
predicate variable is generally indicated either between the 
 symbol and the variable name or immediately following 

the variable name.
Instructor: Murad Njoum
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The Existential Quantifier: 
The words such that are inserted just before the predicate. Some other 
expressions that can be used in place of there exists are there is a, we can find 
a, there is at least one, for some, and for at least one. 

In a sentence such as “  integers m and n such that          m + n = m   n,” 
the  symbol is understood to refer to both m and n.

Instructor: Murad Njoum

14

Example 4 – Truth and Falsity of Existential Statements

a. Consider the statement

m  Z+ such that m2 = m.

    Show that this statement is true.

b. Let E = {5, 6, 7, 8} and consider the statement

m  E such that m2 = m.

    Show that this statement is false.
Instructor: Murad Njoum
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Example 4 – Solution
a. Observe that 12 = 1. Thus “m2 = m” is true for at least
    one integer m. Hence “ m  Z such that m2 = m” is true.

b. Note that m2 = m is not true for any integers m from 5 through 8:

   Thus “ m  E such that m2 = m” is false.

Instructor: Murad Njoum

16

Formal Versus Informal Language
It is important to be able to translate from formal to informal language 
when trying to make sense of mathematical concepts that are new to you. 
It is equally important to be able to translate from informal to formal 
language when thinking out a complicated problem.

Instructor: Murad Njoum

Rewrite the following formal statements in a variety of 
equivalent but more informal ways. Do not use the symbol 

 or . 
a.
b.
c.



9/30/2020

9

17

Example 5 – Solution
a. All real numbers have nonnegative squares.
   Or: Every real number has a nonnegative square.
   Or: Any real number has a nonnegative square.
   Or: The square of each real number is nonnegative.

b. All real numbers have squares that are not equal to −1.
   Or: No real numbers have squares equal to −1. 

(The words none are or no . . . are are equivalent to the words all are not.)

Instructor: Murad Njoum
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Example 5 – Solution
c. There is a positive integer whose square is equal to itself. 

Or: We can find at least one positive integer equal to its  own square. 
Or: Some positive integer equals its own square.
Or: Some positive integers equal their own squares.

cont’d

Instructor: Murad Njoum
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Universal Conditional Statements
A reasonable argument can be made that the most 
important form of statement in mathematics is the 
universal conditional statement:

x, if P(x) then Q(x).

Familiarity with statements of this form is essential if you 
are to learn to speak mathematics.

Instructor: Murad Njoum

20

Example 8 – Writing Universal Conditional Statements Informally

Rewrite the following statement informally, without 
quantifiers or variables.

x  R, if x > 2 then x2 > 4.
Solution:
If a real number is greater than 2 then its square is greater 
than 4.
Or: Whenever a real number is greater than 2, its square is
      greater than 4.

Instructor: Murad Njoum

Or: The square of any real number greater than 2 is greater 
      than 4.
Or: The squares of all real numbers greater than 2 are 
      greater than 4.
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Equivalent Forms of Universal 
and Existential Statements

Instructor: Murad Njoum

22

Equivalent Forms of Universal and Existential Statements

Observe that the two statements “  real numbers x, if x is an integer then x is 
rational” and “  integers x, x is rational”
 mean the same thing. 

Both have informal translations “All integers are rational.” In fact, a statement of 
the form

can always be rewritten in the form

by narrowing U to be the domain D consisting of all values of the variable x 
that make P(x) true.

Instructor: Murad Njoum



9/30/2020

12

23

Equivalent Forms of Universal and Existential Statements

Conversely, a statement of the form

can be rewritten as

Instructor: Murad Njoum

Rewrite the following statement in the two forms “ x,          
if ______ then ______”       and       “  ______x, _______”:

             All squares are rectangles.

Solution: x, if x is a square then x is a rectangle.
   squares x, x is a rectangle. 

24

Equivalent Forms of Universal and Existential Statements

Similarly, a statement of the form 

“ x such that p(x) and Q(x)” 

can be rewritten as 

“ x ∈D such that Q(x),” 

where D is the set of all x for which P(x) is true.

Instructor: Murad Njoum
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Example 11 – Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only 
positive integer factors are itself and 1. Consider the statement 
“There is an integer that is both prime and even.” 
Let Prime(n) be “n is prime” and Even(n) be “n is even.” Use 
the notation Prime(n) and Even(n) to rewrite this statement in 
the following two forms:

a. n such that ______  ______ .
b.  ______ n such that ______.

Instructor: Murad Njoum

a. n such that Prime(n)  Even(n).
b. Two answers:  a prime number n such that Even(n).

            an even number n such that Prime(n).

26

Implicit Quantification
Mathematical writing contains many examples of implicitly quantified  
statements. Some occur, through the presence of the word a or an. Others 
occur in cases where the general context of a sentence supplies part of its 
meaning.

For example, in an algebra course in which the letter x is always used to 
indicate a real number, the predicate

If x > 2 then x2 > 4

is interpreted to mean the same as the statement

 real numbers x, if x > 2 then x2 > 4.
Instructor: Murad Njoum
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Implicit Quantification
Mathematicians often use a double arrow to indicate implicit quantification 
symbolically.

For instance, they might express the above statement as

x > 2  x2 > 4.

Instructor: Murad Njoum
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Example 12 – Using  and 
Let

Q(n) be “n is a factor of 8,”
R(n) be “n is a factor of 4,”
S(n) be “n < 5 and n   3,”

and suppose the domain of n is Z+, the set of positive integers. 

Use the  and  symbols to indicate true relationships among Q(n), R(n), and 
S(n).

Instructor: Murad Njoum
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Example 12 – Solution
1. As noted in Example 2, the truth set of Q(n) is {1, 2, 4, 8}   
    when the domain of n is Z+. By similar reasoning the   
    truth set of R(n) is {1, 2, 4}. 

    Thus it is true that every element in the truth set of R(n)   
    is in the truth set of Q(n), or, equivalently, 

n in Z+, R(n) → Q(n). 

    So R(n)  Q(n), or, equivalently

n is a factor of 4  n is a factor of 8.
Instructor: Murad Njoum
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Example 12 – Solution
2. The truth set of S(n) is {1, 2, 4}, which is identical to the  
    truth set of R(n), or, equivalently, 

n in Z+, R(n) ↔ S(n).      

    So R(n)  S(n), or, equivalently, 

n is a factor of 4  n < 5 and n   3. 

    Moreover, since every element in the truth set of S(n) is   
    in the truth set of Q(n), or, equivalently, 

    n in Z+, S(n) → Q(n), then S(n)  Q(n), or, equivalently,
n < 5 and n   3  n is a factor of 8.

cont’d

Instructor: Murad Njoum
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Tarski’s World
Tarski’s World is a computer program developed by information scientists Jon 
Barwise and John Etchemendy to help teach the principles of logic. 

It is described in their book The Language of First-Order Logic, which is 
accompanied by a CD-Rom containing the program Tarski’s World, named after 
the great logician Alfred Tarski.

Instructor: Murad Njoum

32

Example 13 – Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks of various sizes, 
shapes, and colors, which are located on a grid. Shown in Figure 3.1.1 is a 
picture of an arrangement of objects in a two-dimensional Tarski world.

Figure 3.1.1
Instructor: Murad Njoum

The configuration can be described using logical operators 
and—for the two-dimensional version—notation such as 
Triangle(x), meaning “x is a triangle,” Blue(y), meaning “y is 
blue,” and RightOf(x, y), meaning “x is to the right of y (but 
possibly in a different row).” 
Individual objects can be given names such as a, b, or c.
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Example 13 – Investigating Tarski’s World

Determine the truth or falsity of each of the following statements. The domain 
for all variables is the set of objects in the Tarski world shown above.

a. t, Triangle(t) → Blue(t).
b. x, Blue(x) → Triangle(x).
c. y such that Square(y)  RightOf(d, y).
d. z such that Square(z)  Gray(z).

cont’d

Instructor: Murad Njoum

34

Example 13 – Solution
a. This statement is true: All the triangles are blue.

b. This statement is false. As a counterexample, note that e   is blue and it is 
not a triangle.

c. This statement is true because e and h are both square   and d is to their 
right.

d. This statement is false: All the squares are either blue or black.

Instructor: Murad Njoum
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Negations of Quantified Statements
The general form of the negation of a universal statement follows immediately 
from the definitions of negation and of the truth values for universal and 
existential statements.

Instructor: Murad Njoum

36

Negations of Quantified Statements
Thus

The negation of a universal statement (“all are”) is logically equivalent to 
an existential statement (“some are not” or “there is at least one that is 
not”).

Note that when we speak of logical equivalence for quantified statements, 
we mean that the statements always have identical truth values no matter what 
predicates are substituted for the predicate symbols and no matter what sets 
are used for the domains of the predicate variables.

Instructor: Murad Njoum



9/30/2020

19

37

Negations of Quantified Statements
The general form for the negation of an existential statement follows 
immediately from the definitions of negation and of the truth values for 
existential and universal statements.

Instructor: Murad Njoum

Thus

The negation of an existential statement (“some are”) is logically 
equivalent to a universal statement (“none are” or “all are not”).

38

Example 1 – Negating Quantified Statements
Write formal negations for the following statements:

a.  primes p, p is odd.

b.  a triangle T such that the sum of the angles of T  equals 200 .
Solution:

a. By applying the rule for the negation of a  statement,
    you can see that the answer is

a prime p such that p is not odd.

b. By applying the rule for the negation of a  statement,
    you can see that the answer is 

 triangles T, the sum of the angles of T does not equal 200 .
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Negations of Universal Conditional Statements

Negations of universal conditional statements are of special importance in 
mathematics. 

The form of such negations can be derived from facts that have already been 
established. 

By definition of the negation of a for all statement,

But the negation of an if-then statement is logically equivalent to an and 
statement. More precisely,

Instructor: Murad Njoum

40

Negations of Universal Conditional Statements

Substituting (3.2.2) into (3.2.1) gives

Written less symbolically, this becomes

Instructor: Murad Njoum
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Example 4 – Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal negation for statement 
(b).

a.  people p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines,
    then it contains a bug.

Solution:
a.  a person p such that p is blond and p does not have
     blue eyes.

Instructor: Murad Njoum

b. There is at least one computer program that has more
     than 100,000 lines and does not contain a bug.

42

The Relation among , , , and 
The negation of a for all statement is a there exists statement, and the negation of 
a there exists statement is a for all statement. 

These facts are analogous to De Morgan’s laws, which state that the negation of an 
and statement is an or statement and that the negation of an or statement is an and 
statement. 

This similarity is not accidental. In a sense, universal statements are 
generalizations of and statements, and existential statements are generalizations 
of or statements.

Instructor: Murad Njoum
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The Relation among , , , and 
If Q(x) is a predicate and the domain D of x is the 
set {x1, x2, . . . , xn}, then the statements

and

are logically equivalent. 

Instructor: Murad Njoum

Similarly, if Q(x) is a predicate and D = {x1, x2, . . . , xn}, then the statements

and 
are logically equivalent.

44

Variants of Universal Conditional Statements

We have known that a conditional statement has a contrapositive, a converse, 
and an inverse. 

The definitions of these terms can be extended to universal conditional 
statements.

Instructor: Murad Njoum
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Example 5 – Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and inverse for the 
following statement:

Statement is: 
If a real number is greater than 2, then its square is greater than 4.

Solution:
The formal version of this statement is 

x  R, if x > 2 then x2 > 4.

Instructor: Murad Njoum
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Example 5 – Solution

Contrapositive: x  R, if x2 ≤ 4 then x ≤ 2.
Or: If the square of a real number is less 
than or equal to 4, then the number is less 
than or equal to 2.

  Converse: x  R, if x2 > 4 then x > 2.
Or: If the square of a real number is greater 
than 4, then the number is greater than 2.

      Inverse: x  R, if x ≤ 2 then x2 ≤ 4.
Or: If a real number is less than or equal to 
2, then the square of the number is less 
than or equal to 4.

cont’d

Instructor: Murad Njoum
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Variants of Universal Conditional Statements

Let P(x) and Q(x) be any predicates, let D be the domain of x, and consider the 
statement

and its contrapositive

Any particular x in D that makes “if P(x) then Q(x)” true also makes “if ~Q(x) 
then ~P(x)” true (by the logical equivalence between p  q and ~q  ~p).

Instructor: Murad Njoum

48

Variants of Universal Conditional Statements

It follows that the sentence “If P(x) then Q(x)” is true for all x in D if, and only if, 
the sentence “If ~Q(x) then ~P(x)” is true for all x in D.

Thus we write the following and say that a universal conditional statement is 
logically equivalent to its contrapositive:

Instructor: Murad Njoum
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Variants of Universal Conditional Statements

In Example 3.2.5 we noted that the statement

x  R, if x > 2 then x2 > 4

has the converse

x  R, if x2 > 4 then x > 2.

Observe that the statement is true whereas its converse is false (since, for 
instance, (−3)2 = 9 > 4 but −3    2).

Instructor: Murad Njoum

50

Variants of Universal Conditional Statements

This shows that a universal conditional statement may have a different truth 
value from its converse.

Hence a universal conditional statement is not logically equivalent to its 
converse. 

This is written in symbols as follows:

Instructor: Murad Njoum
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Necessary and Sufficient Conditions, Only If

The definitions of necessary, sufficient, and only if can also be extended to 
apply to universal conditional statements.

Instructor: Murad Njoum

(contrapositive)

52

Example 6 – Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements. Do not 
use the word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for
    being President of the Palestine.
Solution:
a. A formal version of the statement is

x, if x is a square, then x is a rectangle.
Instructor: Murad Njoum
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Example 6 – Solution cont’d

Instructor: Murad Njoum

Or, in informal language:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as

 people x, if x is younger than 35, then x cannot be President of  Palestine.

Or, by the equivalence between a statement and its contrapositive:

 people x, if x is President of Palestine, then x is at least 35 years old.

54

Statements with Multiple Quantifiers
When a statement contains more than one quantifier �82��r, we imagine the 
actions suggested by the quantifiers as being performed in the order in which 
the quantifiers occur. 

For instance, consider a statement of the form

x in set D, y in set E such that x and y satisfy property P(x, y).

Instructor: Murad Njoum
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Statements with Multiple Quantifiers
To show that such a statement is true, you must be able to meet the following 
challenge:

• Imagine that someone is allowed to choose any element whatsoever from the 
set D, and imagine that the person gives you that element. Call it x.

• The challenge for you is to find an element y in E so that the person’s x and 
your y, taken together, satisfy property P(x, y).

Instructor: Murad Njoumset D set E

find yfind x

 P ,  property is: Color (x, y)

56

Example 1 – Truth of a  Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

Show that the following statement is true in this world:
For all triangles x, there is a square y such that x and y have the same 
color.

Figure 3.3.1

Instructor: Murad Njoum
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Example 1 – Solution
The statement says that no matter which triangle someone gives you, you will 
be able to find a square of the same color. There are only three triangles, d, f, 
and i. 

The following table shows that for each of these triangles a square of the 
same color can be found.

Instructor: Murad Njoum

58

Statements with Multiple Quantifiers

Now consider a statement containing both  and , where the  comes before 
the :

 an x in D such that y in E, x and y satisfy property     P(x, y).
To show that a statement of this form is true: 
You must find one single element (call it x) in D with the following property:

• After you have found your x, someone is allowed to choose any element 
whatsoever from E. The person challenges you by giving you that element. Call it y.

• Your job is to show that your x together with the person’s y satisfy property P(x, y).

Instructor: Murad Njoum
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Statements with Multiple Quantifiers
Here is a summary of the convention for interpreting statements with two different 
quantifiers:

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form
x in D, y in E such that P(x, y)

your challenge is to allow someone else to pick whatever element x in D they wish and then you 
must find an element y in E that “works” for that particular x.

Instructor: Murad Njoum

If you want to establish the truth of a statement of the form
x in D such that y in E, P(x, y)

your job is to find one particular x in D that will “work” no matter what y in E anyone might choose to challenge you with.

60

Example 3 – Interpreting Multiply-Quantified Statements

A college cafeteria line has four stations: salads, main courses, desserts �82��, 
and beverages �82V�⸹�.

The salad station offers a choice of green salad or fruit salad; the main course 
station offers spaghetti or fish; the dessert station offers pie or cake ��r�〷 V8 �a2� 
; and the beverage station offers milk, soda, or coffee. Three students, Ahmad, 
Tamer, and Yusra, go through the line and make the following choices:

Ahmad: green salad, spaghetti, pie, milk

Tamer : fruit salad, fish, pie, cake, milk, coffee

Yusra: spaghetti, fish, pie, soda

Instructor: Murad Njoum
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Example 3 – Interpreting Multiply-Quantified Statements

These choices are illustrated in Figure 3.3.2.

Figure 3.3.2

cont’d

Instructor: Murad Njoum

Ahmad

Tamer

Yusra

62

Example 3 – Interpreting Multiply-Quantified Statements

Write each of following statements informally and find its truth value.

a.  an item I such that  students S, S chose I.

b.  a student S such that  items I, S chose I.

c.  a student S such that  stations Z,  an item I in Z 
    such that S chose I.

d.  students S and  stations Z,  an item I in Z such that 
    S chose I.

cont’d

Instructor: Murad Njoum
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Example 3 – Solution
a. There is an item that was chosen by every student. 
     This is true; every student chose pie.

b. There is a student who chose every available item. 
      This is false; no student chose all nine items.

c. There is a student who chose at least one item from every station. 
    This is true; both Ahmad and Tamer chose at least one item from every 

station.

d. Every student chose at least one item from every station. 
   This is false; Yusra did not choose a salad.

Instructor: Murad Njoum
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Example 4 – Translating Multiply-Quantified Statements from Informal to Formal Language

The reciprocal ������ of a real number a is a real number b such that ab = 1. The 
following two statements are true.
Rewrite them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.

Solution:

a.  nonzero real numbers u,  a real number v such that uv = 1.

b.  a real number c such that  real numbers d, cd   1.

The number 0 has no 
reciprocal.

Instructor: Murad Njoum
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We apply these laws to find

∼( x in D, y in E such that P(x, y))

by moving in stages from left to right along the sentence.

First version of negation: x in D such that ∼( y in E such   that P(x, y)).

Final version of negation: x in D such that y in E,   ∼P(x, y).

Negations of Multiply-Quantified Statements

Instructor: Murad Njoum
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Similarly, to find
                        ∼( x in D such that y in E, P(x, y)),

we have

First version of negation:  x in D,∼( y in E, P(x, y)).

Final version of negation: x in D, y in E such that    ∼P(x, y).

Negations of Multiply-Quantified Statements

Instructor: Murad Njoum

These facts can be summarized as follows:
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Refer to the Tarski world of Figure 3.3.1.

Write a negation for each of the 
following statements, and determine 
which is true, the given statement or 
its negation.

a. For all squares x, there is a circle y 
such that x and y have the same 
color.

b. There is a triangle x such that for all 
squares y, x is to the right of y.

Example 8 – Negating Statements in a Tarski World

Figure 3.3.1

Instructor: Murad Njoum
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First version of negation:  a square x such that 
                                        ∼(  a circle y such that x and y 
                                        have the same color).

Final version of negation:  a square x such that 
 circles y, x and y do not have                                                                                                                

the same color.

The negation is true. Square e is black and no circle is black, so there is a 
square that does not have the same color as any circle.

Example 8(a) – Solution

Instructor: Murad Njoum
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First version of negation:  triangles x,∼ (  squares y, x is  to the right of y).

Final version of negation: 
                          triangles x,  a square y such  that x is not to the right of y.

The negation is true because no matter what triangle is chosen, it is not to the right of 
square g (or square j ).

Example 8(b) – Solution cont’d

Instructor: Murad Njoum
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Consider the following two statements:

 people x,  a person y such that x loves y.

 a person y such that  people x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. 

However, the first means that given any person, it is possible to find someone 
whom that person loves, whereas the second means that there is one amazing 
individual who is loved by all people.

Order of Quantifiers

Instructor: Murad Njoum
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The two sentences illustrate an extremely important property about multiply-
quantified statements:

Interestingly, however, if one quantifier immediately follows another 
quantifier of the same type, then the order of the quantifiers does not 
affect the meaning.

Order of Quantifiers

Instructor: Murad Njoum
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Example 9 – Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the following two statements 
have the same truth value?

a. For every square x there is a 
triangle y such that x and y 
have different colors.

b. There exists a triangle y such 
that for every square x, x and y 
have different colors.

Figure 3.3.1

Instructor: Murad Njoum
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Statement (a) says that if someone gives you one of the squares from the 
Tarski world, you can find a triangle that has a different color. This is true.

If someone gives you square g or h (which are gray), you can use triangle d 
(which is black); if someone gives you square e (which is black), you can use 
either triangle f or triangle i (which are both gray); and if someone gives you 
square j (which is blue), you can use triangle d (which is black) or triangle f or i 
(which are both gray).

Example 9 – Solution

Instructor: Murad Njoum
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Example 9 – Solution
Statement (b) says that there is one particular triangle in the Tarski world that 
has a different color from every one of the squares in the world. This is false. 

Two of the triangles are gray, but they cannot be used to show the truth of the 
statement because the Tarski world contains gray squares. 

The only other triangle is black, but it cannot be used either because there is a 
black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have 
opposite truth values.

cont’d

Instructor: Murad Njoum
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Example 10 – Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

Figure 3.3.1

Instructor: Murad Njoum
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Example 10 – Formalizing Statements in a Tarski World

Let Triangle(x), Circle(x), and Square(x) mean “x is a triangle,” “x is a circle,” 
and “x is a square”; let Blue(x), Gray(x), and Black(x) mean “x is blue,” “x is 
gray,” and “x is
black”; 

let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean “x is to the right 
of y,” “x is above y,” and “x has the same color as y”; and use the notation x = y 
to denote the predicate “x is equal to y”. 

Let the common domain D of all variables be the set of all the objects in the 
Tarski world.

cont’d

Instructor: Murad Njoum
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Example 10 – Formalizing Statements in a Tarski World

Use formal, logical notation to write each of the following statements, and 
write a formal negation for each statement.

a. For all circles x, x is above f.

b. There is a square x such that x is black.

c. For all circles x, there is a square y such that x and y have the same color.

d. There is a square x such that for all triangles y, x is to right of y.

cont’d

Instructor: Murad Njoum
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Example 10(a) – Solution
Statement: 

            x(Circle(x) →Above(x, f )).

Negation: 
            ∼( x(Circle(x) → Above(x, f ))

        ≡ x ∼ (Circle(x) → Above(x, f ))

        ≡ x(Circle(x)  ∼Above(x, f ))

by the law for negating a  statement

by the law of negating an if-then statement

Instructor: Murad Njoum
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Example 10(b) – Solution
Statement: 

           x(Square(x)  Black(x)).

Negation: 
            ∼( x(Square(x)  Black(x))

          ≡ x ∼ (Square(x)  Black(x))

          ≡ x(∼Square(x)  ∼Black(x))

by the law for negating a  statement

by De Morgan’s law

cont’d

Instructor: Murad Njoum
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Example 10(c) – Solution
Statement: 

    x(Circle(x) → y(Square(y)  SameColor(x, y))).

Negation: 
  ∼( x(Circle(x) → y(Square(y)  SameColor(x, y))))

 ≡ x ∼ (Circle(x) → y(Square(y)  SameColor(x, y)))

 ≡ x(Circle(x)  ∼( y(Square(y)  SameColor(x, y))))

     ≡ x(Circle(x)  y(∼(Square(y)  SameColor(x, y))))

     ≡ x(Circle(x)  y(∼Square(y)  ∼SameColor(x, y)))

by the law for negating a  statement

by the law for negating an if-then statement

cont’d

by the law for negating a  statement

by De Morgan’s law
Instructor: Murad Njoum
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Example 10(d) – Solution
Statement:

  x(Square(x)  y(Triangle(y) → RightOf(x, y)  )  ).
 

Negation:
∼( x(Square(x)  y(Triangle(y) → RightOf(x, y))))

    ≡ x ∼ (Square(x)  y(Triangle(x) → RightOf(x, y)))

≡ x(∼Square(x)  ∼( y(Triangle(y) → RightOf(x, y))))

≡ x(∼Square(x)  y(∼(Triangle(y) → RightOf(x, y))))

≡ x(∼Square(x)  y(Triangle(y)  ∼RightOf(x, y)))

by the law for negating a  statement

by De Morgan’s law

cont’d

by the law for negating a  statement

by the law for negating an if-then statement
Instructor: Murad Njoum


