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Discrete Mathematic and Application 
Comp233 

Instructor :Murad Njoum

CHAPTER 4
ELEMENTARY NUMBER THEORY AND METHODS OF 

PROOF

2

Example 1 – Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following 
questions.
a. Is 0 even?
b. Is −301 odd?
c. If a and b are integers, is 6a2b even?
d. If a and b are integers, is 10a + 8b + 1 odd?
e. Is every integer either even or odd?

Solution:
a. Yes, 0 = 2·0.

b. Yes, –301 = 2(–151) + 1.
Instructor:  Murad Njoum
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Example 1 – Solution
c. Yes, 6a2b = 2(3a2b), and since a and b are integers, so is 3a2b (being a 

product of integers).

d. Yes, 10a + 8b + 1 = 2(5a + 4b) + 1, and since a and b are integers, so is 5a + 
4b (being a sum of products of integers).

e. The answer is yes, although the proof is not obvious. 

cont’d

Instructor:  Murad Njoum
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Definitions
The integer 6, which equals 2   3, is a product of two smaller positive 
integers. 
On the other hand, 7 cannot be written as a product of two smaller positive 
integers; its only positive factors are 1 and 7. A positive integer, such as 7, 
that cannot be written as a product of two smaller positive integers is called 
prime.

Instructor:  Murad Njoum
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Example 2 – Prime and Composite Numbers
a. Is 1 prime?
b. Is every integer greater than 1 either prime or    

composite?
c. Write the first six prime numbers.
d. Write the first six composite numbers.

Solution:
a. No. A prime number is required to be greater than 1.

b. Yes. Let n be any integer that is greater than 1. Consider 
all pairs of positive integers r and s such that n = rs. 
There exist at least two such pairs, namely r = n and 
s = 1 and r = 1 and s = n.

Instructor:  Murad Njoum
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Example 2 – Solution
  Moreover, since n = rs, all such pairs satisfy the 
  inequalities 1   r   n and 1   s   n. If n is prime, then the 
  two displayed pairs are the only ways to write n as rs.

  Otherwise, there exists a pair of positive integers r and s   such that n = rs and 
neither r nor s equals either 1 or n.   Therefore, in this case 1 < r < n and 1 < s   
   < n, and hence   n is composite.

c. 2, 3, 5, 7, 11, 13

d. 4, 6, 8, 9, 10, 12

cont’d

Instructor:  Murad Njoum
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Proving Existential Statements
We have known that a statement in the form

                         x   D such that Q(x)

is true if, and only if,
                   Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true.

Another way is to give a set of directions for finding such an x. Both of these 
methods are called constructive �riala�H proofs of existence.

Instructor:  Murad Njoum
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Example 3 – Constructive Proofs of Existence

a. Prove the following:  an even integer n that can be written in two ways as a 
sum of two prime numbers.

b. Suppose that r and s are integers. Prove the following:  an integer k such 
that 22r + 18s = 2k.

Solution:
a. Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5, and 7 are 
    all prime numbers.
b. Let k = 11r + 9s.

Instructor:  Murad Njoum

Then k is an integer because it is a sum of products of integers; and by substitution, 2k = 2(11r + 9s), which 
equals 22r + 18s by the distributive law of algebra.
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Proving Existential Statements
A nonconstructive proof of existence involves showing either 
(a) that the existence of a value of x that makes Q(x) true is guaranteed by an 
axiom or a previously proved theorem or 
(b) that the assumption that there is no such x leads to a contradiction.

The disadvantage of a nonconstructive proof is that it may give virtually no clue 
about where or how x may be found.

Instructor:  Murad Njoum
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Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false. Consider the question 
of disproving a statement of the form

                         x in D, if P(x) then Q(x).
Showing that this statement is false is equivalent to showing that its negation is 
true. The negation of the statement is existential:

                   x in D such that P(x) and not Q(x).

Instructor:  Murad Njoum
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Example 4 – Disproof by Counterexample

Disprove the following statement by finding a counterexample:
            real numbers a and b, if a2 = b2 then a = b.

Solution:
To disprove this statement, you need to find real numbers a and b such that the 
hypothesis a2 = b2 is true and the conclusion a = b is false. 

The fact that both positive and negative integers have positive squares helps in 
the search.

Instructor:  Murad Njoum

12

Proving Universal Statements
The vast majority of mathematical statements to be proved are universal. In 
discussing how to prove such statements, it is helpful to imagine them in a 
standard form:

                           x   D, if P(x) then Q(x).

When D is finite or when only a finite number of elements satisfy P(x), such a 
statement can be proved by the method of exhaustion �82��n8.

Instructor:  Murad Njoum
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Example 5 – The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

     n  Z, if n is even and 4 ≤ n ≤ 26, then n can be written 
    as a sum of two prime numbers.

Solution:

Instructor:  Murad Njoum

14

Proving Universal Statements
The most powerful technique for proving a universal statement is one that 
works regardless of the size of the domain over which the statement is 
quantified.

It is called the method of generalizing from the generic particular. Here is the 
idea underlying the method:

��㿰�8 ����8 �� ������8 �����

Instructor:  Murad Njoum
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Example 6 – Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the 
following. 

You ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 
2, and subtract twice the original number. 

Then you astound the person by announcing that their final result was 7. How 
does this “trick” work?

Instructor:  Murad Njoum
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Let an empty box   or the symbol x stand for the number the person picks. 
Here is what happens when the person follows your directions:

Example 6 – Generalizing from the Generic Particular
cont’d

Instructor:  Murad Njoum
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Thus no matter what number the person starts with, the result will always be 7. 

Note that the x in the analysis above is particular �82� (because it represents a 
single quantity), but it is also arbitrarily iriila�H chosen or generic (because any 
number whatsoever can be put in its place). 

This illustrates the process of drawing a general conclusion from a particular but 
generic object.

cont’d
Example 6 – Generalizing from the Generic Particular

Instructor:  Murad Njoum
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Proving Universal Statements
When the method of generalizing from the generic particular is applied to a 
property of the form “If P(x) then Q(x),” the result is the method of direct proof.

We have known that the only way an if-then statement can be false is for the 
hypothesis to be true and the conclusion to be false.

Thus, given the statement “If P(x) then Q(x),” if you can show that the truth of 
P(x) compels the truth of Q(x), then  you will have proved the statement.

Instructor:  Murad Njoum
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Proving Universal Statements
It follows by the method of generalizing from the generic particular that to show 
that “ x, if P(x) then Q(x),” is true for all elements x in a set D, you suppose x 
is a particular but arbitrarily chosen element of D that makes P(x) true, 
and then you show that x makes Q(x) true.

Instructor:  Murad Njoum
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Example 7 – A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

Solution:
Whenever you are presented with a statement to be proved, it is a good idea to 
ask yourself whether you believe it to be true. 

In this case you might imagine some pairs of even integers, say 2 + 4, 6 + 10, 
12 + 12, 28 + 54, and mentally check that their sums are even.

Instructor:  Murad Njoum
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Example 7 – Solution
However, since you cannot possibly check all pairs of even numbers, you 
cannot know for sure that the statement is true in general by checking its truth in 
these particular instances.

Many properties hold for a large number of examples and yet fail to be true in 
general.

To prove this statement in general, you need to show that no matter what even 
integers are given, their sum is even. But given any two even integers, it is 
possible to represent them as 2r and 2s for some integers r and s.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
And by the distributive law of algebra, 2r + 2s = 2(r + s), 
which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more 
complicated than this. What is the method you could use to 
derive a proof?

Formal Restatement:   integers m and n, if m and n are 
                                      even then m + n is even.
This statement is universally quantified over an infinite 
domain. Thus to prove it in general, you need to show that 
no matter what two integers you might be given, if both of 
them are even then their sum will also be even.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Next ask yourself, “Where am I starting from?” or “What am I supposing?” 
The answer to such a question gives you the starting point, or first sentence, of 
the proof.
Starting Point: Suppose m and n are particular but 
                          arbitrarily chosen integers that are even.

Or, in abbreviated form:
                    Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in order to complete 
the proof?”

cont’d

Instructor:  Murad Njoum

To Show: m + n is even.

24

Example 7 – Solution
One of the basic laws of logic, called existential instantiation, says, in effect, that 
if you know something exists, you can give it a name. 

However, you cannot use the same name to refer to two different things, both of 
which are currently under discussion.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Thus since m equals twice some integer, you can give that integer a name, and 
since n equals twice some integer, you can also give that integer a name:

Now what you want to show is that m + n is even.              
In other words, you want to show that m + n equals            

  2   (some integer). Having just found alternative representations for m (as 2r) 
and n (as 2s), it seems reasonable to substitute these representations in place 
of m and n:

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Your goal is to show that m + n is even. By definition of even, this means that 
m + n can be written in the form

This analysis narrows the gap between the starting point and what is to be 
shown to showing that

Why is this true? First, because of the distributive law from algebra, which 
says that

and, second, because the sum of any two integers is an integer, which 
implies that r + s is an integer.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
In keeping with this analogy, the bracketed comments can be thought of as 
similar to the explanatory documentation provided by a good programmer. 
Documentation is not necessary for a program to run, but it helps a human 
reader understand what is going on.

Proof:
Suppose m and n are [particular but arbitrarily chosen] even integers. [We must 
show that m + n is even.]

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
By definition of even, m = 2r and n = 2s for some integers r and s. Then

Let t = r + s. Note that t is an integer because it is a sum of integers. Hence

                       
It follows by definition of even that m + n is even. 
[This is what we needed to show.]

cont’d

Instructor:  Murad Njoum
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Directions for Writing Proofs of Universal Statements

Think of a proof as a way to communicate a convincing argument for the truth of 
a mathematical statement.

Over the years, the following rules of style have become fairly standard for 
writing the final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper.

2. Clearly mark the beginning of your proof with the   word Proof.

3. Make your proof self-contained.

Instructor:  Murad Njoum
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Directions for Writing Proofs of Universal Statements

    This means that you should explain the meaning of  each variable used in 
your proof in the body of the proof. Thus you will begin proofs by 
introducing the initial variables and stating what kind of objects they are.

    At a later point in your proof, you may introduce a new variable to represent 
a quantity that is known at that point to exist.

4. Write your proof in complete, gramatically correct 
    sentences.
    This does not mean that you should avoid using symbols and shorthand 

abbreviations, just that you should incorporate them into sentences.
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Directions for Writing Proofs of Universal Statements

5. Keep your reader informed about the status of each statement in your 
proof.

     Your reader should never be in doubt about whether something in your proof 
has been assumed or established or is still to be deduced. If something is 
assumed, preface it with a word like Suppose or Assume.

    If it is still to be shown, preface it with words like, We must show that or In 
other words, we must show that. 
This is especially important if you introduce a variable   in rephrasing what 
you need to show.

Instructor:  Murad Njoum

32

Directions for Writing Proofs of Universal Statements

6. Give a reason for each assertion in your proof.
    Each assertion in a proof should come directly from the hypothesis of the 
theorem, or follow from the definition of  one of the terms in the theorem, or be a 
result obtained   earlier in the proof, or be a mathematical result that has 
    previously been established or is agreed to be assumed.

    Indicate the reason for each step of your proof using 
    phrases such as by hypothesis, by definition of . . . , and  
    by theorem . . . . 

Instructor:  Murad Njoum
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Directions for Writing Proofs of Universal Statements

7. Include the “little words and phrases” that make the logic of your 
arguments clear.

    When writing a mathematical argument, especially a proof, indicate how each 
sentence is related to the previous one.

    Does it follow from the previous sentence or from a 
combination of the previous sentence and earlier ones? If so, start the 
sentence by stating the reason why it follows or by writing Then, or Thus, or 
So, or Hence, or Therefore, or Consequently, or It follows that, and include 
the reason at the end of the sentence.

Instructor:  Murad Njoum
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Directions for Writing Proofs of Universal Statements

   If a sentence expresses a new thought or fact that does    not follow as an 
immediate consequence of the preceding      statement but is needed for a later 
part of a proof, introduce it by writing Observe that, or Note that, or But, 
   or Now.
   Sometimes in a proof it is desirable to define a new  variable in terms of 
previous variables. In such a case,  introduce the new variable with the word 
Let.

8. Display equations and inequalities.
    The convention is to display equations and inequalities  on separate lines to 
increase readability, both for other people and for ourselves so that we can 
more easily  check our work for accuracy.
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Common Mistakes
The following are some of the most common mistakes people make when 
writing mathematical proofs.

1. Arguing from examples.
    Looking at examples is one of the most helpful practices  a problem solver 
can engage in and is encouraged by all  good mathematics teachers. 

    However, it is a mistake to  think that a general  statement can be proved by 
showing it to be true for some special cases. A property referred to in a 
universal  statement may be true in many instances without being 
    true in general.

Instructor:  Murad Njoum
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Common Mistakes
2. Using the same letter to mean two different things.
    Some beginning theorem provers give a new variable quantity the same 

letter name as a previously introduced variable.

3. Jumping to a conclusion.
    To jump to a conclusion means to allege the truth of something without giving 

an adequate reason.

4. Circular reasoning.
    To engage in circular reasoning means to assume what is to be proved; it is a 

variation of jumping to a conclusion.

Instructor:  Murad Njoum
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Common Mistakes
5. Confusion between what is known and what is still to   
    be shown.
    A more subtle way to engage in circular reasoning 
    occurs when the conclusion to be shown is restated 
    using a variable.

6. Use of any rather than some.
    There are a few situations in which the words any and 
    some can be used interchangeably.

Instructor:  Murad Njoum
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Example  – Disproving an Existential Statement

Show that the following statement is false:
  There is a positive integer n such that n2 + 3n + 2 is prime.

Solution:
Proving that the given statement is false is equivalent to proving its negation is 
true. 

The negation is

      For all positive integers n, n2 + 3n + 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic 
particular.

Instructor:  Murad Njoum
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Example 9 – Solution
Claim: The statement “There is a positive integer n such 
            that n2 + 3n + 2 is prime” is false.

Proof:
Suppose n is any [particular but arbitrarily chosen] positive integer. [We will 
show that n2 + 3n + 2 is not prime.]

We can factor n2 + 3n + 2 to obtain 
                         n2 + 3n + 2 = (n + 1)(n + 2).

We also note that n + 1 and n + 2 are integers (because they are sums of 
integers) and that both n + 1 > 1 and 
n + 2 > 1 (because n   1).Thus n2 + 3n + 2 is a product of two integers each 
greater than 1, and so n2 + 3n + 2 is not prime.

cont’d

Instructor:  Murad Njoum
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Conjecture ���㿰昍, Proof, and Disproof
More than 350 years ago, the French mathematician Pierre de Fermat claimed 
that it is impossible to find positive integers x, y, and z with xn + yn = zn if n is an 
integer that is at least 3. (For n = 2, the equation has many integer solutions, 
such as 32 + 42 = 52 and 52 + 122 = 132.)

Fermat wrote his claim in the margin of a book, along with the comment “I have 
discovered a truly remarkable PROOF of this theorem which this margin is too 
small to contain.” 

Instructor:  Murad Njoum
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Conjecture, Proof, and Disproof
In other words, no three perfect fourth powers add up to another perfect fourth 
power. For small numbers, Euler’s conjecture looked good.

But in 1987 a Harvard mathematician, Noam Elkies, proved it wrong. One 
counterexample, found by Roger Frye of Thinking Machines Corporation in a 
long computer search, is 95,8004 + 217,5194 + 414,5604 = 422,4814.

Instructor:  Murad Njoum
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Direct Proof and Counterexample II: Rational Numbers

Sums, differences, and products of integers are integers. But most quotients of 
integers are not integers. Quotients �n8���8 of integers are, however, important; 
they are known as rational numbers.

The word rational contains the word ratio, which is another word for quotient 
�8�� ��2��8. A rational number can be written as a ratio of integers.

Instructor:  Murad Njoum
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Example 1 – Determining Whether Numbers Are Rational or Irrational

a. Is 10/3 a rational number?

b. Is         a rational   number?

c. Is 0.281 a rational number?

d. Is 7 a rational number?

e. Is 0 a rational number?

Instructor:  Murad Njoum
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Example 1 – Determining Whether Numbers Are Rational or Irrational

f. Is 2/0 a rational number?

g. Is 2/0 an irrational number?

h. Is 0.12121212 . . . a rational number (where the digits 12
    are assumed to repeat forever)?

i.  If m and n are integers and neither m nor n is zero, is   
    (m + n) /m n a rational number?

cont’d

Instructor:  Murad Njoum
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Example 1 – Solution
a. Yes, 10/3 is a quotient of the integers 10 and 3 and

hence is rational.

b. Yes,               , which is a quotient of the integers −5 and
39 and hence is rational.

c. Yes, 0.281 = 281/1000. Note that the real numbers represented on a typical 
calculator display are all finite decimals. 

    An explanation similar to the one in this example shows that any such 
number is rational. It follows that a calculator with such a display can 
represent only rational numbers.

Instructor:  Murad Njoum
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Example 1 – Solution
d. Yes, 7 = 7/1.

e. Yes, 0 = 0/1.

f. No, 2/0 is not a number (division by 0 is not allowed).

g. No, because every irrational number is a number, and
    2/0 is not a number. 

cont’d

Instructor:  Murad Njoum
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Example 1 – Solution
h. Yes. Let                              Then                                
    Thus

    But also 

    Hence 

    And so

    Therefore, 0.12121212…. = 12/99, which is a ratio of 
    two nonzero integers and thus is a rational number.

cont’d

Instructor:  Murad Njoum
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Example 1 – Solution
    Note that you can use an argument similar to this one to  show that any 
repeating decimal is a rational number. 

i. Yes, since m and n are integers, so are m + n and m n
   (because sums and products of integers are integers).
   Also m n   0 by the zero product property. 
      
   One version of this property says the following:

cont’d

Instructor:  Murad Njoum

It follows that (m + n) /m n is a quotient of two integers with a nonzero 
denominator and hence is a rational number.
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More on Generalizing from the Generic Particular

Some people like to think of the method of generalizing from the generic 
particular as a challenge process.

If you claim a property holds for all elements in a domain, then someone can 
challenge your claim by picking any element in the domain whatsoever and 
asking you to prove that that element satisfies the property.

To prove your claim, you must be able to meet all such challenges. That is, you 
must have a way to convince the challenger that the property is true for an 
arbitrarily chosen element in the domain.

Instructor:  Murad Njoum
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More on Generalizing from the Generic Particular

For example, suppose “A” claims that every integer is a rational number. “B” 
challenges this claim by asking “A” to prove it for n = 7. 

“A” observes that

“B” accepts this explanation but challenges again with        n = –12. “A” 
responds that

Instructor:  Murad Njoum
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More on Generalizing from the Generic Particular

Next “B” tries to trip up “A” by challenging with n = 0, but 
“A” answers that

As you can see, “A” is able to respond effectively to all “B”s 
challenges because “A” has a general procedure for putting 
integers into the form of rational numbers: “A” just divides 
whatever integer “B” gives by 1.
That is, no matter what integer n “B” gives “A”, “A” writes

This discussion proves the following theorem.

52

Prove that the sum of any two rational numbers is rational.

Solution:
Begin by mentally or explicitly rewriting the statement to be proved in the form 
“ ______, if ______ then ______.”

Formal Restatement:   real numbers r and s, if r and s
                                     are rational then r + s is rational. 

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The 
answer gives you the starting point, or first sentence, of the proof.

Example 2 – A Sum of Rationals Is Rational

Instructor:  Murad Njoum
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Example 2 – Solution
Starting Point: Suppose r and s are particular but arbitrarily
                          chosen real numbers such that r and s are
                          rational; or, more simply, Suppose r and s
                          are rational numbers. 

Then ask yourself, “What must I show to complete the 
proof?”

To Show: r + s is rational.

Finally ask, “How do I get from the starting point to the 
conclusion?” or “Why must r + s be rational if both r and s 
are rational?” The answer depends in an essential way on 
the definition of rational.

cont’d

Instructor:  Murad Njoum
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Example 2 – Solution
Rational numbers are quotients of integers, so to say that   r and s are rational 
means that

It follows by substitution that

cont’d

Instructor:  Murad Njoum
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Example 2 – Solution
You need to show that r + s is rational, which means that    r + s can be written 
as a single fraction or ratio of two integers with a nonzero denominator. 

But the right-hand side of equation (4.2.1) in

cont’d

Instructor:  Murad Njoum
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Example 2 – Solution
Is this fraction a ratio of integers? Yes. Because products and sums of integers 
are integers, ad + bc and bd are both integers. 

Is the denominator bd   0? Yes, by the zero product property (since b   0 and 
d   0). Thus r + s is a rational number.

This discussion is summarized as follows:

cont’d

Instructor:  Murad Njoum



10/15/2020

29

57

Example 2 – Solution
Proof:
Suppose r and s are rational numbers. [We must show that r + s is rational.] 

Then, by definition of rational, r = a/b and s = c/d for some integers a, b, c, and 
d with b   0 and d   0. 

Thus

cont’d

Instructor:  Murad Njoum
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Example 2 – Solution
Let p = ad + bc and q = bd. Then p and q are integers because products and 
sums of integers are integers and because a, b, c, and d are all integers. 

Also q   0 by the zero product property.

Thus

Therefore, r + s is rational by definition of a rational number. [This is what was 
to be shown.]

cont’d

Instructor:  Murad Njoum
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In the future, when we ask you to prove something directly from the 
definitions, we will mean that you should restrict yourself to this approach.

However, once a collection of statements has been proved directly from the 
definitions, another method of proof becomes possible. 

The statements in the collection can be used to derive additional results.

Deriving New Mathematics from Old

Instructor:  Murad Njoum
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Example 3 – Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following 
properties of even and odd integers:

1. The sum, product, and difference of any two even integers
    are even.

2. The sum and difference of any two odd integers are even.

3. The product of any two odd integers is odd.

4. The product of any even integer and any odd integer is
    even.

Instructor:  Murad Njoum



10/15/2020

31

61

Example 3 – Deriving Additional Results about Even and Odd Integers

5. The sum of any odd integer and any even integer is odd.

6. The difference of any odd integer minus any even integer is odd.

7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any even integer and b is 
any odd integer, then               is an integer.

cont’d

Instructor:  Murad Njoum
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Example 3 – Solution
Suppose a is any even integer and b is any odd integer. By property 
3, b2 is odd, and by property 1, a2 is even. 

Then by property 5, a2 + b2 is odd, and because 1 is also odd, the sum                                          
is even by property 2.

Hence, by definition of even, there exists an integer k such that                            

Dividing both sides by 2 gives              = k, which is an integer. 

Thus               is an integer [as was to be shown].

Instructor:  Murad Njoum
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Example 4 – The Double of a Rational Number

Solution:
The double of a number is just its sum with itself. 

But since the sum of any two rational numbers is rational (Theorem 4.2.2), the 
sum of a rational number with itself is rational. Hence the double of a rational 
number is rational. 

Instructor:  Murad Njoum

A corollary �8��� is a statement whose truth can be immediately deduced 
from a theorem that has already been proved.

64

Example 4 – Solution
Here is a formal version of this argument: 

Proof:
Suppose r is any rational number. Then 2r = r + r is a sum of two rational 
numbers. 

So, by Theorem 4.2.2, 2r is rational.

cont’d

Instructor:  Murad Njoum
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Direct Proof and Counterexample III: Divisibility

The notion of divisibility is the central concept of one of the most beautiful 
subjects in advanced mathematics: number theory, the study of properties of 
integers.

Instructor:  Murad Njoum
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Example 1 – Divisibility
a. Is 21 divisible by 3? 

b. Does 5 divide 40? 

c. Does 7 | 42?

d. Is 32 a multiple of −16? 

e. Is 6 a factor of 54? 

f. Is 7 a factor of −7?
Instructor:  Murad Njoum

a. Yes, 21 = 3   7. 

b. Yes, 40 = 5   8.

c. Yes, 42 = 7   6.

d. Yes, 32 = (−16)   (−2). 

e. Yes, 54 = 6   9. 

f. Yes, −7 = 7   (−1).
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Direct Proof and Counterexample III: Divisibility

Two useful properties of divisibility are (1) that if one positive integer divides a 
second positive integer, then the first is less than or equal to the second, and 
(2) that the only divisors of 1 are 1 and −1.

Instructor:  Murad Njoum
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Example 1 – Divisibility of Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3?

b. If k and m are integers, is 10km divisible by 5?

Solution:
a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b)
    and a + b is an integer because it is a sum of two
    integers.

b. Yes. By the associative law of algebra, 10km = 5   (2km)
    and 2km is an integer because it is a product of three
    integers.

Instructor:  Murad Njoum
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Direct Proof and Counterexample III: Divisibility

When the definition of divides is rewritten formally using the existential 
quantifier, the result is

Since the negation of an existential statement is universal, it follows that d does 
not divide n (denoted        ) if, and only if,   integers k, n ≠ dk, or, in other 

words, the quotient n/d is not an integer.

Instructor:  Murad Njoum

Does 4 | 15?
Solution:
No,               , which is not an integer.

70

Example 6 – Solution

Proof:
Suppose a, b, and c are [particular but arbitrarily chosen] integers such that a 
divides b and b divides c. [We must show that a divides c.] By definition of 
divisibility,

By substitution

cont’d

Instructor:  Murad Njoum

Prove that for all integers a, b, and c, if a | b and b | c, then a | c.
 (transitive). 
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Example 6 – Solution
Let k = rs. Then k is an integer since it is a product of integers, and therefore

Thus a divides c by definition of divisibility. [This is what was to be shown.]

cont’d

Instructor:  Murad Njoum
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Counterexamples and Divisibility

To show that a proposed divisibility property is not 
universally true, you need only find one pair of integers for 
which it is false.

Instructor:  Murad Njoum

Proving Properties of Divisibility
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Example 7 – Checking a Proposed Divisibility Property

Is the following statement true or false? For all integers a and b, if a | b and b | a 
then a = b.

Solution:
This statement is false. Can you think of a counterexample just by concentrating 
for a minute or so?

The following discussion describes a mental process that may take just a few 
seconds. It is helpful to be able to use it consciously, however, to solve more 
difficult problems.

Instructor:  Murad Njoum
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Example 7 – Solution
To discover the truth or falsity of the given statement, start off much as you 
would if you were trying to prove it.

Starting Point: Suppose a and b are integers such that 
                          a | b and b | a.

Ask yourself, “Must it follow that a = b, or could it happen that a ≠ b for some a 
and b?” Focus on the supposition. What does it mean? By definition of 
divisibility, the conditions a | b and b | a mean that

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Must it follow that a = b, or can you find integers a and b that 
satisfy these equations for which a ≠ b? The equations imply 
that

Since b | a, b ≠ 0, and so you can cancel b from the extreme 
left and right sides to obtain

In other words, k and l are divisors of 1. But, by Theorem 
4.3.2, the only divisors of 1 are 1 and –1. Thus k and l are 
both 1 or are both –1. If k = l = 1, then b = a.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
But if k = l = –1, then b = –a and so a ≠ b.

This analysis suggests that you can find a counterexample by taking b = –a. 

Here is a formal answer:

cont’d

Instructor:  Murad Njoum
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The Unique Factorization of Integers Theorem

 The unique factorization of integers theorem says that any integer greater than 
1 either is prime or can be written as a product of prime numbers in a way that 
is unique except, perhaps, for the order in which the primes are written.

Instructor:  Murad Njoum
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The Unique Factorization of Integers Theorem

Because of the unique factorization theorem, any integer   n > 1 can be put into 
a standard factored form in which the
prime factors are written in ascending order from left to right.

Instructor:  Murad Njoum
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Example 9 – Using Unique Factorization to Solve a Problem

Suppose m is an integer such that 

Does 17 | m?

Solution:
Since 17 is one of the prime factors of the right-hand side 
of the equation, it is also a prime factor of the left-hand side 
(by the unique factorization of integers theorem).

But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 
2 (because it is too large). Hence 17 must occur as one of 
the prime factors of m, and so 17 | m.

Instructor:  Murad Njoum
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The quotient-remainder theorem says that when any integer n is divided by any 
positive integer d, the result is a quotient q and a nonnegative remainder r that 
is smaller than d.

Direct Proof and Counterexample IV: Division into 
Cases and the Quotient-Remainder Theorem

Instructor:  Murad Njoum
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Example 1 – The Quotient-Remainder Theorem

For each of the following values of n and d, find integers q and r such that                  
and 

a. n = 54, d = 4 b. n = –54, d = 4 c. n = 54, d = 70

Solution:
a.

b.

c.

Instructor:  Murad Njoum
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div and mod
However, they do not give the values that satisfy the quotient-remainder 
theorem when a negative integer n is divided by a positive integer d.

Instructor:  Murad Njoum



10/15/2020

42

83

div and mod
For instance, to compute n div d for a nonnegative integer n and a positive 
integer d, you just divide n by d and ignore the part of the answer to the right of 
the decimal point.

To find n mod d, you can use the fact that if
then                     Thus                                                and so  

Hence, to find n mod d compute n div d, multiply by d, and subtract the result 
from n.

Instructor:  Murad Njoum
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Example 2 – Solution
Discarding the fractional part gives 32 div 9 = 3, and so

A calculator with a built-in integer-part function iPart allows you to input a single 
expression for each computation:

cont’d

Instructor:  Murad Njoum
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Representations of Integers
We have defined, an even integer to have the form twice some integer. At that 
time we could have defined an odd integer to be one that was not even. 

Instead, because it was more useful for proving theorems, we specified that an 
odd integer has the form twice some integer plus one. 

The quotient-remainder theorem brings these two ways of describing odd 
integers together by guaranteeing that any integer is either even or odd.

Instructor:  Murad Njoum
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Representations of Integers
To see why, let n be any integer, and consider what happens when n is 
divided by 2. 
By the quotient-remainder theorem (with d = 2), there exist unique integers q 
and r such that

But the only integers that satisfy are r = 0 and r = 1.

It follows that given any integer n, there exists an integer q with

Instructor:  Murad Njoum
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Representations of Integers
In the case that                             n is even. In the case that
                   n is odd. Hence n is either even or odd, and, because of the 
uniqueness of q and r, n cannot be both even and odd.

The parity of an integer refers to whether the integer is even or odd. For 
instance, 5 has odd parity and 28 has even parity. 

We call the fact that any integer is either even or odd the parity property �r2i齷
 �8i�a�H.

Instructor:  Murad Njoum
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Example 5 – Consecutive Integers Have Opposite Parity

Prove that given any two consecutive integers, one is even and the other is odd.

Solution:
Two integers are called consecutive if, and only if, one is one more than the 
other. So if one integer is m, the next consecutive integer is m + 1.

To prove the given statement, start by supposing that you have two particular 
but arbitrarily chosen consecutive integers. If the smaller is m, then the larger 
will be m + 1.

Instructor:  Murad Njoum
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Example 5 – Solution
How do you know for sure that one of these is even and the other is odd? You 
might imagine some examples: 4, 5; 12, 13; 1,073, 1,074. 

In the first two examples, the smaller of the two integers is even and the larger 
is odd; in the last example, it is the reverse. These observations suggest 
dividing the analysis into two cases.

Case 1: The smaller of the two integers is even.

Case 2: The smaller of the two integers is odd.

cont’d

Instructor:  Murad Njoum
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Example 5 – Solution
This discussion is summarized as follows.

Proof:
Suppose that two [particular but arbitrarily chosen] consecutive integers are 
given; call them m and m + 1. 
[We must show that one of m and m + 1 is even and that the other is odd.] 

cont’d

Instructor:  Murad Njoum
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Example 5 – Solution
By the parity property, either m is even or m is odd. [We break the proof into two 
cases depending on whether m is even or odd.]

Case 1 (m is even): In this case, m = 2k for some integer k, and so m + 1 = 2k 
+ 1, which is odd [by definition of odd].

Hence in this case, one of m and m + 1 is even and the other is odd.

cont’d

Instructor:  Murad Njoum
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Example 5 – Solution
Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so                                                                 
.

But k + 1 is an integer because it is a sum of two integers. Therefore, m + 1 
equals twice some integer, and thus 
m + 1 is even.
Hence in this case also, one of m and m + 1 is even and the other is odd.

cont’d

Instructor:  Murad Njoum

It follows that regardless of which case actually occurs for the particular m and 
m + 1 that are chosen, one of m and 
m + 1 is even and the other is odd. [This is what was to be shown.]
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Representations of Integers
There are times when division into more than two cases is called for. Suppose 
that at some stage of developing a proof, you know that a statement of the form

is true, and suppose you want to deduce a conclusion C.

By definition of or, you know that at least one of the statements Ai is true 
(although you may not know which).

In this situation, you should use the method of division into cases.

Instructor:  Murad Njoum
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Representations of Integers
First assume A1 is true and deduce C; next assume A2 is true and deduce C; 
and so forth until you have assumed An is true and deduced C. 

At that point, you can conclude that regardless of which statement Ai happens 
to be true, the truth of C follows.

Instructor:  Murad Njoum
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Example 6 – Representations of Integers Modulo 4
Show that any integer can be written in one of the four 
forms

for some integer q.

Solution:
Given any integer n, apply the quotient-remainder theorem 
to n with d = 4. 

This implies that there exist an integer quotient q and a 
remainder r such that

Instructor:  Murad Njoum
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Example 6 – Solution
But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3.

Hence

for some integer q.

cont’d

Instructor:  Murad Njoum
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Prove: The square of any odd integer has the form 8m + 1 for some 
integer m.

Solution:
Begin by asking yourself, “Where am I starting from?” and “What do I 
need to show?” To help answer these questions, introduce variables to 
represent the quantities in the statement to be proved.

Formal Restatement:   odd integers n,  an integer m  
                                     such that                      

From this, you can immediately identify the starting point and what is to 
be shown.

Example 7 – The Square of an Odd Integer

Instructor:  Murad Njoum
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Example 7 – Solution
Starting Point: Suppose n is a particular but arbitrarily 
                          chosen odd integer.

To Show:  an integer m such that 

This looks tough. Why should there be an integer m with the property 
that                    ?

That would say that (n2 – 1)/8 is an integer, or that 8 divides n2 – 1.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
That means that their product is divisible by 4. But that’s not enough. You need 
to show that the product is divisible by 8. This seems to be a blind alley �ri� ���.

You could try another track. Since n is odd, you could represent n as 2q + 1 for 
some integer q.

Then

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
It is clear from this analysis that n2 can be written in the form 4m + 1, but it may not 
be clear that it can be written as 8m + 1. This also seems to be a blind alley.

You could try breaking into cases based on these two different forms.

It turns out that this last possibility works! In each of the two cases, the conclusion 
follows readily by direct calculation.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
The details are shown in the following formal proof:

Proof:
Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-
remainder theorem, n can be written in one of the forms

for some integer q. 

In fact, since n is odd and 4q and 4q + 2 are even, n must have one of the 
forms

cont’d

Instructor:  Murad Njoum

102

Example 7 – Solution
Case 1 (n = 4q + 1 for some integer q): [We must find an integer m such that                     
]

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Let                      Then m is an integer since 2 and q are integers and sums and 
products of integers are integers.

Thus, substituting,

              where m is an integer.

cont’d

Instructor:  Murad Njoum
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Example 7 – Solution
Case 2 (n = 4q + 3 for some integer q): [We must find an integer m such that                     
]

 

cont’d

Instructor:  Murad Njoum



10/15/2020

53

105

Example 7 – Solution
[The motivation for the choice of algebra steps was the desire to write the 
expression in the form 
8   (some integer) + 1.]

Let                              Then m is an integer since 1, 2, 3, and q are integers and 
sums and products of integers are integers. 

Thus, substituting,            where m is an integer.

cont’d

Instructor:  Murad Njoum

Cases 1 and 2 show that given any odd integer, whether of the form                                                  
for some integer m. [This is what we needed to show.]
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Representations of Integers
Note that the result of Theorem 4.4.3 can also be written, “For any odd integer n, n2 
mod 8 = 1.”

In general, according to the quotient-remainder theorem, if an integer n is divided 
by an integer d, the possible remainders are 0, 1, 2, . . ., (d – 1).

This implies that n can be written in one of the forms for some integer q.

Instructor:  Murad Njoum


