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Discrete Mathematic and Application
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CHAPTER 6
SET THEORY

Instructor
Murad Njoum

\
Subsets: Proof and Disproof

We begin by rewriting what it means for a set A to be a subset of a set Bas a
formal universal conditional statement:

AC B & Vx, ifx € Athenx € B.

The negation is, therefore, existential:

A¢B <« 3Fxsuchthatx € Aand x & B.

A proper subset > of a set is a subset that is not equal to its containing set.
Thus

A is a proper subset of B &

(1) ACB, and
(2) there is at least one element in B that is not in A.
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Example 1 — Testing Whether One Set Is a Subset of Another

LetA={1}and B={1, {1}}.

a.lsAc B?

b. If so, is A a proper subset of B?

Solution:

a. Because A = {1}, A has only one element, namely the symbol 1.

This element is also one of the elements in set B. Hence
every elementin Aisin B,andso Ac B.

b. B has two distinct elements, the symbol 1 and the set {1} whose only element
is 1.

Since 1= {1}, the set {1} is not an element of A, and so there is an element of
B that is not an element of A. Hence A is a proper subset of B.

Instructor : Murad Njoum
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Subsets: Proof and Disproof

Because we define what it means for one set to be a subset of another by
means of a universal conditional statement, we can use the method of direct
proof to establish a subset relationship.

Such a proof is called an element argument and is the fundamental proof
technique of set theory.

Element Argument: The Basic Method for Proving That
One Set Is a Subset of Another

Let sets X and Y be given. To prove that X C Y,
1. suppose that x is a particular but arbitrarily chosen element of X,

2. show that x is an element of Y.

Instructor : Murad Njoum
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Example 2 — Proving and Disproving Subset Relations

Define sets A and B as follows:

A={meZ|m = 6r+ 12 for some r € Z}
B=1{ne€Z|n=3sforsomes € Z}.

a. Outline a proof that A < B.
b. Prove that A ¢ B.

c. Disprove that B ¢ A.

Instructor : Murad Njoum

°. .
Example 2 — Solution

a. Proof Outline:
Suppose x is a particular but arbitrarily chosen element of A.

Therefore, x is an eleme'nt of B.

b. Proof:
Suppose x is a particular but arbitrarily chosen element of A.

[We muist show that x € B. By definition of B, this means
we must show that x = 3 (some integer)./

Instructor : Murad Njoum
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Example 2 — Solution o

By definition of A, there is an integer r such that
x=6r+12.

[Given that x = 6r + 12, can we express x as 3-(some integer)?
Le., does 6r + 12 = 3-(some integer)? Yes, 6r + 12 =3-(2r + 4).]

Let s =2r + 4.

[We must check that s is an integer. |

Then s is an integer because products and sums of
integers are integers.

[Now we must check that x = 3s.]

Instructor : Murad Njoum

°. .
Example 2 — Solution o

Also |35 =3@2r +4)=6r+12 =x,
Thus, by definition of B, x is an element of B,

[which is what was to be shown].

c. To disprove a statement means to show that it is false, and to show it is false
that B < A, you must find an element of B that is not an element of A.

By the definitions of A and B, this means that you must find an integer
x of the form 3 + (some integer) that cannot be written in the form 6 - (some integer) + 12.

Instructor : Murad Njoum
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Example 2 — Solution o

A little experimentation reveals that various numbers do the job. For instance,

you could let x = 3.
Then x € Bbecause 3 =3- 1, but x ¢ A because there is no integer r such that
3 =6r+12. For if there were such an integer, then

\6!’ +12=3 by assumption

= 2r+4=1 by dividing both sides by 3
= 2r =3 by subtracting 4 from both sides
= r =3/2 by dividing both sides by 2,
but 3/2 is not an integer. Thus 3 € Bbut3 ¢ A, and so B Z A. 9

°. )
Set Equality

We have known that by the axiom of extension, sets A and B are equal if, and
only if, they have exactly the same elements.

We restate this as a definition that uses the language of subsets.

o Definition

Given sets A and B, A equals B, written A = B, if, and only if, every element of A
is in B and every element of B is in A.
Symbolically:
A=B & ACBandBCA.

Instructor : Murad Njoum
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Example 3 — Set Equality

This version of the definition of equality implies the following:
To know that a set A equals a set B, you must know
that A < B and you must also know that B < A.

Define sets A and B as follows:
A = {m € Z | m = 2a for some integer a}
B ={n € Z|n = 2b— 2 for some integer b}
Is A=DB?
Solution:
Yes. To prove this, both subset relations A ¢ B and B c A must be proved.

Instructor : Murad Njoum
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Example 3 — Solution o

Part 1, Proof That A ¢ B:
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x € B. By definition of B, this means we
must show that x =2 - (some integer) — 2.]
By definition of A, there is an integer a such that x = 2a.

[Given that x = 2a, can x also be expressed as2 + (some
integer) — 27 i.e., is there an integer, say b, such that
2a=2b-2? Solve for b to obtain b =(2a+2)2=a+ 1.
Check to see if this works.]

Instructor : Murad Njoum
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Example 3 — Solution o

Letb=a+1.
[First check that b is an integer.]

Then b is an integer because it is a sum of integers.
[Then check that x=2b - 2.]

Also2b-2=2(a+1)-2=2a+2-2=2a=x,
Thus, by definition of B, x is an element of B
[which is what was to be shown].

Part 2, Proof That B A:

Similarly we can prove that B A. Hence A = B.

Instructor : Murad Njoum

< .

If sets A and B are represented as regions in the plane, relationships between A
and B can be represented by pictures, called Venn diagrams, that were
introduced by the British mathematician John Venn in 1881.

For instance, the relationship A < B can be pictured in one of two ways, as
shown in Figure 6.1.1.

(4) s

(a) A B (b)
Figure 6.1.1

Instructor : Murad Njoum
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The relationship A ¢ B can be represented in three different ways with Venn
diagrams, as shown in Figure 6.1.2.

@
(a) (b) ()

AZB

Figure 6.1.2

Instructor : Murad Njoum
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Example 4 — Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational numbers, and real
numbers, respectively, Z is a subset of Q because every integer is rational (any
integer n can be written in the form ).

Q is a subset of R because every rational number is real (any rational number
can be represented as a length on the number line).

Z is a proper subset of Q because there are rational numbers that are not
integers (for example,?).

Instructor : Murad Njoum
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Example 4 — Relations among Sets of Numbers

cont'd

Q is a proper subset of R because there are real numbers that are not rational
(for example,v2 ).

This is shown diagrammatically in Figure 6.1.3.

o)

Figure 6.1.3

Instructor : Murad Njoum

Operations on Sets

’0

* Definition
Let A and B be subsets of a universal set U.
1. The union of A and B, denoted A U B, is the set of all elements that are in at least

one of A or B.

2. The intersection of A and B, denoted A N B, is the set of all elements that are
common to both A and B.

3. The difference of B minus A (or relative complement of A in B), denoted
B — A, is the set of all elements that are in B and not A.

4. The complement of A, denoted A€, is the set of all elements in U that are
not in A.

Symbolically: AUB={xeU|x € Aorx € B},
ANB={xeU]|x e Aandx € B},
B—A={xeUl|xeBandx ¢ A},

A°={xeU|x ¢ A}.

Instructor : Murad Njoum
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Operations on Sets

Venn diagram representations for union, intersection, difference, and
complement are shown in Figure 6.1.4.

U U U U
Shaded region Shaded region Shaded region Shaded region
represents AU B. represents An B. represents B - A. represents Ac.
Figure 6.1.4

Instructor : Murad Njoum

Example 5 — Unions, Intersections, Differences, and Complements

Let the universal set be the setU={a, b, ¢, d, e, f,g}and let A ={a, c, e, g} and
B={d,e f,g}.FindAu B,An B,
B - A, and Ac.

Solution:
AUB=\{a,c,d,e, f, g}

AN B = {e, g}
B—A=1d f)
A°=1{b,d, [}

Instructor : Murad Njoum
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Operations on Sets

There is a convenient notation for subsets of real numbers that are intervals.

Given real numbers ¢ and b with a < b:

(a,b)={x e R|a <x < b} la, ] ={x eR|a <x < b}

(a,b]={x eR|a <x <b} [a, ) ={x e R|a <x < b}.
The symbols oo and —oo are used to indicate intervals that are unbounded either on
the right or on the left:

(a,0)={x e R|x > a} [a,00) ={xeR|x>a)}

(—o00,h)={x e R|x < b} [—oo0,b)={x e R| x < b}.

Observe that the notation for the interval (a, b) is identical
to the notation for the ordered pair (a, b). However, context
makes it unlikely that the two will be confused.

Instructor : Murad Njoum

21

\ /
Example 6 — An Example with Intervals

Let the universal set be the set R of all real numbers and let

A=(—-1,0]l={xeR|-1<x=<0land B=[0, ) ={xeR|0<x < I}.
These sets are shown on the number lines below.

e
>4 o

o4 <
<

Find Au B,An B,B-A, and Ac.

Instructor : Murad Njoum
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Example 6 — Solution

AUB={xeR|xe (=1, 0lorxel0, )} ={x eR|xe (=1, D)} = (=1, 1).

Instructor : Murad Njoum
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Example 6 — Solution o

A¢ = {x € R|it is not the case that x € (—1, 0]}

-2 -1 0 1 2
. s .
o

LY

= {x € R|itis not the case that (—1 < x and x < 0)}

by definition of the
double inequality

by De Morgan’s
law

={xeR|x <—lorx >0} =(—0c0, —1]U (0, c0)

Instructor : Murad Njoum
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Operations on Sets

The definitions of unions and intersections for more than two sets are very
similar to the definitions for two sets.

Unions and Intersections of an Indexed Collection of Sets
Given sets Ag, A, Aj, ... that are subsets of a universal set U and given a nonneg-
ative integer n,

n

(JAi=(xeU|x e foratleastone i =0.1,2.....n} An alternative notation for

i=0 UAZ‘ISAQUA]U...UAH,
i=0

o0
UA,- = {x € U|x € A, for at least one nonnegative integer i }
=0

n
(NAi={xeUlxeAforall i =0,1,2,....n) . .
i=0 alternative notation for

o0

ﬂA, = {x € U|x € A, for all nonnegative integers i }. 2 .

=0 NAiisAgNAIN...NA,.
i=0

Instructor : Murad Njoum

25

Example 7 — Finding Unions and Intersections of More than Two Sets

For each positive integer i, let
A,~:{xeR|—%<x<%}=Ai=<—l,i).

a. Find A1 UA2UA3 and A1 mAzﬂA:;.

o0 o0
b. Find U Al' and ﬂ Ai.

i=1 i=1
Solution:
a. A UA,UAs;={x € R|xis in at least one of the intervals (—1, 1),

or (=1 1) or (=11
22 f ¢ 3’3

Instructor : Murad Njoum

26

13



11/25/2020

°. .
Example 7 — Solution o

=

)

; 1
because all the elements in | —7,
2

={xeR|-1<x <1} {1
and (7? 5) arein (—1, 1)

—(=1, 1)

A1 N Ay N As={x € R|xisinall of the intervals (—1, 1),

11 1
and (—5, 5), and (—3,

)2(4141)

W=
SN—"
——

[ B

= {)C € Rl —% <x < %} because (—L—];) o <AI§

-(44

Instructor : Murad Njoum
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Example 7 — Solution o

b.

o0
U A; ={x € R|x is in at least one of the intervals (—llf, %) ,

i=1
where i is a positive integer}
={xeR|-1<x<1} because all the elements in every interval

(7ll) arein (—1, 1)
A

=(=1D

A; ={x € R|x isin all of the intervals (—% IL) ,

1D

where i is a positive integer}

= {0} because the only element in every interval is 0

Instructor : Murad Njoum
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The Empty Set

We have stated that a set is defined by the elements that compose it. This
being so, can there be a set that has no elements? It turns out that it is
convenient to allow such a

set.

Because it is unique, we can give it a special name. We call it the empty set (or
null set) and denote it by the symbol Q.

Thus {1,3}~ {2, 4} =@ and {x e R|x2=-1}=0.

Instructor : Murad Njoum

\ /
Example 8 — A Set with No Elements

Describe the set D={xeR|3<x <2

Solution:

We have known that a < x < b means that a < x and x < b. So D consists of all
real numbers that are both greater than 3 and less than 2.

Since there are no such numbers, D has no elements and so D = J.

Instructor : Murad Njoum
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Partitions of Sets

In many applications of set theory, sets are divided up into nonoverlapping (or
disjoint) pieces. Such a division is called a partition.

® Definition

Two sets are called disjoint if, and only if, they have no elements in common.
Symbolically:

A and B are disjoint < AN B =40.

LetA={1, 3,5} and B ={2, 4, 6}. Are A and B disjoint?

Solution:
Yes. By inspection A and B have no elements in common, or, in other words, {1,
3,5}n {2,4,6}=0.

Instructor : Murad Njoum
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Coum
Partitions of Sets

o Definition

Sets Ay, Ay, Az ... are mutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets A; and A; with distinct subscripts have any elements in
common. More precisely, foralli, j =1,2,3,...

A;iMA; =0 wheneveri # j.

Instructor : Murad Njoum
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Example 10 — Mutually Disjoint Sets

a.Let A, ={3, 5}, A, ={1, 4, 6}, and A; = {2}. Are A,, A,, and A; mutually disjoint?

b. Let B, = {2, 4, 6}, B, ={3, 7}, and B; = {4, 5}. Are B,, B,, and B; mutually
disjoint?

Solution:
a. Yes. A, and A, have no elements in common, A, and A; have no elements in
common, and A, and A; have no elements in common.

b. No. B; and B; both contain 4.

Instructor : Murad Njoum 33

’0

Partitions of Sets

Suppose A, Ay, A,, A;, and A, are the sets of points represented by the regions

shown in Figure 6.1.5. .

e

A Partition of a Set
Figure 6.1.5

Then A4, A,, A3, and A, are subsets of A, and
A=A UA,UA; UA,.

Instructor : Murad Njoum
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Partitions of Sets

Suppose further that boundaries are assigned to the regions representing A,,
As, and A, in such a way that these sets are mutually disjoint.

Then A is called a union of mutually disjoint subsets, and the collection of sets
{Aq, Ay, As, Ay} is said to be a
partition of A.

o Definition

A finite or infinite collection of nonempty sets {A, Az, A3 ...} is a partition of a
set A if, and only if,

1. A is the union of all the A;

2. The sets A, Ay, As, ... are mutually disjoint.

Instructor : Murad Njoum
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Example 11 — Partitions of Sets

a.LetA={1,2,3,4,56},A,={1, 2}, A, ={3, 4}, and
A; = {5, 6}. Is {A,, A,, A3} a partition of A?

b. Let Z be the set of all integers and let

Ty = {n € Z | n = 3k, for some integer k},
T\, ={n € Z|n = 3k + 1, for some integer k}, and
T, ={n € Z|n =3k + 2, for some integer k}.

Is {T,, T4, T,} a partition of Z?

Instructor : Murad Njoum
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Example 11 — Solution

a. Yes. By inspection, A = A; U A, U Ajz and the sets A,, Ay, and A; are
mutually disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented
in exactly one of the three forms

n=3k or n=3k+1 or n=3k+2,
for some integer k.

This implies that no integer can be in any two of the sets Ty, T,, or T,. So T,
T;, and T, are mutually disjoint.

It also implies that every integer is in one of the sets T, T;,or T,. S0 Z =T,
v hu T,

Instructor : Murad Njoum 37

There are various situations in which it is useful to consider the set of all
subsets of a particular set.

The power set axiom guarantees that this is a set.

e Definition
Given a set A, the power set of A, denoted &2 (A), is the set of all subsets of A.

Instructor : Murad Njoum
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Example 12 — Power Set of a Set

Find the power set of the set {x, y}. That is, find 2 ({x, y}).

Solution:
({x, y}) 2the set of all subsets of {x, y}. We know that & is a subset of every
set,and so @ € 22 ({x, y}).

Also any set is a subset of itself, so {x, y} € 22 ({x, y}). The only other subsets of
{x, y} are {x} and {y}, so

P({x, yh) =10, {x}, (v} {x, ¥}

Instructor : Murad Njoum

y/ .
Cartesian Products

Let n be a positive integer and let x|, xp, ..., X, be (not necessarily distinct)
elements. The ordered n-tuple, (x, x2, . . ., X;), consists of x|, x, . .., X, together
with the ordering: first x|, then x;, and so forth up to x,. An ordered 2-tuple is called
an ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (xy, x2, ..., xp) and (v, y2, .. ., V) are equal if, and only
if, xi =y, x=y,..., Xn = Yn-
Symbolically:
(i 880 0 e 0 Xn) =V, Y2, -5 00) & XI=YL,0=),..., Xn = Yn

In particular,

(a,b)=1(c,d) & a=candb=d.

Instructor : Murad Njoum
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Example 13 — Ordered n-tuples

a. Is(1,2,3,4)=(1,2,4,3)?
b. 15 (3. (-2 3) = (v0.4.2)?

Solution:
a. No. By definition of equality of ordered 4-tuples,

1,2,3,49=01,2,4,3)c1=1,2=2,3=4,and4=3

But 3 # 4, and so the ordered 4-tuples are not equal.

Instructor : Murad Njoum
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Example 13 — Solution o

b. Yes. By definition of equality of ordered triples,

(3, (=2)2, %) = (ﬁ, 4, %) & 3=+Oand(-2)? =4and L = 2.

Because these equations are all true, the two ordered triples are equal.

Instructor : Murad Njoum
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Cartesian Products

Given sets A, A, ..., A,, the Cartesian product of A, Ay, ..., A, denoted
Ay XAy X ...xA,, is the set of all ordered n-tuples (a,as,..., a,) where
aleAl,(leAg ..... aneA,,.

Symbolically:

Al X Ay x - x Ay ={(a1,a, ..., ap)|ay € Aj,ar € Ay, ..., an € Ap}.

In particular,
A x Ay ={(a1,ax) | a1 € A; and @y € Ay}

is the Cartesian product of A} and Aj.

Instructor : Murad Njoum
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Example 14 — Cartesian Products

Let A, = {x, y}, A, = {1, 2, 3}, and A, = {a, b}.

a. Find A; x A,. b. Find (A; x Aj) x Aj.
C. Find A] X A2 X A3.
Solution:

a. Ayx A ={(x, 1), (x, 2), (x,3), (v, 1), (v, 2), (v, 3)}

b. The Cartesian product of A, and A, is a set, so it may be
used as one of the sets making up another Cartesian
product. This is the case for (A; x A,) x As.

Instructor : Murad Njoum 44
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Example 14 — Solution _

(A X Ay)) x As={(u,v)|lue A x Ay andv € Az} by definition of Cartesian product
={((x, D, a), ((x,2),a), ((x,3),a), ((y, 1), a),

((v,2),a), ((v,3), ), ((x, 1), b), ((x,2), b), ((x, 3), b),
(v, D, b), ((y,2),b). ((y,3), D)}

c. The Cartesian product A; x A, x Aj is superficially similar to, but is not quite
the same mathematical object as,

(A x Ap) xA;. (Ayx A,) x Ajis a set of ordered pairs of which one
element is itself an ordered pair, whereas
A;x A, x Asis asetof ordered triples.

Instructor : Murad Njoum

°. .
Example 14 — Solution _

By definition of Cartesian product,

Al x Ay x A3 ={(u,v,w)|u € A,v e A, and w € As}
={x,1,a),(x,2,a),(x,3,a), (y.1,a), (y,2,a),
(v,3,a), (x,1,b0),(x,2,D0),(x,3,b), (y, 1, b),

(v.2,b), (y,3,b)}.

Instructor : Murad Njoum
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Properties of Sets

We begin by listing some set properties that involve subset relations.

Theorem 6.2.1 Some Subset Relations
1. Inclusion of Intersection: For all sets A and B,
(@@ANBCA and (b)ANBCB.
2. Inclusion in Union: For all sets A and B,
(a)ACAUB and (b) BC AUB.
3. Transitive Property of Subsets: For all sets A, B, and C,
ifAC Band B C C, then A C C.

Instructor : Murad Njoum

. )
Properties of Sets

Procedural versions of the definitions of the other set operations are derived
similarly and are summarized below.

Procedural Versions of Set Definitions
Let X and Y be subsets of a universal set U and suppose x and y are elements of U.
l.xeXUY & xeXorxeY
2.xeXNY & xeXandxeY
3.xeX—-Y & xeXandx ¢V
4. xeX’ & x¢X
5. (x,y)eXxY & xeXandyeVY

Instructor : Murad Njoum
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Example 1 — Proof of a Subset Relation

Prove Theorem 6.2.1(1)(a): For all sets A and B,
An Bc A

Solution:
We start by giving a proof of the statement and then explain how you can obtain
such a proof yourself.

Instructor : Murad Njoum
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Example 1 — Solution o

Proof:
Suppose A and B are any sets and suppose x is any element of A n B.

Then x € A and x € B by definition of intersection.
In particular, x e A.

ThusAn Bc A.

Instructor : Murad Njoum
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Set Identities

An identity is an equation that is universally true for all elements in some set.
For example, the equation

a+ b= b+ ais an identity for real numbers because it is true for all real
numbers a and b.

The collection of set properties in the next theorem consists entirely of set
identities. That is, they are equations that are true for all sets in some universal
set.

Theorem 6.2.2 Set Identities
Let all sets referred to below be subsets of a universal set U.
1. Commutative Laws: For all sets A and B,

() AUB=BUA and (b)ANB=BNA.

Instructor : Murad Njoum

. ”
Set [dentities _

2. Associative Laws: For all sets A, B, and C,
(a)(AUB)UC =AU (BUC) and
b (ANBNC=ANMBNC).

3. Distributive Laws: For all sets, A, B, and C,

(@AUBNC)=(AUB)N(AUC) and
BANBUC)=(ANB)UANC).

4. Identity Laws: For all sets A,

(a)AUP=A and (b)ANU = A.
5. Complement Laws:

() AUA“=U and (b)ANA“=40.
6. Double Complement Law: For all sets A,

(A9 = A.

7. Idempotent Laws: For all sets A,

(A)AUA=A and (b)ANA=A.

Instructor : Murad Njoum 52
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Set Identities

8. Universal Bound Laws: For all sets A,
@ AuU=U and (b)ANV=0.
9. De Morgan’s Laws: For all sets A and B,
(@) (AUB) = A°NB° and (b) (AN B)° = A°U B-.
10. Absorption Laws: For all sets A and B,
(@ AUANB)=A and (b)AN(AUB)=A.
11. Complements of U and (:
@U =@ and (b)#° =U.
12. Set Difference Law: For all sets A and B,
A—B=AnNB".

Instructor : Murad Njoum

53
‘ ¥, union
n in‘tersection
U universal Set
IS belongs to
& does not belong to
C proper subset of
C subset of or 1s contained in
(04 not a proper subset of
g not a subset of or is not contained in
A’ (or) A° complement of 4
@ (or) { } empty set or null set or void set
n(A) number of elements in the set 4
P(4) power set of 4
A symmetric difference 54
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Proving Set Identities

As we have known,
Two sets are equal each is a subset of the other.

The method derived from this fact is the most basic way to prove equality of
sets.

Basic Method for Proving That Sets Are Equal
Let sets X and Y be given. To prove that X = Y:
1. Provethat X C Y.
2. ProvethatY C X.

Instructor : Murad Njoum
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Example 2 — Proof of a Distributive Law

Prove that for all sets A, B, and C,
Au Bn C)=(Au B)n (Au C).

Solution:
The proof of this fact is somewhat more complicated than the proof in Example
1, so we first derive its logical structure, then find the core arguments, and end

with a formal proof as a summary.

Instructor : Murad Njoum
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As in Example 1, the statement to be proved is universal, and so, by the method
of generalizing from the generic particular, the proof has the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen
sets.

ToShow: Au BN C)=(Au B)n (AU Q).

Instructor : Murad Njoum
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Example 2 — Solution o

Now two sets are equal if, and only if, each is a subset of the other.

Hence, the following two statements must be proved:
Au Bn Cc (Au B n (Au O)

and AuBnNn(AuCc Au (Bn C).

Showing the first containment requires showing that
Vxifxe Au (Bn C)thenxe (Au B)n (Au C).

Instructor : Murad Njoum
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Showing the second containment requires showing that
Vxifxe (AuB)n (Au C)thenxe Au (Bn C).

Note that both of these statements are universal. So to prove the first
containment, you
suppose you have any elementxin Au (Bn C),

and then you

showthatxe (Au B)n (Au C).

Instructor : Murad Njoum
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Example 2 — Solution o

And to prove the second containment, you

suppose you have any elementxin (Au B)n (Au C),

and then you
showthatx e Au (Bn C).

Instructor : Murad Njoum
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In Figure 6.2.1, the structure of the proof is illustrated by the kind of diagram
that is often used in connection with structured programs.

Suppose A, B, and C are sets. [Show AU(BNC) = (AUB)N(AUC). That is,
show AU(BNC)C(AUB)N(AUC) and
(AUB)N(AUC)CAU(BNC).]

Show AU(BNC) C(AUB)N(AUC). [Thatis, show Vx, if
x € AU(BNC) then
Ye(AUB)N(AUCQ).]

Suppose x € AU(BNC). [Showx € (AUB)N(AUC).]

Thusx e (AUB)N(AUC).

Hence AU(BNC) S (AUB)N(AUC).

Figure 6.2.1
Instructor : Murad Njoum
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Example 2 — Solution o

Show (AUB)N(AUC) C AU(BNC). [Thatis, show Vx, if
x€(AUB)N(AUC)
thenx € AU(BNC).]

Suppose x € (AUB)N(AUC). [Showx e AU(BNC).]

Thusx € AU (BNCO).

Hence (AUB)N(AUC) CAU(BNC).

Thus (AUB)N(AUC) =AU (BNC).

Figure 6.2.1 (continued)

The analysis in the diagram reduces the proof to two concrete tasks: filling in
the steps indicated by dots in the two center boxes of Figure 6.2.1.

Instructor : Murad Njoum
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Proving Set Identities

Theorem 6.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C,
AUMBNC)=(AUB)N(AUC).

Proof: Suppose A, B, and C are any sets.

(1) Proofthat AU (BN C)C (A UB)N (AU C):

Letx €A U (B N C). [We must show that x € @ _j

By definition of U, x € M orernc

Case 1 (x € A): Since x € A, then both statements x EA U Band x EA U C are
true by definition of U. Hence x € (A U B) N (A U C) by definition of N.

Case 2 (x EB N C): Since x € BN C, then x € B and x € C by definition of N.

Since x € B, then x €A U B by definition of U. Similarly, since x € C, then
x € A U C by definition of U. Hence x € (A U B) N (A U C) by definition of N.

Therefore, in both cases | and 2, x € (A U B)ﬂ (AU ).

Because x could be any element in A U (B N C), this argument shows that every
elementof A U (BN C)isin (AU B)N (A U C). Hence,

AUBNC)CAUBINAUC)
by definition of _(d)
(2) Proof that A UB) N (AUC)CA U BN C):
Letx € (A U B) N (AU C). [We must show that x EAU (BN C).]

We consider the two cases: x € A and x & A.”

Case 1 (x € A): In this case, because x is in A, we can conclude immediately that
x € AU (BN C) by definition of U.

63

Case 2 (x ¢ A): In this case, we know that x € (A U B) N (A U C). Thus, by defini-
tionof @) xEAUBandxE AU C.

Because xisin A U B, then x is in at least one of A or B, and since x is not in A, then
xisin B. Similarly, because x is in A U C, then x is in at least one of A or C, and since
xisnotin A, then xisin C.

It follows that x € B ﬂ x € C, and, thus, x € B N C by definition of N.

Since x € B N C, then by definition of © xeAu®dnO).

Therefore, in both cases 1 and 2, x€ A U (BN C).

Because x could be any elementin (A U B) N (A U C), this argument shows that every
element of (A UB)N (AU C)isin AU (BN C). Hence, (A UB) N(AU C)ﬂ
AUMBNC).Thus, AUBYNAUC) @) 4 U (B N C) by definition of subset.
(3) Conclusion: Since both subset relations have been proved, it follows, by defini-
tion of set equality, that  (a)

Solution
Hha AUBNMAUC) b. A c. N d. subset
(2) a N b. and c U d. C

3 a AUBNC)=AUBNMAUC)

Instructor : Murad Njoum
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Suppose A and B are arbitrarily chosen sets.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets
For all sets A and B, (AU B) = A“N BC.

Proof: Suppose A and B are sets.

Proof that (A U B C A° N B®:
[We must show that ¥x, if x € (A U B)" then x € A° N B“]

Suppose x € (A U B)". [We must show that x € A° N B*.] By definition of complement,
x&AUB.

Now to say that x €& A U B means that
it is false that (xisin A or xis in B).
By De Morgan’s laws of logic, this implies that

xisnotin A and x is not in B,

which can be written

x#&A and x€&B. 65

Hence x € A” and x € B” by definition of complement. It follows, by definition of
intersection, that x € A° N B [as was o be shown]. So (A U B)" C A° M B by defi-
nition of subset.

Proof that A N B° C (A U B)*:

[We must show that Vx, if x € A N B then x € (A U B)".]

Suppose x € A° N B". [We must show that x € (A U B)".] By definition of intersec-
tion, x € A and x € B, and by definition of complement,

x#&A and x€&B.
In other words,
xisnotin A and x is not in B.
By De Morgan's laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written

xEZ&AUB
by definition of union. Hence, by definition of complement, x € (A U B)° [as was to
be shown]. It follows that A° N B C (A U B)" by definition of subset.

Conclusion: Since both set containments have been proved, (A U B)" = A” N B by
definition of set equality.

66
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Theorem 6.2.3 Intersection and Union with a Subset
For any sets A and B, if A C B, then
(@@ ANB=A and (b)AUB =B.

Proof:
Part (a): Suppose A and B are sets with A C B. To show part (a) we must show both
that A N B C A and that A C A N B. We already know that A N B C A by the in-
clusion of intersection property. To show that A C A N B, let x be any element in A.
[We must show that x is in A N B.] But, because of the hypothesis that A C B, we can
conclude that x is also in B by definition of subset. Hence

XEA and x€EB,

and thus
XEANB

by definition of intersection [as was to be shown].

Proof:
Part (b): The proof of part (b) is left as an exercise.

Instructor : Murad Njoum

\ J
The Empty Set

The crucial fact is that the negation of a universal statement is existential: If a
set B is not a subset of a set A, then there exists an element in B that is not in

A. But if B has no elements, then no such element can exist.

Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then £ C A.

If E is a set with no elements and A is any set, then to say that E — A is the

same as saying that

VY x,if xe E,thenx e A.

Instructor : Murad Njoum
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The Empty Set

But since E has no elements, this conditional statement is vacuously true.

How many sets with no elements are there? Only one.

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Suppose you need to show that a certain set equals the empty set. By Corollary
6.2.5 it suffices to show that the set has no elements.

Instructor : Murad Njoum

\ J
The Empty Set

For since there is only one set with no elements (namely @), if the given set has
no elements, then it must equal @.

Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set ¥, prove that X has no elements. To
do this, suppose X has an element and derive a contradiction.

Instructor : Murad Njoum
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Example 5 — A Proof for a Conditional Statement

Prove that for all sets A, B,and C,if Ac Band Bc C¢,thenAn C=g.

Solution:

Since the statement to be proved is both universal and conditional, you start
with the method of direct proof:

Suppose A, B, and C are arbitrarily chosen sets
that satisfy the condition: Ac Band Bc Ce.

Showthat An C=0.

Instructor : Murad Njoum

°. .
Example 5 — Solution o

Since the conclusion to be shown is that a certain set is empty, you can use the
principle for proving that a set equals the empty set.

A complete proof is shown below.

Proposition 6.2.6

Forallsets A, B,and C,if AC Band BC C“, then ANC = .

Instructor : Murad Njoum
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Proof:

Suppose A, B, and C are any sets such that A ¢ B and
B c Cc. We must show that A n C = @. Suppose not. That
is, suppose there is an elementxin An C.

By definition of intersection, x € A and x € C. Then, since
A c B, x € B by definition of subset. Also, since Bc Cs,
then x € Crc by definition of subset again. It follows by
definition of complement thatx ¢ C. Thus x e Cand x ¢
C, which is a contradiction.

So the supposition that there is an elementxin An Cis
false, and thus A n C = @ [as was to be shown].

Instructor : Murad Njoum

cont'd

\ J
Disproving an Alleged Set Property

We have known that to show a universal statement is false, it suffices to find

one example (called a counterexample) for which it is false.

Instructor : Murad Njoum
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Example 1 — Finding a Counterexample for a Set Identity

Is the following set property true?

For all sets A, B, and C, (A-B)UB-C)=A-C.
Solution:

Observe that the property is true if, and only if,

the given equality holds for all sets A, B, and C.

So it is false if, and only if,

there are sets A, B, and C for which the equality does
not hold.

Instructor : Murad Njoum

Example 1 — Solution ,
contd

One way to solve this problem is to picture sets A, B, and C by drawing a Venn

diagram such as that shown in

Figure 6.3.1.

C

Figure 6.3.1

Instructor : Murad Njoum
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If you assume that any of the eight regions of the diagram may be empty of
points, then the diagram is quite general.

Find and shade the region corresponding to
(A= B)u (B- C). Then shade the region corresponding to A — C. These are
shown in Figure 6.3.2.

Figure 6.3.2
Instructor : Murad Njoum 77

°. .
Example 1 — Solution o

Comparing the shaded regions seems to indicate that the property is false.

For instance, if there is an element in B that is not in either A or C then this
element would be in (A - B) u (B — C) (because of being in B and not C) but it
would not be in

A — C since A — C contains nothing outside A.

Similarly, an element that is in both A and C but not B would be in (A-B) U (B
— C) (because of being in A and not B), but it would not be in A — C (because of
being in both A and C).

Instructor : Murad Njoum
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Construct a concrete counterexample in order to confirm your answer and make
sure that you did not make a mistake either in drawing or analyzing your
diagrams.

One way is to put one of the integers from 1-7 into each of the seven
subregions enclosed by the circles representing A, B, and C.

If the proposed set property had involved set complements, it would also be
helpful to label the region outside the circles, and so we place the number 8
there.

Instructor : Murad Njoum
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(See Figure 6.3.3.) Then define discrete sets A, B, and C to consist of all the
numbers in their respective subregions.

U

(236

Figure 6.3.3

Instructor : Murad Njoum
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Counterexample 1:
LetA={1,2,4,5}, B={2, 3,5, 6},andC = {4, 5,6, 7}.

Then
A—-B={1,4, B-C=1{2,3}, and A-C=1{1, 2}.

Hence
(A—-B)U(B—-C)={1,4U{2, 3} ={1, 2, 3, 4},
whereas A —C = {1, 2}.
Since {1, 2, 3, 4} # {1, 2}, we have that (A — B)U(B—-C) # A —C.

Instructor : Murad Njoum

\/
Problem-Solving Strategy

How can you discover whether a given universal statement about sets is true or
false? There are two basic approaches: the optimistic and the pessimistic.

In the optimistic approach, you simply plunge in and start trying to prove the
statement, asking yourself, “What do | need to show?” and “How do | show it?”

In the pessimistic approach, you start by searching your mind for a set of
conditions that must be fulfilled to construct a counterexample.

With either approach you may have clear sailing and be immediately successful
or you may run into difficulty.
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“Algebraic” Proofs of Set Identities

Let U be a universal set and consider the power set of U, 22(U)
. The set identities given in Theorem 6.2.2 hold for all elements of (V).

Theorem 6.2.2 Set Identities
Let all sets referred to below be subsets of a universal set U.
1. Commutative Laws: For all sets A and B,
(A)AUB=BUA and (b)ANB=BNA.
2. Associative Laws: For all sets A, B, and C,
@(AUB)UC=AUBUC) and
b (ANB)NC=ANBNC).
3. Distributive Laws: For all sets, A, B, and C,
(@ AU(BNC)=(AUB)N(AUC) and
b)AN(BUC)=(ANB)UANC).

Instructor : Murad Njoum
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“Algebraic” Proofs of Set Identities

4. Identity Laws: For all sets A,

(@AUP=A and (b)ANU = A.
5. Complement Laws:

(@ AUA=U and (b)ANA“=.
6. Double Complement Law: For all sets A,

(A = A.

=

. Idempotent Laws: For all sets A,
(@AUA=A and (b)ANA=A.

. Universal Bound Laws: For all sets A,

o

(AUU=U and (b)ANY=10.

5=

De Morgan’s Laws: For all sets A and B,
(@) (AUB) = AN B¢ and (b) (AN B)° = A°U BC.
10.

Absorption Laws: For all sets A and B,
(QAUANB) =A and (b)AN(AUB) = A.
11. Complements of U and ¥:
(@U‘=¢ and (b)Y =U.
12. Set Difference Law: For all sets A and B, Instructor : Murad Njoum
A—B=AnNB". 84
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Construct an algebraic proof that for all setsAand B,A - (A n B) =A - B.

=(ANAYUANB) by the distributive law

=@ U (AN BY by the complement law
=(ANBHYUY by the commutative law for U
=ANB* by the identity law for U
=A—-B by the set difference law.

Instructor : Murad Njoum

“Algebraic” Proofs of Set Identities

’0

Once a certain number of identities and other properties
have been established, new properties can be derived from
them algebraically without having to use element method
arguments.

It turns out that only identities (1-5) of Theorem 6.2.2 are needed to prove any
other identity involving only unions, intersections, and complements.

Instructor : Murad Njoum
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“Algebraic” Proofs of Set Identities

’0

With the addition of identity (12), the set difference law, any set identity
involving unions, intersections, complements, and set differences can be
established.

To use known properties to derive new ones, you need to use the fact that such
properties are universal statements. Like the laws of algebra for real numbers,
they apply to a wide variety of different situations.

Assume that all sets are subsets of 22(U), then, for instance, one of the
distributive laws states that
forallsets A, B,and C, AN (BUC)=(ANB)U(ANC).

Instructor : Murad Njoum

Example 3 — Deriving a Set Identity Using Properties of @

Construct an algebraic proof that for all sets A and B,
A—(ANB)=A-B.

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution:
Suppose A and B are any sets. Then

A—(ANB)=AN(ANB)" by the set difference law

=AN (AC U B9 by De Morgan’s laws

Instructor : Murad Njoum
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Formalizing Statements in Set Theory

smart students |
Student N Smart -
Students who are not Smart

Student N Smartc  / Student - Smart

There are no smart students from Palestine

Palestinian N Student N Smart =
There are no smart students from Palestine among the winners

Winner N Palestinian N Student N Smart =

All Palestinian Americans except Women

(American N Palestinian) — Women / American N Palestinian N
womene

89

r
SECTION 6.4

Boolean Algebras

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Table 6.4.1 summarizes the main features of the logical equivalences from
Theorem 2.1.1 and the set properties from Theorem 6.2.2. Notice how similar

the entries in the two columns are.

Logical Equivalences

Set Properties

For all statement variables p, ¢.and r:

For all sets A, B, and C:

apvg=sEgqvp

b.prg=gnp

a AUB=BUA
bbANB=BNA

apAlgarys=palgar)
b.pvigvr)=pvigvr)

AUBUC)=AU(BUC)
ANBNC)=ANBNC)

P

&

apnalgvr)s(parg)VvIipar)
b.pvigary=(pvg)a(pvr)

T ®

AN(BUC)=(ANBYUANC) |
AU(BNC)=(AUB)N(AUC)

apve=sp

b.pat=p

aAUM=A
b.ANU=A

Instructor : Murad Njoum
Table 6.4.1

91

Boolean Algebras, Russell’s Paradox, and the Halting Problem

Logical Equivalences Set Properties
a.pv~p=t L AUA=U
b.pA~p=c b.ANA =0
~(~p)=p (A) =A
apVvp=p AL AUA=A
b.pAp=p bbANA=A
apvt=t a AUU=U
b.prec=c b.ANP =0

a.~(pVq)=~pA~q
b.~(p A g) =~pV ~q

a. (AUB) = A°N B
b. (AN B) = A° U B¢

apV(iprg) =p
b.pr(pvg)=p

A AUANB)=A
b.AN(AUB) =4

a~t=c

b.~c=t

a U=y
b.#=U

Table 6.4.1 (continued)
Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Theorem 2.1.1 Logical Equivalences
Given any statement variables p, g, and r, a tautology t and a contradiction ¢, the following logical equivalences
hold.
1. Commutative laws: PAG=qAp pVqg=qVp
2. Associative laws: (pAgQ)ANr=pA(gAT) (pvqg)vr=pVv(qgVr)
3. Distributive laws: pA@Vr)=(pAq)V(pAT) pV@Ar)=(pVvg A(pVr)
4. Identity laws: pPAt=p pVve=p
5. Negation laws: Y ~p =i DA~ =CE
6. Double negative law: ~(~p)=p
7. Idempotent laws: PAP=Dp pVp=p
8. Universal bound laws: pVt=t pAC=c
9. De Morgan’s laws: ~pAg)=~pV~q ~(pVg)=~pA~q
10. Absorption laws: pV(pAg)=p pA(pVg) =p
11. Negations of tand c: ~t=c ~p=(

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Theorem 6.2.2 Set Identities
Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)AUB=BUA and (b)ANB=BNA.

2. Associative Laws: For all sets A, B, and C,

(@ (AUB)UC=AU(BUC) and
b (ANBNC=ANBNC).

3. Distributive Laws: For all sets, A, B, and C,
(@AUuBNC)=(AUB)N(AUC) and
bYAN(BUC)=(ANB)UANC).

4. Identity Laws: For all sets A,

(@A) AUP=A and (b)ANU =A.

5. Complement Laws:

(@ AUA“=U and (b)ANA°=40.
Instructor : Murad Njoum
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Boolean Algebras, Russell's Paradox, and the Halting Problem .
cont’

6. Double Complement Law: For all sets A,
(A9 = A.
7. Idempotent Laws: For all sets A,
(@WAUA=A and (b)ANA=A.
8. Universal Bound Laws: For all sets A,
(@)AUU=U and (b)ANY=40.
9. De Morgan’s Laws: For all sets A and B,
(@) (AUB) = AN B¢ and (b) (AN B)" = AU B°.
10. Absorption Laws: For all sets A and B,
(@AUANB)=A and (b)AN(AUB)=A.
11. Complements of U and :
@U°=¥ and (b)P =U.
12. Set Difference Law: For all sets A and B,
A—B=AnNB".

Instructor : Murad Njoum 95

Boolean Algebras, Russell’s Paradox, and the Halting Problem

If youlet (or) correspond to U (union), (and) correspond to N (intersection), t
(a'tautology) correspond to U (a universal set), ¢ (a contradiction) correspond to @

(the empty set), and ~ (negation) correspond to
¢ (complementation), then you can see that the structure of the set of statement

forms with operations and is essentially identical to the structure of the set of
subsets of a universal set with operations u and N .

In fact, both are special cases of the same general structure, known as a Boolean
algebra.

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

In this section we show how to derive the various properties associated with a
Boolean algebra from a set of just five axioms.

* Definition: Boolean Algebra

A Boolean algebra is a set B together with two operations, generally denoted +
and -, such that for all @ and b in B both a + b and a-b are in B and the following
properties hold:

1. Commutative Laws: For all a and b in B,
@a+b=b+a and (b)a-b=b-a.
2. Associative Laws: For all a, b, and ¢ in B,
(@)(@+b)y+c=a+((b+c) and (b)(a-b)-c=a-(b-c).
3. Distributive Laws: For all a, b, and ¢ in B,
@a+b-c)=(@+b)-(a+c) and (b)a-(b+c)=(a-b)+ (a-c).
4. Identity Laws: There exist distinct elements 0 and 1 in B such that for all a in B,
@a+0=a and (b)a-1=a.

5. Complement Laws: For each a in B, there exists an element in B, denoted @ and
called the complement or negation of @, such that

(@a+a=1 and (b)ya-a=0.

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

In any Boolean algebra, the complement of each element is unique, the
quantities 0 and 1 are unique, and identities analogous to those in Theorem
2.1.1 and Theorem 6.2.2 can be deduced.

Theorem 6.4.1 Properties of a Boolean Algebra
Let B be any Boolean algebra.

1. Uniqueness of the Complement Law: For all ¢ and x in B, if a +x =1 and
a-x = 0then x =a.

2. Uniqueness of 0 and 1: If there exists x in B such that ¢ + x = a for all ¢ in B,
then x = 0, and if there exists y in B suchthata-y = a forallain B,theny = 1.

3. Double Complement Law: For all a € B, @) =a.

Instructor : Murad Njoum

98

49



11/25/2020

Boolean Algebras, Russell’s Paradox, and the Halting Problem

4. Idempotent Law: For all a € B,

(@a+a=a and (b)a-a =a.
5. Universal Bound Law: For all a € B,

@a+1=1 and (b)a-0=0.
6. De Morgan’s Laws: For all a and b € B,

(@a+b=a-b and (b)a-b=a+b.
7. Absorption Laws: For all @ and b € B,
@ @+b)y-a=a and (b)(a-b)+a=a.
8. Complements of 0 and 1:
@0=1 and (b)T=0.

Instructor : Murad Njoum
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Part 1: Uniqueness of the Complement Law
Suppose a and x are particular, but arbitrarily chosen, elements of B that sati
following hypothesis: a +x = 1 and a-x = 0. Then
x=x-1 because 1 is an identity for-
=x-(a+a) by the complement law for +
=x-at+x-a by the distributive law for-over +
=axtx-a by the commutative law for-
=0+x-a by hypothesis
=a-atx-a by the complement law for-
= (a-a)+(ax) by the commutative law for-
=aqa- (a+ x) by the distributive law for-over +
=a-1 by hypothesis
=a because 1 is an identity for-.
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

You may notice that all parts of the definition of a Boolean algebra and most
parts of Theorem 6.4.1 contain paired statements. For instance, the distributive
laws state that for all a, b, and c in B,

and the identity laws state that for all a in B,

(@)a+0=a and (b)a- 1=a.

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Note that each of the paired statements can be obtained from the other by
interchanging all the + and - signs and interchanging 1 and 0. Such
interchanges transform any Boolean identity into its dual identity.

It can be proved that the dual of any Boolean identity is also an identity. This
fact is often called the duality principle for a Boolean algebra.

Instructor : Murad Njoum

102

51



11/25/2020

<@,
Example 1 — Proof of the Double Complement Law

Prove that for all elements a in a Boolean algebra
B, @ =a.

Solution:

Start by supposing that B is a Boolean algebra and a is any element of B. The
basis for the proof is the uniqueness of the complement law: that each element
in B has a unique complement that satisfies certain equations with respect to it.

So if a can be shown to satisfy those equations with respect to , then a must
be the complement of

S|

a
Instructor : Murad Njoum
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Example 1 — Solution o

Theorem 6.4.1(3) Double Complement Law

For all elements @ in a Boolean algebra B, (@) = a.

Proof:
Suppose B is a Boolean algebra and a is any element of B.
Then
ad+a=a-+a bythe commutative law
= il by the complement law for 1
and
a-a=a-a by the commutative law

Instructor : Murad Njoum
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