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Discrete Mathematic and Application 
Comp233 

Instructor 
Murad Njoum

CHAPTER 6
SET THEORY

2

Subsets: Proof and Disproof
We begin by rewriting what it means for a set A to be a subset of a set B as a 
formal universal conditional statement:

The negation is, therefore, existential:

Instructor : Murad Njoum

A proper subset �82� of a set is a subset that is not equal to its containing set. 
Thus
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Example 1 – Testing Whether One Set Is a Subset of Another

Let A = {1} and B = {1, {1}}.
a. Is A   B?
b. If so, is A a proper subset of B?
Solution:
a. Because A = {1}, A has only one element, namely the symbol 1. 
    This element is also one of the elements in set B. Hence
    every element in A is in B, and so A   B.

Instructor : Murad Njoum

b. B has two distinct elements, the symbol 1 and the set {1} whose only element 
is 1. 

Since 1   {1}, the set {1} is not an element of A, and so there is an element of 
B that is not an element of A. Hence A is a proper subset of B.

4

Subsets: Proof and Disproof
Because we define what it means for one set to be a subset of another by 
means of a universal conditional statement, we can use the method of direct 
proof to establish a subset relationship.

Such a proof is called an element argument and is the fundamental proof 
technique of set theory.

Instructor : Murad Njoum
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Example 2 – Proving and Disproving Subset Relations

Define sets A and B as follows:

a. Outline a proof that A   B.

b. Prove that A   B.

c. Disprove that B   A. 

Instructor : Murad Njoum
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Example 2 – Solution
a. Proof Outline:

Suppose x is a particular but arbitrarily chosen element of A.

Therefore, x is an element of B.

b. Proof:
Suppose x is a particular but arbitrarily chosen element of A.

Instructor : Murad Njoum
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Example 2 – Solution
    By definition of A, there is an integer r such that 

x = 6r + 12.
             

    Let s = 2r + 4.

    Then s is an integer because products and sums of 
integers are integers.

cont’d

Instructor : Murad Njoum
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Example 2 – Solution
Also 
Thus, by definition of B, x is an element of B,

c. To disprove a statement means to show that it is false, and to show it is false 
that B   A, you must find an element of B that is not an element of A.

cont’d

Instructor : Murad Njoum

By the definitions of A and B, this means that you must find an integer 
x of the form 3   (some integer) that cannot be written in the form 6  (some integer) + 12.
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Example 2 – Solution
A little experimentation reveals that various numbers do the job. For instance, 

you could let x = 3.
Then x   B because 3 = 3  1, but x   A because there is no integer r such that 
3 = 6r + 12. For if there were such an integer, then

cont’d

but 3/2 is not an integer. Thus 3   B but 3   A, and so B    A.

10

Set Equality
We have known that by the axiom of extension, sets A and B are equal if, and 
only if, they have exactly the same elements.

We restate this as a definition that uses the language of subsets.

Instructor : Murad Njoum
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Example 3 – Set Equality

Define sets A and B as follows:

Is A = B?
Solution: 
Yes. To prove this, both subset relations A   B and B   A must be proved.

Instructor : Murad Njoum

This version of the definition of equality implies the following:
To know that a set A equals a set B, you must know

           that A   B and you must also know that B   A.

12

Example 3 – Solution

Part 1, Proof That A   B:
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x   B. By definition of B, this means we 
must show that x = 2   (some integer) – 2.]

By definition of A, there is an integer a such that x = 2a.

[Given that x = 2a, can x also be expressed as 2   (some 
integer) – 2? i.e., is there an integer, say b, such that 
2a = 2b – 2? Solve for b to obtain b = (2a + 2)/2 = a + 1. 
Check to see if this works.]

cont’d

Instructor : Murad Njoum
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Example 3 – Solution
Let b = a + 1.

   [First check that b is an integer.]
Then b is an integer because it is a sum of integers.
             [Then check that x = 2b – 2.]

Also 2b – 2 = 2(a + 1) – 2 = 2a + 2 – 2 = 2a = x,
Thus, by definition of B, x is an element of B
             [which is what was to be shown].

Part 2, Proof That B  A:

Similarly we can prove that B  A. Hence A = B.

cont’d

Instructor : Murad Njoum
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Venn Diagrams
If sets A and B are represented as regions in the plane, relationships between A 
and B can be represented by pictures, called Venn diagrams, that were 
introduced by the British mathematician John Venn in 1881.

For instance, the relationship A   B can be pictured in one of two ways, as 
shown in Figure 6.1.1.

Figure 6.1.1
A  B

Instructor : Murad Njoum
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Venn Diagrams
The relationship A    B can be represented in three different ways with Venn 
diagrams, as shown in Figure 6.1.2.

Figure 6.1.2

A     B

Instructor : Murad Njoum
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Example 4 – Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational numbers, and real 
numbers, respectively, Z is a subset of Q because every integer is rational (any 
integer n can be written in the form   ).

Q is a subset of R because every rational number is real (any rational number 
can be represented as a length on the number line).

Z is a proper subset of Q because there are rational numbers that are not 
integers (for example,  ).

Instructor : Murad Njoum
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Q is a proper subset of R because there are real numbers that are not rational 
(for example,     ).

This is shown diagrammatically in Figure 6.1.3.

cont’d

Figure 6.1.3

Example 4 – Relations among Sets of Numbers

Instructor : Murad Njoum
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Operations on Sets
  

Instructor : Murad Njoum
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Operations on Sets
Venn diagram representations for union, intersection, difference, and 
complement are shown in Figure 6.1.4.

Shaded region
represents A   B.

Shaded region
represents A   B.

Shaded region
represents B – A.

Shaded region
represents Ac.

Figure 6.1.4

Instructor : Murad Njoum
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Example 5 – Unions, Intersections, Differences, and Complements

Let the universal set be the set U = {a, b, c, d, e, f, g} and let A = {a, c, e, g} and 
B = {d, e, f, g}. Find A   B, A   B, 
B – A, and Ac.

Solution: 

Instructor : Murad Njoum
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Operations on Sets
There is a convenient notation for subsets of real numbers that are intervals.

Observe that the notation for the interval (a, b) is identical
to the notation for the ordered pair (a, b). However, context
makes it unlikely that the two will be confused.

Instructor : Murad Njoum
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Example 6 – An Example with Intervals

Let the universal set be the set R of all real numbers and let

These sets are shown on the number lines below.

Find A   B, A   B, B – A, and Ac.

Instructor : Murad Njoum
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Example 6 – Solution

Instructor : Murad Njoum
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Example 6 – Solution cont’d

Instructor : Murad Njoum
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Operations on Sets
The definitions of unions and intersections for more than two sets are very 
similar to the definitions for two sets.

Instructor : Murad Njoum

An alternative notation for   

alternative notation for

26

For each positive integer i, let

a.

b.

Solution:

a.

Example 7 – Finding Unions and Intersections of More than Two Sets

Instructor : Murad Njoum
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Example 7 – Solution cont’d

Instructor : Murad Njoum
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Example 7 – Solution
b.

cont’d

Instructor : Murad Njoum
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The Empty Set
We have stated that a set is defined by the elements that compose it. This 
being so, can there be a set that has no elements? It turns out that it is 
convenient to allow such a
set.
Because it is unique, we can give it a special name. We call it the empty set (or 
null set) and denote it by the symbol Ø.

Thus {1, 3}   {2, 4} = Ø and {x   R| x2 = –1} = Ø.

Instructor : Murad Njoum
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Example 8 – A Set with No Elements

Describe the set

Solution:
We have known that a < x < b means that a < x and x < b. So D consists of all 
real numbers that are both greater than 3 and less than 2.

Since there are no such numbers, D has no elements and so D = Ø. 

Instructor : Murad Njoum
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Partitions of Sets
In many applications of set theory, sets are divided up into nonoverlapping (or 
disjoint) pieces. Such a division is called a partition.

Instructor : Murad Njoum

Let A = {1, 3, 5} and B = {2, 4, 6}. Are A and B disjoint?

Solution:
Yes. By inspection A and B have no elements in common, or, in other words, {1, 
3, 5}   {2, 4, 6} = Ø.

32

Partitions of Sets
  

Instructor : Murad Njoum
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Example 10 – Mutually Disjoint Sets

a. Let A1 = {3, 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3, 7}, and B3 = {4, 5}. Are B1, B2, and B3 mutually 
disjoint?

Solution:
a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in 

common, and A2 and A3 have no elements in common.

b. No. B1 and B3 both contain 4.

Instructor : Murad Njoum
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Partitions of Sets
Suppose A, A1, A2, A3, and A4 are the sets of points represented by the regions 
shown in Figure 6.1.5.

Then A1, A2, A3, and A4 are subsets of A, and
A = A1 U A2 U A3  U A4.

Figure 6.1.5

A Partition of a Set

Instructor : Murad Njoum
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Partitions of Sets
Suppose further that boundaries are assigned to the regions representing A2, 
A3, and A4 in such a way that these sets are mutually disjoint.

Then A is called a union of mutually disjoint subsets, and the collection of sets 
{A1, A2, A3, A4} is said to be a
partition of A.

Instructor : Murad Njoum
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Example 11 – Partitions of Sets
a. Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, and 
    A3 = {5, 6}. Is {A1, A2, A3} a partition of A?

b. Let Z be the set of all integers and let

     Is {T0, T1, T2} a partition of Z?

Instructor : Murad Njoum
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Example 11 – Solution

a. Yes. By inspection, A = A1   A2   A3 and the sets A1, A2, and A3 are 
mutually disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented 
in exactly one of the three forms

for some integer k.

    This implies that no integer can be in any two of the sets T0, T1, or T2. So T0, 
T1, and T2 are mutually disjoint.

It also implies that every integer is in one of the sets T0, T1, or T2. So Z = T0 
  T1   T2.

Instructor : Murad Njoum
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Power Sets
There are various situations in which it is useful to consider the set of all 
subsets of a particular set. 

The power set axiom guarantees that this is a set.

Instructor : Murad Njoum
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Example 12 – Power Set of a Set
Find the power set of the set {x, y}. That is, find     ({x, y}).

Solution:
    ({x, y}) is the set of all subsets of {x, y}. We know that Ø is a subset of every 
set, and so Ø       ({x, y}).

Also any set is a subset of itself, so {x, y}       ({x, y}). The only other subsets of 
{x, y} are {x} and {y}, so

Instructor : Murad Njoum
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Cartesian Products
  

Instructor : Murad Njoum
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Example 13 – Ordered n-tuples
a. 

b.

Solution:
a. No. By definition of equality of ordered 4-tuples,

    But 3   4, and so the ordered 4-tuples are not equal.

Instructor : Murad Njoum
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Example 13 – Solution
b. Yes. By definition of equality of ordered triples,

Because these equations are all true, the two ordered triples are equal.

cont’d

Instructor : Murad Njoum
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Cartesian Products
 

Instructor : Murad Njoum

44

Example 14 – Cartesian Products
Let A1 = {x, y}, A2 = {1, 2, 3}, and A3 = {a, b}.

a.                                             b.

c.

Solution:
a. A1   A2 = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

b. The Cartesian product of A1 and A2 is a set, so it may be
    used as one of the sets making up another Cartesian
    product. This is the case for (A1   A2)   A3.

Instructor : Murad Njoum
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Example 14 – Solution

c. The Cartesian product A1   A2   A3 is superficially similar to, but is not quite 
the same mathematical object as, 
(A1   A2) × A3. (A1   A2)   A3 is a set of ordered pairs of which one 
element is itself an ordered pair, whereas 
A1   A2   A3 is a set of ordered triples.

cont’d

Instructor : Murad Njoum
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Example 14 – Solution
By definition of Cartesian product,

cont’d

Instructor : Murad Njoum
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Properties of Sets
We begin by listing some set properties that involve subset relations.

Instructor : Murad Njoum
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Properties of Sets
Procedural versions of the definitions of the other set operations are derived 
similarly and are summarized below.

Instructor : Murad Njoum



11/25/2020

25

49

Example 1 – Proof of a Subset Relation

Prove Theorem 6.2.1(1)(a): For all sets A and B, 
A   B   A.

Solution:
We start by giving a proof of the statement and then explain how you can obtain 
such a proof yourself.

Instructor : Murad Njoum
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Example 1 – Solution
Proof:
Suppose A and B are any sets and suppose x is any element of A   B.

Then x   A and x   B by definition of intersection. 

In particular, x   A .

Thus A   B   A.

cont’d

Instructor : Murad Njoum
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Set Identities
An identity is an equation that is universally true for all elements in some set. 
For example, the equation 
a + b = b + a is an identity for real numbers because it is true for all real 
numbers a and b. 

The collection of set properties in the next theorem consists entirely of set 
identities. That is, they are equations that are true for all sets in some universal 
set.

Instructor : Murad Njoum
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Set Identities cont’d

Instructor : Murad Njoum
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Set Identities cont’d

Instructor : Murad Njoum

54
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Proving Set Identities
As we have known,

         Two sets are equal  each is a subset of the other.

The method derived from this fact is the most basic way to prove equality of 
sets.

Instructor : Murad Njoum
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Example 2 – Proof of a Distributive Law

Prove that for all sets A, B, and C,

A   (B   C) = (A   B)   (A   C).

Solution:
The proof of this fact is somewhat more complicated than the proof in Example 
1, so we first derive its logical structure, then find the core arguments, and end 
with a formal proof as a summary.

Instructor : Murad Njoum



11/25/2020

29

57

Example 2 – Solution
As in Example 1, the statement to be proved is universal, and so, by the method 
of generalizing from the generic particular, the proof has the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen 
    sets.

To Show: A   (B   C) = (A   B)   (A   C).

cont’d

Instructor : Murad Njoum
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Example 2 – Solution
Now two sets are equal if, and only if, each is a subset of the other. 

Hence, the following two statements must be proved:
   A   (B   C)   (A   B)   (A   C)

and (A   B)   (A   C)   A   (B   C).

Showing the first containment requires showing that

       x, if x   A   (B   C) then x   (A   B)   (A   C).

cont’d

Instructor : Murad Njoum
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Example 2 – Solution
Showing the second containment requires showing that

         x, if x   (A   B)   (A   C) then x   A   (B   C).

Note that both of these statements are universal. So to prove the first 
containment, you

suppose you have any element x in A   (B   C),

and then you 

show that x   (A   B)   (A   C).

cont’d

Instructor : Murad Njoum
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Example 2 – Solution
And to prove the second containment, you

suppose you have any element x in (A   B)   (A   C),

and then you 

show that x   A   (B   C).

cont’d

Instructor : Murad Njoum
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Example 2 – Solution
In Figure 6.2.1, the structure of the proof is illustrated by the kind of diagram 
that is often used in connection with structured programs.

cont’d

Figure 6.2.1
Instructor : Murad Njoum
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Example 2 – Solution
 

The analysis in the diagram reduces the proof to two concrete tasks: filling in 
the steps indicated by dots in the two center boxes of Figure 6.2.1.

cont’d

Figure  6.2.1 (continued)

Instructor : Murad Njoum
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Proving Set Identities

Instructor : Murad Njoum
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Proving Set Identities
Suppose A and B are arbitrarily chosen sets.

Instructor : Murad Njoum
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Proving Set Identities

Instructor : Murad Njoum
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The Empty Set
The crucial fact is that the negation of a universal statement is existential: If a 
set B is not a subset of a set A, then there exists an element in B that is not in 
A. But if B has no elements, then no such element can exist.

If E is a set with no elements and A is any set, then to say that E   A is the 
same as saying that

  x, if x   E, then x   A.

Instructor : Murad Njoum
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The Empty Set
But since E has no elements, this conditional statement is vacuously true.

How many sets with no elements are there? Only one.

Suppose you need to show that a certain set equals the empty set. By Corollary 
6.2.5 it suffices to show that the set has no elements.

Instructor : Murad Njoum
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The Empty Set
For since there is only one set with no elements (namely Ø), if the given set has 
no elements, then it must equal Ø.

Instructor : Murad Njoum



11/25/2020

36

71

Example 5 – A Proof for a Conditional Statement

Prove that for all sets A, B, and C, if A   B and B   Cc, then A   C = Ø.

Solution:
Since the statement to be proved is both universal and conditional, you start 
with the method of direct proof:

Suppose A, B, and C are arbitrarily chosen sets
     that satisfy the condition: A   B and B   Cc.

Show that A   C = Ø.

Instructor : Murad Njoum
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Example 5 – Solution
Since the conclusion to be shown is that a certain set is empty, you can use the 
principle for proving that a set equals the empty set. 

A complete proof is shown below.

cont’d

Instructor : Murad Njoum
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Example 5 – Solution
Proof:
Suppose A, B, and C are any sets such that A   B and 
B   Cc. We must show that A   C = Ø. Suppose not. That 
is, suppose there is an element x in A   C. 

By definition of intersection, x   A and x   C. Then, since 
A   B, x   B by definition of subset. Also, since B   Cc, 
then x   Cc by definition of subset again. It follows by 
definition of complement that x   C. Thus x   C and x   
C, which is a contradiction. 

So the supposition that there is an element x in A   C is 
false, and thus A   C = Ø [as was to be shown].

cont’d

Instructor : Murad Njoum
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Disproving an Alleged Set Property
We have known that to show a universal statement is false, it suffices to find 
one example (called a counterexample) for which it is false.

Instructor : Murad Njoum
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Example 1 – Finding a Counterexample for a Set Identity

Is the following set property true?

For all sets A, B, and C,

Solution:
Observe that the property is true if, and only if, 

the given equality holds for all sets A, B, and C. 

So it is false if, and only if, 

there are sets A, B, and C for which the equality does
      not hold. 

Instructor : Murad Njoum
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Example 1 – Solution
One way to solve this problem is to picture sets A, B, and C by drawing a Venn 
diagram such as that shown in 
Figure 6.3.1.

cont’d

Figure 6.3.1

Instructor : Murad Njoum
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Example 1 – Solution
If you assume that any of the eight regions of the diagram may be empty of 
points, then the diagram is quite general.

Find and shade the region corresponding to 
(A – B)   (B – C). Then shade the region corresponding to A – C. These are 
shown in Figure 6.3.2.

cont’d

Figure 6.3.2
Instructor : Murad Njoum
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Example 1 – Solution
Comparing the shaded regions seems to indicate that the property is false. 

For instance, if there is an element in B that is not in either A or C then this 
element would be in (A – B)   (B – C) (because of being in B and not C) but it 
would not be in 
A – C since A – C contains nothing outside A. 

Similarly, an element that is in both A and C but not B would be in (A – B)   (B 
– C) (because of being in A and not B), but it would not be in A – C (because of 
being in both A and C).

cont’d

Instructor : Murad Njoum
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Example 1 – Solution
Construct a concrete counterexample in order to confirm your answer and make 
sure that you did not make a mistake either in drawing or analyzing your 
diagrams. 

One way is to put one of the integers from 1–7 into each of the seven 
subregions enclosed by the circles representing A, B, and C. 

If the proposed set property had involved set complements, it would also be 
helpful to label the region outside the circles, and so we place the number 8 
there.

cont’d

Instructor : Murad Njoum
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Example 1 – Solution
(See Figure 6.3.3.) Then define discrete sets A, B, and C to consist of all the 
numbers in their respective subregions.

cont’d

Figure 6.3.3

Instructor : Murad Njoum
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Example 1 – Solution
Counterexample 1:

Then

Hence

cont’d

Instructor : Murad Njoum
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Problem-Solving Strategy
How can you discover whether a given universal statement about sets is true or 
false? There are two basic approaches: the optimistic and the pessimistic.

In the optimistic approach, you simply plunge in and start trying to prove the 
statement, asking yourself, “What do I need to show?” and “How do I show it?” 

In the pessimistic approach, you start by searching your mind for a set of 
conditions that must be fulfilled to construct a counterexample.

With either approach you may have clear sailing and be immediately successful 
or you may run into difficulty.
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“Algebraic” Proofs of Set Identities
Let U be a universal set and consider the power set of U,
         . The set identities given in Theorem 6.2.2 hold for all elements of          . 

Instructor : Murad Njoum
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“Algebraic” Proofs of Set Identities cont’d

Instructor : Murad Njoum
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Example 3 – Solution cont’d

Instructor : Murad Njoum

Construct an algebraic proof that for all sets A and B, A − (A ∩ B) = A − B.

86

“Algebraic” Proofs of Set Identities
Once a certain number of identities and other properties 
have been established, new properties can be derived from 
them algebraically without having to use element method 
arguments.

It turns out that only identities (1–5) of Theorem 6.2.2 are needed to prove any 
other identity involving only unions, intersections, and complements.

Instructor : Murad Njoum
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“Algebraic” Proofs of Set Identities
With the addition of identity (12), the set difference law, any set identity 
involving unions, intersections, complements, and set differences can be 
established.

To use known properties to derive new ones, you need to use the fact that such 
properties are universal statements. Like the laws of algebra for real numbers, 
they apply to a wide variety of different situations.

Assume that all sets are subsets of          , then, for instance, one of the 
distributive laws states that
for all sets A, B, and C,

Instructor : Murad Njoum
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Example 3 – Deriving a Set Identity Using Properties of Ø

Construct an algebraic proof that for all sets A and B,

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution:
Suppose A and B are any sets. Then  

Instructor : Murad Njoum
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All smart students

Student ∩ Smart 
Students who are not Smart

Student ∩ Smartc     /  Student - Smart

There are no smart students from Palestine

Palestinian ∩ Student ∩ Smart = 
There are no smart students from Palestine among the winners

Winner ∩ Palestinian ∩ Student ∩ Smart = 
 All Palestinian Americans except Women

(American ∩ Palestinian) – Women   / American ∩ Palestinian ∩ 
womenc 

Formalizing Statements in Set Theory
∩   and  

  and   
Between 
sets

Between 
predicate and 
propositions 

90

Boolean Algebras
SECTION 6.4

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Table 6.4.1 summarizes the main features of the logical equivalences from 
Theorem 2.1.1 and the set properties from Theorem 6.2.2. Notice how similar 
the entries in the two columns are.

Table 6.4.1
Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

  

Table 6.4.1 (continued)
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Boolean Algebras, Russell’s Paradox, and the Halting Problem
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Boolean Algebras, Russell’s Paradox, and the Halting Problem
cont’d
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

If you let  (or) correspond to   (union),  (and) correspond to   (intersection), t 
(a tautology) correspond to U (a universal set), c (a contradiction) correspond to Ø 
(the empty set), and ~ (negation) correspond to 
c (complementation), then you can see that the structure of the set of statement 
forms with operations  and  is essentially identical to the structure of the set of 
subsets of a universal set with operations   and  . 

In fact, both are special cases of the same general structure, known as a Boolean 
algebra.
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Instructor : Murad Njoum

In this section we show how to derive the various properties associated with a 
Boolean algebra from a set of just five axioms.

98

Boolean Algebras, Russell’s Paradox, and the Halting Problem

In any Boolean algebra, the complement of each element is unique, the 
quantities 0 and 1 are unique, and identities analogous to those in Theorem 
2.1.1 and Theorem 6.2.2 can be deduced.
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Boolean Algebras, Russell’s Paradox, and the Halting Problem
cont’d
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

You may notice that all parts of the definition of a Boolean algebra and most 
parts of Theorem 6.4.1 contain paired statements. For instance, the distributive 
laws state that for all a, b, and c in B,
 

(a) a + (b   c) = (a + b)   (a + c) and
 (b) a   (b + c) = (a   b) + (a   c),

and the identity laws state that for all a in B,

(a) a + 0 = a       and      (b) a   1 = a.

Instructor : Murad Njoum
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Note that each of the paired statements can be obtained from the other by 
interchanging all the + and · signs and interchanging 1 and 0. Such 
interchanges transform any Boolean identity into its dual identity. 

It can be proved that the dual of any Boolean identity is also an identity. This 
fact is often called the duality principle for a Boolean algebra.
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Example 1 – Proof of the Double Complement Law

Prove that for all elements a in a Boolean algebra

Solution:
Start by supposing that B is a Boolean algebra and a is any element of B. The 
basis for the proof is the uniqueness of the complement law: that each element 
in B has a unique complement that satisfies certain equations with respect to it.

So if a can be shown to satisfy those equations with respect to   , then a must 
be the complement of    .
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104

Proof:
Suppose B is a Boolean algebra and a is any element of B. 
Then

and 

Example 1 – Solution cont’d
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