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Relations on Sets

A more formal way to refer to the kind of relation defined on sets is to call it a
binary relation because it is a subset of a Cartesian product of two sets.

At the end of this section we define ann-ary relation to be a subset of a

Cartesian product of n sets, where n is any integer greater than or equal to
two.

Such a relation is the fundamental structure used inrelational databases.
However, because we focus on binary relations in this text, when we use the
term relation by itself, we will mean binary relation.
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What is a Relation?

Let 4 and B be sets. A (binary) relation R from A to B is a subset of 4 x B.
Given an ordered pair (r,y) in 4 X B, x is related toy by R, writtenx R y, if
and only if, (x, y) is in R.

xRy (x,y) € R
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Example: a relation on a Power Set

Let X = {a, b, c}.

Then P(X) = {9, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}}.

Define a relation S from P(X) to Z as follows: For all
sets A and B in P(X) (for all subsets A and B of X),

A'S B # A has at least as many elements asB.
Is {a,b} S {b,c}? Yes, both sets have two elements.

Is {a} S @7 Yes, {a} has one element and @ has
zero elements, and 1 >0

Is {b,c} S No, {b, c} has two elements and {a, b, ¢} has
{a.,b,c}? three elements and 2 < 3

Is {c} S {a}? Yes, both sets have one element

) /
Example — The Congruence Modulo 2 Relation

Define a relation E from Z to Z as follows: For all
(mn)ye Zx Z, mEn < m—niseven.

a.1s4 E0?I1s2E6G?Is3E (-3)?1s5E 27
b. List five integers that are related by E to 1.
c. Prove that if n is any odd integer, thenn E 1.

Solution:
a.Yes, 4 EOQbecause 4 -0 =4 and 4 is even.

Yes, 2 E 6 because 2 — 6 =—4 and —4 is even.
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Example 2 — Solution o

Yes, 3 E (—3) because 3 — (-3) =6 and 6 is even.

No,5 2becafe5-2=23and3is noteven.

b. There are many such lists. One is
1 because 1 —1 =0 s even,
3 because 3 -1 =2 s even,
5 because 5—-1 =4 is even,

—1 because -1 -1 =-2is even,

-3 because -3 — 1 = —4 is even.

WN -

A OWON -

Define a relation E from Z to Z as follows:

Forall(m n)&€Zx2Z, mEne m—n is even.

10
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Example — Solution o

c. Proof:
Suppose n is any odd integer.

Then n = 2k + 1 for some integer k. Now by definition of
E, n E1if, and only if, n— 1 is even.

But by substitution,
n—-1=(2k+1)-1=2k,
and since k is an integer, 2k is even.

Hence n E 1 [as was to be shown].

1

*. .
Example — Solution o

It can be shown that integers m and n are related by E if, and only if, m mod 2 =
n mod 2 (that is, both are even or both are odd).

When this occurs m and n are said to be congruent (&% modulo 2.

12
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The Inverse of a Relation

If R is a relation from A to B, then a relation R-*from B to A can be defined by
interchanging the elements of all the ordered pairs ofR.

o Definition

Let R be a relation from A to B. Define the inverse relation R~! from B to A as
follows:

R'={(y,x) e Bx A|(x,y) € R}.

This definition can be written operationally as follows:

Forallx e Aandy € B, (yv,x)eR™' & (x,y)€R.

13

Sister -1 = {(Tasneem, Alia), (Sana, Abeer)}

14
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Example — The Inverse of a Finite Relation

LetA={2, 3,4} and B={2, 6, 8} and let R be the “divides” relation fromA to B :
Forall (x,y) € Ax B,

XRy & x|y x divides y.

a. State explicitly which ordered pairs are inR and R-', and draw arrow
diagrams for R and R-.

b. Describe R-' in words.

Solution:
a.R={(2, 2), (2,6), (2, 8), (3, 6), (4, 8)}

R1={(2,2),(6,2), (8, 2),(6,3), (8, 4)}

15

®. .
Example 4 — Solution g

To draw the arrow diagram for R-1, you can copy the arrow
diagram for R but reverse the directions of the arrows.

R

16
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Example 4 — Solution contd

Or you can redraw the diagram so thatB is on the left.

b. R-' can be described in words as follows:
Forall (v, x) e Bx A,

y R-'x yis a multiple of x.

@
Directed Graph of a Relation
© Definition
A relation on a set A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can
be modified so that it becomes adirected graph.

Instead of representing A as two separate sets of points, representA only once,
and draw an arrow from each point ofA to each related point.
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Directed Graph of a Relation

As with an ordinary arrow diagram,

For all points x and y in A,

there is an arrow fromxtoy < xRy <& (x,y) € R.

If a point is related to itself, a loop is drawn that extends out from the point and
goes back to it.

19

@
Example 6 — Directed Graph of a Relation

LetA={3, 4,5, 6, 7, 8} and define a relationR on A as follows: For allx, y € A,
XRy 2]|(x-y).
Draw the directed graph of R.

Solution:
Note that 3 R 3 because 3—-3=0and 2|0 since 0 =2- 0. Thus thereis a

loop from 3 to itself.

Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth, since the
difference of each integer with itself is 0, and 2 | 0.

20

10
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Example 6 — Solution o

Note also that 3R 5 because 3-5=-2=2- (-1). And
5R3because 5-3=2=2- 1.

Hence there is an arrow from 3 to 5 and also an arrow from
5 to 3.

The other arrows in the directed graph, as shown below,
are obtained by similar reasoning.

21

\ /
N-ary Relations and Relational Databases

N-ary relations form the mathematical foundation for relational database theory.

A binary relation is a subset of a Cartesian product of two sets, similarly, am-
ary relation is a subset of a Cartesian product ofn sets.

® Definition

Given sets Ay, Ao, ..., A, an n-ary relation R on A| X A, X --- x A, is a subset
of Aj x Ay x --- x A,. The special cases of 2-ary, 3-ary, and 4-ary relations are
called binary, ternary, and quaternary relations, respectively.

22
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Example 7 — A Simple Database

The following is a radically simplified version of a database that might be used
in a hospital.

Let A, be a set of positive integers, A, a set of alphabetic character strings,A; a
set of numeric character strings, andA, a set of alphabetic character strings.

Define a quaternary relationRon A; x A, x Az x A, as follows:

(a4, @y, @3, as) € R a patient with patient ID numberay,
named a,, was admitted on date as,

with primary diagnosis a;.

23

@
Example 7 — A Simple Database o

At a particular hospital, this relation might contain the following 4-tuples:
(011985, Jamal Ali, 020710, asthma)
(674329, Tala Ibraheem, 011410, pneumonia)
(466581, Mai Ahmad, 010310, appendicitis)
(008352, Samer Zaid, 112409, gastritis)
(011985, Jamal Ali, 021710, pneumonia)
(244388, Sarah Walid, 010310, broken leg)
(778400, Jamal Baker, 122709, appendicitis)

24
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Example 7 — A Simple Database o

In discussions of relational databases, the tuples are normally thought of as
being written in tables.

Each row of the table corresponds toone tuple, and the header for each column

gives the descriptive attribute for the elements in the column.

Operations within a database allow the data to be manipulated in many different

ways.

25

@
Example 7 — A Simple Database o

At a particular hospital, this relation might contain the following 4-tuples:
(011985, Jamal Ali, 020710, asthma)

574329, Tala Ibrahim, 011410, pneumonia)
466581, Mai Ahmad, 010310, appendicitis)
008352, Samer Zaid, 112409, gastritis)

011985, Jamal Ali, 021710, pneumonia)

(
(
(
(
(244388, Sarah Walid, 010310, broken leg)
(

778400, Jamal Baker, 122709, appendicitis)

26
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Example 7 — A Simple Database o

For example, in the database language SQL, if the above database is denoted
S, the result of the query

SELECT Patient_ID#, Name FROM S WHERE
Admission_Date = 010310

would be a list of the ID numbers and names of all patients admitted on 01-03-
10:

466581 Mai Ahmad,
244388 Sarah Walid.

27

@
Example 7 — A Simple Database o

This is obtained by taking theintersection of the set

Ay x A, x {010310} x A, with the database and then projecting onto the first
two coordinates.

Similarly, SELECT can be used to obtain a list of all admission dates of a given
patient.
For Jamal Ali this list is

02-07-10 and

17 SELECT Admission_Date FROM S
02-17-10 WHERE Name = “Jamal Ali*

28

14
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mReflexivity, Symmetry, and

Transitivity
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Reflexivity, Symmetry, and Transitivity

LetA={2, 3,4, 6, 7, 9} and define a relationR on A as follows: For all x, y € A,
xRy < 3|(x—y).

Then 2 R2 because 2-2=0,and 3| 0.

Similarly, 3R3,4R4,6 R6,7R7,and 9 R 9.

Also 6 R 3 because 6 —3 =3, and 3 | 3.

And 3 R 6 because 3-6 =—(6—-3)=-3, and 3 | (-3).

Similarly, 3R9,9R3,6 R9,9R6,4R7,and 7 R4.

31

Reflexivity, Symmetry, and Transitivity

Thus the directed graph for R has 2
the appearance shown at the right. O

This graph has three important
properties: \7

1. Each point of the graph has an arrow looping around
from it back to itself. Reflexivity)

2. In each case where there is an arrow going from one

point to a second, there is an arrow going fromthe
second point back to the first. (Symmetry)

32
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Reflexivity, Symmetry, and Transitivity

3. In each case where there is an arrow goingfrom one
point to a second and from the second point to a third,
there is an arrow going from thefirst point to the third
That is, there are no “incomplete directed triangles’ in
the graph. (Transitivity)

Properties (1), (2), and (3) correspond to properties of general
relations called reflexivity, symmetry, and transitivity.

 Definition

Let R be a relation on a set A.
1. R is reflexive if, and only if, forallx € A, x R x.
2. R is symmetric if, and only if, forall x, y € A, if x R y then y R x.

3. R is transitive if, and only if, forall x, y,z € A, if x Ryand y R z then x R z.
33

Reflexivity, Symmetry, and Transitivity

Because of the equivalence of the expressionsx R y and (x, y) € R for all x and
yin A, the reflexive, symmetric, and transitive properties can also be written as

follows:

1. R is reflexive & forallxin A, (x,x) € R.
2. Rissymmetric < forall x and y in A, if (x,y) € R then (y, x) € R.

3. Ristransitive < forallx, yandzinA,if (x,y) € Rand (y,z) € R
then (x, z) € R.

34
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Reflexivity, Symmetry, and Transitivity

In informal terms, properties (1)—(3) say the following:
1. Reflexive: Each element is related to itself

2. Symmetric: If any one element is related to any other element, then the
second element is related to the first.

3. Transitive: If any one element s related to a second and that second
element is related to a third, then the first element is related to the third

Note that the definitions of reflexivity, symmetry, and transitivity areuniversal
statements.

35

Reflexivity, Symmetry, and Transitivity

This means that to prove a relation has one of the properties, youuse either
the method of exhaustion or the method of generalizing from the generic
particular.

Now consider what it means for a relationnot to have one of the properties
defined previously. We have known that the negation of a universal
statement is existential

Hence if R is a relation on a setA, then

1. Ris not reflexive there is an element x in A such
that x R x [that is, such that

(x, X)¢ R].
36
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Reflexivity, Symmetry, and Transitivity

2. Ris not symmetric there are elements x and y in A such that x R y but
v R x [that is, such that

(x, ) € Rbut(y, x)¢ R].

3. dR is not transitive there are elementsx, yand zinAsuchthatxRy
an

y Rzbutx R z [thatis, such that(x, y) € R and
(v, 2) e Rbut(x,2)¢ R].

It follows that you can show that a relation doesnot have one of the properties by
finding a counterexample.

37

) /
Example 1 — Properties of Relations on Finite Sets

Let A={0, 1, 2, 3} and define relationsR, S, and T on A as follows:

R={(0,0),(0,1),(0,3),(1,0),(1,1), (2, 2), (3, 0), (3, 3)},
S={(0,0),(0,2),(0,3),(2,3)},
T=A(0, 1), (2, 3)}.

a. Is R reflexive? symmetric? transitive?

38
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Example 1(a) — Solution

The directed graph of R has the appearance shown below.

R is reflexive: There is a loop at each point of the directed graph. This means
that each element of A is related to itself, so R is reflexive.

39

Example 1(a) — Solution

cont'd

R is symmetric: In each case where there is an arrow goingfrom one point of

the graph to a second, there is an arrow goingfrom the second point back to

the first.

This means that whenever one element ofA is related by R to a second, then
the second is related to the first. HenceR is symmetric.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going
from 0 to 3, but there is no arrow going from 1 to 3.

This means that there are elements ofA—0, 1, and
3—such that1 R0 and O R 3 but 1.8 3. Hence R is not transitive.

40
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Example 1(b) — Solution

cont'd

b. Is S reflexive? symmetric? transitive?
The directed graph of S has the appearance shown below.

3e< o2

S is not reflexive: There is no loop at 1, for example.
Thus (1, 1) ¢ S, and so S is not reflexive.

S is not symmetric. There is an arrow from 0 to 2 but not
from 2 to 0. Hence (0, 2) e Sbut(2,0) ¢ S, and so Sis not

symmetric. 41

o, ;
Example 1(b) — Solution

cont'd

S is transitive: There are three cases for which there is an arrow going from
one point of the graph to a second and from the second point to a third

Namely, there are arrows going fromO to 2 and from 2 to 3; there are arrows
going from 0 to 0 and from O to 2; and there are arrows going from0 to 0 and
from O to 3.

In each case there is an arrow going from the first point to the third.(Note again
that the “first,” “second,” and “third” points need not be distinct.)

This means that whenever (x, y) € Sand (y, z) € S, then (x, z) € S, for all x,
y,z e {0,1, 2, 3}, and so S is transitive.

42
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Example 1(c) — Solution o

c. Is T reflexive? symmetric? transitive?

The directed graph of T has Qoo
the appearance shown at right.

Joc————02

T is not reflexive: There is no loop at 0, for example. Thus (0, 0)
T, so ¢is not reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not from 1
to 0. Thus (0, 1) e Thut(1,0)¢ T, and so T is not symmetric.

T is transitive: The transitivity condition is vacuously true forT.
To see this, observe that the transitivity condition says that

Forallx,y,ze A,if(x,y)e Tand(y,z) e Tthen(x,z) e T.

43

. :
Example 1(c) — Solution o

The only way for this to be false would be for there to exist elements ofA that
make the hypothesis true and the conclusion false.

That is, there would have to be elementsx, y, and zin Asuchthat (x, y) e T
and (y, z) e Tand (x, z) ¢T.

In other words, there would have to be two ordered pairs inT that have the
potential to “link up” by having the second element of one pair be the first
element of the other pair.

But the only elements in T are (0, 1) and (2, 3), and these do not have the
potential to link up. Hence the hypothesis is never true It follows that it is
impossible for T not to be transitive, and thus T is transitive.

44

22



12/25/2020

)/
Properties of Relations on Infinite Sets

Suppose a relation R is defined on an infinite setA. To prove the relation is
reflexive, symmetric, or transitive, first write down what is to be proved For
instance, for symmetry you need to prove that

V x,ye A ifxRythenyR x.
Then use the definitions of A and R to rewrite the statement for the particular
case in question. For instance, for the “equality” relation on the set of real
numbers, the rewritten statement is

V x,ye R/ifx=ytheny=x.

45

\
Properties of Relations on Infinite Sets

Sometimes the truth of the rewritten statement will beimmediately obvious (as
it is here).

At other times you will need to prove it using the method ofgeneralizing from
the generic particular.

We begin with the relation of equality, one of the simplest and yet most
important relations.

46
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Example 2 — Properties of Equality

Define a relation R on R (the set of all real numbers) as follows: For all real
numbers x and y.

xRy & x=y.

a. Is R reflexive?
b. Is R symmetric?

c. Is R transitive?

47

Example 2(a) — Solution

R is reflexive: R is reflexive if, and only if, the following statement is true:
Forallx e R, xR x.

Since x R x just means that x = x, this is the same as saying
Forallx e R, x=x.

But this statement is certainly true; every real number is equal to itself.

48
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Example 2(b) — Solution

cont'd

R is symmetric: R is symmetric if, and only if, the following statement is true:

Forallx,y e R,ifxRythenyR x.

By definition of R, x R y means that x = y and y R x means that y = x. Hence R
is symmetric if, and only if,

Forallx,ye R,ifx=ytheny=x.

But this statement is certainly true; if one number is equal to a second, then the
second is equal to the first.

49

. :
Example 2(c) — Solution o

R is transitive: R is transitive if, and only if, the following statement is true:
Forallx,y,ze R,ifxRyandy Rzthen xR z

By definition of R, x R y means thatx=y, y R zmeans thaty =z, and x R z
means that x = z. Hence R is transitive if, and only if, the following statement is
true:

Forallx,y,ze R,ifx=yandy=zthenx=z

But this statement is certainly true: If one real number equals a second and the
second equals a third, then the first equals the third.

50
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Example 4 — Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: For all integersm and n,

mTn <& 3|(m—n).

This relation is called congruence modulo 3.
a. Is T reflexive?
b. Is T symmetric?

c. Is T transitive?

51

Example 4(a) — Solution

T is reflexive: To show that T is reflexive, it is necessary to show that
Forallme Z, mTm.

By definition of T, this means that
Forallme Z, 3| (m—-m).
Or, sincem—-m =0, Forallme 2, 3|O0.

But this is true: 3 | 0 since 0 = 3- 0. Hence T is reflexive. This reasoning is
formalized in the following proof.

Proof of Reflexivity: Suppose m is a particular but arbitrarily chosen integer.
[We must show that m T m.] Now m —m = 0. But 3|0 since 0 = 3 - 0. Hence
3| (m — m). Thus, by definition of T, m T m [as was to be shown].

52
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Example 4(b) — Solution

cont'd

T is symmetric: To show that T is symmetric, it is necessary to show that

Forallm,ne Z, iftmTnthenn T m.
By definition of T this means that
Forallm,ne Z,if3|(m—-n)then 3| (n—m).

Is this true? Suppose m and n are particular but arbitrarily chosen integers such
that 3 | (m—n).

Must it follow that 3 | (n — m)? [In other words, can we find an integer so that n—
m=3 - (thatinteger)?]

53
Example 4(b) — Solution ,
cont'd
By definition of “divides,” since
3[(m-n),
then m—n =3k for some integer k.
The crucial observation is thatn — m = —(m — n). Hence, you can multiply both
sides of this equation by —1 to obtain
—(m —n) = =3k,
which is equivalentto n—m = 3(—k).
[Thus we have found an integer, namely —k, so that
n—m=3- (thatinteger).]
54
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Example 4(b) — Solution

cont'd

Since —k is an integer, this equation shows that
3| (n-m).

It follows that T is symmetric.

The reasoning is formalized in the following proof.

Proof of Symmetry: Suppose m and n are particular but arbitrarily chosen inte-
gers that satisfy the condition m T n. [We must show that n T m.] By definition
of T, since m T n then 3| (m — n). By definition of “divides,” this means that
m —n = 3k, for some integer k. Multiplying both sides by —1 gives n —m =
3(—k). Since —k is an integer, this equation shows that 3 | (n — m). Hence, by
definition of T, n T m [as was to be shown].

55

. :
Example 4(c) — Solution o

T is transitive: To show that T is transitive, it is necessary
to show that

Forallm,n,pe Z,ifmTnandnTpthenm T p.
By definition of T this means that

Forallm, n ,pe Z,

if3](m-n)and 3| (n—-p)then 3| (m-p).
Is this true? Suppose m, n, and p are particular but
arbitrarily chosen integers such that 3 | (n — n) and

3| (n-p).
Must it follow that 3 | (m — p)? [In other words, can we find
an integer so that m—p = 3 - (that integer)?] 56
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Example 4(c) — Solution o

By definition of “divides,” since
3|(m-n)and3|(n-p),
then m-n=3r for some integerr,
and n—p=3s for some integers.
The crucial observation is that (n—n) + (n—p) =m—p.
Add these two equations together to obtain
(m—=n)+ (n—-p)=3r+3s,
which is equivalenttom —p = 3(r + s).
[Thus we have found an integer so that m—p = 3 - (that integer).]

57

. :
Example 4(c) — Solution o

Since rand s are integers, r + s is an integer. So this equation shows that

3| m-p).
It follows that T is transitive.

The reasoning is formalized in the following proof.

Proof of Transitivity: Suppose m, n, and p are particular but arbitrarily chosen
integers that satisfy the condition m T n and n T p. [We must show that m T p.]
By definition of 7, sincem T nand n T p, then 3|(m —n) and 3| (n — p). By
definition of “divides,” this means that m —n = 3r andn — p = 3s, for some inte-
gers r and s. Adding the two equations gives (m —n) + (n — p) = 3r + 3s, and
simplifying gives that m — p = 3(r 4 s). Since r + s is an integer, this equation
shows that 3 | (m — p). Hence, by definition of T, m T p [as was to be shown].

58
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Exercise

* Assume R and S are relations on set A. Prove or
disprove that:

if Rand S are symmetric then RN S is symmetric ?

Yes. To prove this we must show that forallxand y in A, if (x,y) RN S
then (y, x) € RN S. So suppose (x, y) is a particular but arbitrarily
chosen element inR N S. [We must show that(y, x) € RN S.]

By definition of intersection, (x, y)eR and (x, y) € S. In case (x, ¥) € R,
then (y, x) € R because R is symmetric, and hence (y, X) ER NS

by definition of intersection. In case &, y) € S then (y, x) € S because S
is symmetric, and hence (y, x) € R N S by definition of union. Thus, in
both cases, (y, x) € R N S [as was to be shown].

59

<@
The Transitive Closure of a Relation

Generally speaking, a relation fails to be transitive because it fails to contain
certain ordered pairs.

For example, if (1, 3) and (3, 4) are in a relationR, then the pair (1, 4) must be
in Rif R is to be transitive.

To obtain a transitive relation from one that is not transitive, it is necessary to
add ordered pairs.

Roughly speaking, the relation obtained by adding the least number of ordered
pairs to ensure transitivity is called thetransitive closure of the relation.

60
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The Transitive Closure of a Relation

In a sense made precise by the formal definition, the transitive closure of a
relation is the smallest transitive relation that contains the relation.

o Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation R’
on A that satisfies the following three properties:

1. R'is transitive.
2. RC R

3. If S is any other transitive relation that contains R, then R! C §.

61
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Example 5 — Transitive Closure of a Relation

Let A={0, 1, 2, 3} and consider the relationR defined on A as follows:
R=1{0, 1), (1, 2), (2, 3)}.

Find the transitive closure of R.

Solution:
Every ordered pair inRis in R!, so

{(0, 1), (1,2), (2, 3)}C R

Thus the directed graph of R contains P
the arrows shown at the right.
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Example 5 — Solution o

Since there are arrows going from0 to 1 and from 1 to 2,
Rt must have an arrow going from 0 to 2.

Hence (0, 2) € Rt Then (0, 2) e Rtand (2, 3) € R! so since R!is transitive,
(0,3) e Rt

Also, since (1,2)e Rtand (2,3) e Rt then(1,3) e R
Thus Rt contains at least the following ordered pairs:
{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3) }-

But this relation is transitive; hence it 0 > 1
equals Rt. Note that the directed graph
of Rtis as shown at the right.
3\74 \72 63

A={0,1,2,3}

LetR=(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0).
Find R, the transitive closure ofR.

Rt=R U{(0, 0), (0, 3), (1, 0), (3, 1), (3, 2), (3, 3) (1, 2)}

={(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 2), (3, 0), (3,
1),(3,2), (3, 3)}
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Exercise : Page 459/51

Let A={0, 1, 2, 3} and consider the relationR defined on A as follows:
R={(0,1),(0, 2), (1, 1),(1,3),(2,2), (3,0)}-

Find the transitive closure of R.

A

R={(1,0), (0,3), (2,1),(2,3), (3,2),(3,1),(1,2), (0,0),(3,3)
(0, 1), (0, 2), (1, 1),(1,3),(2.2), (3,0)}.
65
8.3The Relation Induced by a Partition

A partition of a set A is a finite or infinite collection of nonempty,mutually

disjoint subsets whose union is A. The diagram of Figure 8.3.1 illustrates a

partition of a set A by subsets A, A,, ..., As.

l Q A; M A; =0, whenever i #j
a A UA U -UAg=A
A Partition of a Set
Figure 8.3.1
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The Relation Induced by a Partition

o Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: Forall x,y € A,

x Ry < thereis asubset A; of the partition
such that both x and y are in A;.

67
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Example 1 — Relation Induced by a Partition

Let A={0, 1, 2, 3, 4} and consider the following partition of A:
{0, 3, 4}, {1}, {2}.

Find the relation R induced by this partition.

Solution:
Since {0, 3, 4} is a subset of the partition

0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
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Example 1 — Solution o

0 R 4 because both 0 and 4 are in {0, 3, 4},
4 R 0 because both 4 and 0 are in {0, 3, 4},
3 R 4 because both 3 and 4 are in {0, 3, 4}, and
4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also, 0 R 0because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}, and
4 R 4 because both 4 and 4 are in {0, 3, 4}.

69

o, :
Example 1 — Solution o

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Hence

R=1{(0,0),(0,3),(0,4).(1,1),(2,2),(30), (3 3), (3 4),
(4,0), (4, 3), (4, 4)}.
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The Relation Induced by a Partition

The fact is that a relation induced by a partition of a set satisfies all three
properties: reflexivity, symmetry, and transitivity.

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

71

)/
Definition of an Equivalence Relation

A relation on a set that satisfies the three properties ofreflexivity, symmetry,
and transitivity is called an equivalence relation.

e Definition

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R
is reflexive, symmetric, and transitive.

Thus, according to Theorem 8.3.1, the relation induced by a partition is an
equivalence relation.
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Example 2 — An Equivalence Relation on a Set of Subsets

Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X={{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,

AR B the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

73

©. ;
Example 2 — Solution

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}.
[We must show that AR A.]

It is true to say that the least element of A equals the least
element of A. Thus, by definition of R, AR A.

R is symmetric: Suppose A and B are nonempty subsets
of {1, 2, 3} and A R B. [We must show that BR A.]

Since A R B, the least element of A equals the least
element of B.

But this implies that the least element of B equals the least
element of A, and so, by definition of R, B R A.
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Example 2 — Solution o

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 3}, AR B,
and B R C. [We must show that AR C.]

Since A R B, the least element of A equals the least element of B and since BR

C, the least element of B equals the least element of C.

Thus the least element of A equals the least element of C, and so, by definition
ofR,ARC.

75
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Equivalence Classes of an Equivalence Relation

Suppose there is an equivalence relation on a certain set.

If a is any particular element of the set, then one can ask, YVhat is the subset of

all elements that are related toa?” This subset is called the equivalence class
of a.

o Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:
[al={x € A|x Ra}

forallx e A, xe€lal] & xRa.
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Example 5 — Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A={0, 1, 2, 3, 4} and define a relation R on A as
follows:

R={(0,0),(0,4), (1, 1), (1,3), (2, 2), 3, 1), (3, 3),
(4, 0), (4, 4)}.

The directed graph for R is as shown below. As can be
seen by inspection, R is an equivalence relation onA. Find
the distinct equivalence classes of R.

0

2

4 O
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Example 5 — Solution

First find the equivalence class of every element ofA.
[0]={x € A|x R0} = {0, 4}
[I]={xeA|x R1} ={1,3}
2l={x e A|x R2} = {2}
[B]l={xe€A|x R3}={1,3}
[4]={xecA|lx R4} ={0,4)
Note that [0] = [4] and [1] = [3]. Thus thedistinct equivalence classes of the
relation are

{0, 4}, {1, 3}, and {2}.
78
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Equivalence Classes of an Equivalence Relation

The first lemma says that if two elements of A are related by an equivalence
relation R, then their equivalence classes are the same.

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and & and b are elements of A.
If a R b, then [a] = [b].

This lemma says that if a certain condition is satisfied, then &] = [b]. Now [a]
and [b] are sets, and two sets are equal if, and only if, each is a subset of the
other.

79
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Equivalence Classes of an Equivalence Relation

Hence the proof of the lemma consists of two parts: first, a proof that § < [b]
and second, a proof that [p] c [a].

To show each subset relation, it is necessary to show that every element in the
left-hand set is an element of the
right-hand set.

The second lemma says that any two equivalence classes of an equivalence
relation are either mutually disjoint or identical

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and & and b are elements of A, then

either [alN[b]=¥ or [a]l=][b].
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Equivalence Classes of an Equivalence Relation

The statement of Lemma 8.3.3 has the form
if p then (q or r),

where p is the statement “A is a set, R is an equivalence relation onA, and a
and b are elements of A,” g is the statement “[a] n [b] = J,” and ris the
statement “[a] = [b].”

Theorem 8.3.4 The Partition Induced by an Equivalence Relation

If A is a set and R is an equivalence relation on A, then the distinct equivalence
classes of R form a partition of A; that is, the union of the equivalence classes is all
of A, and the intersection of any two distinct classes is empty.

81

Y
Congruence Modulo n
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Example 10 — Equivalence Classes of Congruence Modulo3

Let R be the relation of congruence modulo 3 on the setZ of all integers. That
is, for all integers m and n,

mRn < 3|(m—n) < m=n(mod?3).

Describe the distinct equivalence classes ofR.
Solution:
For each integer a,

[al={x €Z]|x R a}

={xeZ|3[(x—a)}
83

)/ .
Example 10 — Solution o

= {x € Z|x — a = 3k, for some integer k}.

Therefore,
[a] = {x € Z| x = 3k + a, for some integer k}.

In particular, [0] = {x € Z|x = 3k + 0, for some integer k}
= {x € Z|x = 3k, for some integer k}
={..—-9,-6,-3,0,3,6,9,...},

[1]={x € Z|x =3k + 1, for some integer k}
={..—8,-5,-2,1,4,7,10,...},
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Example 10 — Solution o

[2] = {x € Z|x = 3k + 2, for some integer k}
={...—7,—4,—-1,2,5,8,11,...}.

Now since 3 R 0, then by Lemma 8.3.2,
(3] = [0].
More generally, by the same reasoning,
[0] = [3] = [-3] = [6] = [—6] = ..., and so on.

Similarly,

[11=1[4]=[-2]=[7]=[-5]=...,and so on.

85
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Example 10 — Solution o

And

[21=151=[-11=[8]=[-4]=....and s0 on. |

Notice that every integer is in class [0], [1], or [2]. Hence thedistinct
equivalence classes are

{x € Z|x = 3k, for some integer k},

|{x € Z|x = 3k + 1, for some integer k}, and |

{x € Z|x = 3k + 2, for some integer k}.
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Example 10 — Solution o

In words, the three classes of congruence modulo 3 are
(1) the set of all integers that are divisible by 3,

(2) the set of all integers that leave a remainder of 1when
divided by 3, and

(3) the set of all integers thatleave a remainder of 2when
divided by 3.

87

Congruence Modulo n

 Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

Let m and n be integers and let d be a positive integer. We say that m is congruent
to n modulo d and write

m = n (mod d)
if, and only if, d|(m—n).
Symbolically: m=n(modd) < d|(m—n)
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Example 11 — Evaluating Congruences

Determine which of the following congruences are true and which are false.

a. b. c.
12 =7 (mod 5) = —8 (mod 4) 3 =3 (mod7)

Solution:
a.True.12-7=5=5. 1.Hence 5| (12-7), and so

12= 7 (mod 5).
b. False. 6 — (-8) = 14, and because 14%= 4 . kfor

any integer k. Consequently, 4114

6% —8 (mod 4).

c.True.3-3=0=7- 0.Hence7|(3-3),andso 3= 3

(mod 7).

89
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A Definition for Rational
Numbers
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Example 12 — Rational Numbers Are Really Equivalence Classes

Let A be the set of all ordered pairs of integers for which the second element of
the pair is nonzero. Symbolically,

A=1Zx(Z—{0).

Define a relation R on A as follows: For all (g, b), (c, d) € A,

((l, b) R (C7 d) =4 ad = bc.

The fact is that R is an equivalence relation.
a. Prove that R is equivalance .

b. Describe the distinct equivalence classes ofR.

91
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Example 12(a) — Solution

Suppose (a, b), (c, d), and (e, f) are particular but arbitrarily chosen elements of
A such that (a, b) R (c, d) and
(c, d) R (e, 1).

[We must show that for all(a, b), (c, d), (e, f) € A,
if(a, b) R (c, d)and (c, d) R (e, f), then (a, b) R (e, f).]

[We must show that(a, b) R (e, f).] By definition of R,

(1) ad =bc and (2) cf = de.

Since the second elements of all ordered pairs inA are nonzero,b# 0,d=# 0,
andf# 0.
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Example 12(a) — Solution

cont'd
Multiply both sides of equation (1)by fand both sides of equation (2) byb to
obtain

(1") adf =bcf and (2') bef = bde.

Thus
adf = bde

and, since d # 0, it follows from the cancellation law for multiplication that
af = be.
It follows, by definition of R, that (a, b) R (e, f) [as was to be shown].

93
Example 12(b) — Solution ,
cont'd
There is one equivalence class for each distinct rational number.
Each equivalence class consists of all ordered pairs &, b) that, if written as
fractions a/b, would equal each other.
The reason for this is that the condition for two rational numbers to be equal is
the same as the condition for two ordered pairs to be related.
94
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Example 12(b) — Solution

cont'd
For instance, the class of (1, 2) is
[(17 2)] - {(1» 2)7 (—17 _2)7 (27 4)7 (_2» —4)9 (3’ 6)7 (_35 _6)9 R }

sincel:__lzg:__zziz__3 and so forth.
2 -2 4 —4 6 -6

95

@, .
Exercises:

44. Let A =Z" X Z". Define a relation R on A as
follows: For every (a, b) and (c, d) in A,

(@ab)R(c,d) < at+td=c+b.

Prove that R is reflexive.

Prove that R is symmetric.

Prove that R is transitive.

List five elements in [(1, 1)].

List five elements in [(3, 1)].

List five elements in [(1, 2)].

Describe the distinct equivalence classes of R.

IO NN
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Solution

DEFINITIONS

A relation R on a set A is reflexive if (a,a) € R for every element a € A.
A relation R on a set A is symmetrie if (b,a) € R whenever (a.b) € R

A relation R on a set A4 is transitive if (a,b) € R and (b.c) € R implies
(a.c)e R

A relation R is an equivalence relation if the relation R is transitive,
symmetric and reflexive.

The equivalence class of a is the set of all elements that are relation to a.
Notation: [a]p

[a] = {x € Az Ra}

97

SOLUTION

A=Z xZ
R= {((a,b),(c,d)} A XA|a+d:b-|—c}

(a} To proof: R is reflexive

PROOF

Let (a.b) e A=Z x Z.

By the commutative property of addition:

atb=b+a
However, this then implies that (a,b) R (a,b) by definition of R.
Since (a, b) R (a.b) for all (a.b) € A, R is reflexive.
O
98

49



12/25/2020

(b} To proof: R is symmetric
PROOF

Let ((a,b), (c,d)) € R.

By the definition of R:

a+d=b+c
By the commutative property of addition:

d+a=c+bh
Interchanging the left and right side of the equality does not change the
equality:

ctb=d+a
By definition of R:

((e.d).(a, b)) € B
Since ((a,b), (c,d)) € R implies ((e,d), (a, b)) € R, R is symmetric.
O

99

(c) To proof: R is transitive

PROOF

Let ((a,b), (e,d)) € R and ((c.d), (e, f)) € R.

By the definition of f:
at+d=b+c
ctf=dte

Let us solve the first equation to a and the second equation to f:
a=b+c—d
f=d+e—c

Let us add the previous two equations:

at+f=(b+c—d)+(dte—c)=b+e
By definition of R:

({a,b).(e. f)) € R

Since ((a, b),(e.d)) € R and ((e,d), (e, f}) € R implies ((a.b),(e, f)) € R. R
is transitive.
|
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(d) Elements in [(1,1)] are elements (x,y) € A that are related to (1,1).
By the definition of R:

(a.b)e[(1,)]eetl=1+bea=0b
Thus all elements of the form (a,a) with @ € Z* are elements in [(1.1)].

For example, five possible elements of [(1,1)] are then (1,1),(2,2),(3, 3).(4,4),(5.5), ...
(e) Elements in [(3, 1)] are elements (x,y) € A that are related to (3,1).
By the definition of R:

(a.b)e[(3, 1)) 2a+tl=3+bsa=b+2
Thus all elements of the form (b+ 2,b) with b € Z* are elements in [(3.1)].

For example, five possible elements of [(3,1)] are then (3,1),(4,2),(5, 3).(6,4),(7.5), ...

(f} Elements in [(1,2)] are elements (z,y) € A that are related to (1,2).
By the definition of R:

(a.b)e[(1.2)) 2 a+t2=1+bsSat+t1=b
Thus all elements of the form (a, @+ 1) with a € Z* are elements in [(1,2)].

For example, five possible elements of (1, 2)] are then (1,2),(2,3),(3,4),(4.5),(5,6), ...

101

(g) Let (a,b) e Aand let n=a—b
If n = 0, then the equivalence class is [(1,1)] = {{z.x) € A x A} (see part
(d)).
If n < 0, then the equivalence class is [[n + 1,1)] = {{z +n,x) € A x A}
(see part (e)).
If n > 0, then the equivalence class is [[1.1 + n)] = {{z.x + n) € 4 x A}
(see part (F)):

(a) Proof that R is reflexive by using the commmtative property of addition

and the definition of I

(b) Proofthat R is symmetric by using the definition of R and the commutative

property of addition

(c} Proof that R is transitive by using the definition of R

(d) Answers could vary. For example: (1,1}, (2,2),(3,3},(4,4).(5.5)

(e} Answers could vary. For example: (3,1),(4,2},(5,3), (6,4),(7,5)

(f) Answers could vary. For example: (1,2),(2,3),(3,4).(4,5).(5,6)

(g) The different equivalence classes are [(1,1)] = {{z.x) € 4 x 4}, [(1 +

n1)]={(z+nz)e A x A} withn € Z* and [(1.1+ n)] = {{z.z +n) €

Ax A} withn e ZF
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Exercises:

In 19-31, (1) prove that the relation is an equivalence rela-
tion, and (2) describe the distinct equivalence classes of

each relation. 19. A is the set of all students at your college.
a. R is the relation defined on A as follows: For
every x and yin A,

xRy < xhasthe same major (or double
major) as y.

(Assume “undeclared” is a major.)
b. §is the relation defined on A as follows: For
every x, y E A,

xSy <> xisthe same age as y.
20. Eis the relation defined on Z as follows:

Foreverym,n €Z, mEn < 4|(@m—n).

H 21. R is the relation defined on Z as follows:

Foreverym,n €Z, mRn < 7Tm—5niseven. 103

SOLUTION

(a)

A = set of all students at your college

R ={(x,y) € A x Az has the same major as y}

Equivalence relation

(1) To proof: R is an equivalence relation
Since R is reflexive, symmetric and transitive, R is also an equivalence
relation,
m}

PROOF
Reflexive

Since an individual always has the same major as itself, (r.x) € R for all
z & Aand thus R is indeed reflexive.

Symmetric
Let us assume that (z,y) € R.
(2) Each equivalence class will contain students who have the same major
By the definition of F: r and y have the same major. or students who have the same double major.
But then y and x also have the same major: Thus there is an equivalence class per major and per double major.
(yr)je R
Since (x,y) € R implies (y,z) € R. R is symmetric.
Transitive
Let us assume that (z.y) € R and (y, ) € .
By the definition of R:
x and y have the same major
y and 2 have the same major
But then x and = also have the same major:
(.)€ R
Since (x,y) € R and (y, z) € R implies (x,z) € R, R is transitive.
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(b)

A = set of all students at your college
R={(zx,y) € Ax Alz has the same age as y}

(1) To proof: R is an equivalence relation
PROOF
Reflexive

Since an individual always has the same age as itself, (z,2) € Rforallz € A
and thus 1 is indeed reflexive.

Symmetric

Let us assume that (z.y) € R. Equivalence relation

By the definition of B: z and y have the same age. . . . . . . .
o ¥ & Since R is reflexive, symmetric and transitive, R is also an equivalence

But then i and = also have the same age: E‘lﬁtwn‘

(y.z)e R
Since (r,y) € R implies (y,z) € R, B is symmetric. (2) Each equivalence class will contain students who have the same age.
Transitive Thus there is an equivalence class per age.

Let us assume that (z,y) € R and (y,z) € R.
By the definition of R:
« and y have the same age
y and = have the same age
But then = and = also have the same age:
(z.2)e R
Since (x,y) € R and (y. z) € R implies (2.2} € R, R is transitive.

23. Let P be a set of parts shipped to a company from
various suppliers. § is the relation defined on P as
follows: For every x, y € P,

xSy << xhas the same part number and is
shipped from the same supplier as y.

24. Let A be the set of identifiers in a computer pro-
gram. It is common for identifiers to be used for
only a short part of the execution time of a program
and not to be used again to execute other parts of
the program. In such cases, arranging for identi-
fiers to share memory locations makes efficient use
of a computer’s memory capacity. Define a relation
R on A as follows: For all identifiers x and v,

xRy < the values of x and y are stored in the
same memory location during
execution of the program. 106
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SOLUTION

A = Set of identifiers in a computer program
R={(z.y) € A x Al x and y are stored in the same memory location}
(1) To proof: R is an equivalence relation
PROOF
Reflexive
Let z € A
Since identifier x is always stored in the same memory location as itself,
(x,2) € R.
Since {(z.x) € Rforall z € A, R is indeed reflexive. Equivalence relation
Symmetric . . . . . . .
Since R is reflexive, symmetric and transitive, R is also an equivalence
Let us assume that (x, y) € R. By the definition of R: relation.
O

« and y are stored in the same memory location

However, if z and y are stored in the same memory location, then y and =
are also stored in the same memory location.

(v.z)e R

. - . . (2) Two identifiers are related if they are stored in the same memory location
Since (x,y) € R implies (y, x) € R, R is symmetric.

during the execution of the program.

Transitive . . . " .
Each equivalence class then contains all identifiers that are stored in the

Let us assume that (x,y) € R and (y, =) € R. same memory location during the execution of the program.
By the definition of R:

@ and y are stored in the same memory location
y and z are stored in the same memory location

However, this then implies that =, y and = are all stored in the same memory
location, thus = and = are stored in the same memory location.

{z,z)e R
Since (x.y) € B and (y. 2) € R implies (x.2) € R. R is transitive.

23. Let P be a set of parts shipped to a company from
various suppliers. § is the relation defined on P as
follows: For every x, y € P,

xSy ¢ xhasthe same part number and is
shipped from the same supplier as y.

24, Let A be the set of identifiers in a computer pro-
gram. It is common for identifiers to be used for
only a short part of the execution time of a program
and not to be used again to execute other parts of
the program. In such cases, arranging for identi-
fiers to share memory locations makes efficient use
of a computer’s memory capacity. Define a relation
R on A as follows: For all identifiers x and y,

xRy < the values of x and y are stored in the
same memory location during
execution of the program.

H 26. D is the relation defined on Z as follows: For every
m,n€Z,

mDn < 3|(m2—n2).
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1) For any m € Z,
2 2 g2 2
m-—m-=0=3/m" —m~ = mDm

= D is Reflexive

For m,n € Z such that mDn.

mDn = 3/m* —n? = m? —n? =3k ForsomekeZ
=nl-m?=3(-k -—keZ
= 3/n’—m’
= nDm

For m,n,p € Z such that mDn . nDp. Therefore:

3m?—n?® & 3nt—p?
=m’—n?=3k & n’—p*=31 forsomek [cZ
= m? —n®+n’ —p2 =3k+3
=m?-p?P=3(k+1) & k+leZ
= mDp
= D) s transitive

So, D is reflexive | symmetric and transitive.
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2) To find equivalence classes.
By division algorithm, for any m € Z,3 unique gr such that,

m=3g+r 0<r <3

=m=3g or m=3g+1 or m=3¢g+2
=m?= (3¢ or m’=(3¢g+1)® or m?=(3¢g+2)
=m’= 3(3(,2} or m?= (qug +2(3q) + 1? or m’= 3(3@?] +3(4q) +3 + 12
=m? 02 =3(3F) or m? - 12=3(3¢+2g) or m? - 12=3(3¢ +4q)

=3/m*—0% or 3/m?—1° :|Ec1ui\-‘, Clas

s are [U][1]|
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