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CHAPTER 10

GRAPHS AND TREES

Graphs and trees have appeared previously in this book as convenient visualizations. For
instance, a possibility tree shows all possible outcomes of a multistep operation with a
finite number of outcomes for each step, the directed graph of a relation on a set shows
which elements of the set are related to which a Hasse diagram illustrates the relations
among elements in a partially ordered set, and a PERT diagram shows which tasks must
precede which in executing a project.

In this chapter we present some of the mathematics of graphs and trees, discussing
concepts such as the degree of a vertex, connectedness, Euler and Hamiltonian circuits,
representation of graphs by matrices, isomorphisms of graphs, the relation between the
number of vertices and the number of edges of a tree, properties of rooted trees span-
ning trees, and shortest paths in graphs. Applications include uses of graphs and trees
in the study of artificial intelligence, chemistry, scheduling problems, and transportation
systems.

10.1 Graphs: Definitions and Basic Properties
The whole of mathematics consists in the organization of a series of aids to the
imagination in the process of reasoning. — Alfred North Whitehead, 1861–1947

Imagine an organization that wants to set up teams of three to work on some projects. In
order to maximize the number of people on each team who had previous expe-
rience working together successfully, the director asked the members to provide names of
their past partners. This information is displayed below both in a table and in a
diagram.

Name Past Partners

Ana Dan, Flo
Bev Cai, Flo, Hal
Cai Bev, Flo
Dan Ana, Ed
Ed Dan, Hal
Flo Cai, Bev, Ana
Gia Hal
Hal Gia, Ed, Bev, Ira
Ira Hal

Ana

Bev

Cai

Dan

EdFlo

Gia

Hal

Ira

From the diagram, it is easy to see that Bev, Cai, and Flo are a group of three past
partners, and so they should form one of these teams. The figure on the next page shows
the result when these three names are removed from the diagram.
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Example

Graph to show people who know each other
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Basics
A graph G ( ةكبش ) consists of two finite sets: a nonempty set V(G) of 
vertices ( دقع ) and a set E(G) of edges ( تاقلاع ), where each edge is 
associated with a set consisting of either one or two vertices called 
its endpoints. 

Vertex Set={v1, v2, v3, v4, v5 , v6} 
Edge Set = {e1, e2, e3, e4, e5, e6, e7} 

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.
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Endpoints
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Note that the isolated vertex v4 does not appear in this table. Although each edge must

have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1 , e2 , and e3 are incident on v1 .

v2 and v3 are adjacent to v1 .
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e6 and e7 are loops.

e2 and e3 are parallel.

v5 and v6 are adjacent to themselves.

v4 is an isolated vertex.
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As noted earlier, a given pictorial representation uniq uely determines a graph.

However, a given graph may have more than one pictorial representation. Such things

as the lengths or curvatures of the edges and the relative position of the vertices on the

page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11/25/18

4

7,

Basics
A graph G ( ةكبش ) consists of two finite sets: a nonempty set V(G) of 
vertices ( دقع ) and a set E(G) of edges ( تاقلاع ), where each edge is 
associated with a set consisting of either one or two vertices called its 
endpoints. The correspondence from edges to endpoints is called the 
edge-endpoint function.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1
Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are representedby dots and

the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 TerminologyConsider the following graph:

e3
e2

e4

e6

e5

e7

e1

v
1

v
2

v
3

v4 v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint

function.b. Find all edges that are incident on v1 , all vertices that are adjacent to v1 , all edges

that are adjacent to e1 , all loops, all parallel edges, all vertices that are adjacent to

themselves, and all isolated vertices.

Solution
a. vertex set = {v1 , v2 , v3 , v4 , v5 , v6 }

edge set = {e1 , e2 , e3 , e4 , e5 , e6 , e7 }

edge-endpoint function:

Edge
Endpoints

e1

{v1 , v2 }
e2

{v1 , v3 }
e3

{v1 , v3 }
e4

{v2 , v3 }
e5

{v5 , v6 }
e6

{v5 }
e7

{v6 }

Note that the isolated vertex v4 does not appear in this table. Although each edge must

have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1 , e2 , and e3 are incident on v1 .

v2 and v3 are adjacent to v1 .

e2 , e3 , and e4 are adjacent to e1 .

e6 and e7 are loops.

e2 and e3 are parallel.

v5 and v6 are adjacent to themselves.

v4 is an isolated vertex.

■

As noted earlier, a given pictorial representation uniq uely determines a graph.

However, a given graph may have more than one pictorial representation. Such things

as the lengths or curvatures of the edges and the relative position of the vertices on the

page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ed
ge

-e
nd

po
in

t 
fu

nc
tio

n:

8,

Basics
A graph G ( ةكبش ) consists of two finite sets: a nonempty set V(G) of 
vertices ( دقع ) and a set E(G) of edges ( تاقلاع ), where each edge is 
associated with a set consisting of either one or two vertices called its 
endpoints. The correspondence from edges to endpoints is called the 
edge-endpoint function.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1
Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are representedby dots and

the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 TerminologyConsider the following graph:

e3
e2

e4

e6

e5

e7

e1

v
1

v
2

v
3

v4 v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint

function.b. Find all edges that are incident on v1 , all vertices that are adjacent to v1 , all edges

that are adjacent to e1 , all loops, all parallel edges, all vertices that are adjacent to

themselves, and all isolated vertices.

Solution
a. vertex set = {v1 , v2 , v3 , v4 , v5 , v6 }

edge set = {e1 , e2 , e3 , e4 , e5 , e6 , e7 }

edge-endpoint function:

Edge
Endpoints

e1

{v1 , v2 }
e2

{v1 , v3 }
e3

{v1 , v3 }
e4

{v2 , v3 }
e5

{v5 , v6 }
e6

{v5 }
e7

{v6 }

Note that the isolated vertex v4 does not appear in this table. Although each edge must

have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1 , e2 , and e3 are incident on v1 .

v2 and v3 are adjacent to v1 .

e2 , e3 , and e4 are adjacent to e1 .

e6 and e7 are loops.

e2 and e3 are parallel.

v5 and v6 are adjacent to themselves.

v4 is an isolated vertex.

■

As noted earlier, a given pictorial representation uniq uely determines a graph.

However, a given graph may have more than one pictorial representation. Such things

as the lengths or curvatures of the edges and the relative position of the vertices on the

page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ed
ge

-e
nd

po
in

t 
fu

nc
tio

n:



11/25/18

5

9,

Basics
An edge with just one endpoint is called a loop, and two or more 
distinct edges with the same set of endpoints are said to be parallel. 

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint

function.b. Find all edges that are incident on v1 , all vertices that are adjacent to v1 , all edges

that are adjacent to e1 , all loops, all parallel edges, all vertices that are adjacent to

themselves, and all isolated vertices.

Solution
a. vertex set = {v1 , v2 , v3 , v4 , v5 , v6 }

edge set = {e1 , e2 , e3 , e4 , e5 , e6 , e7 }

edge-endpoint function:
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Note that the isolated vertex v4 does not appear in this table. Although each edge must

have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1 , e2 , and e3 are incident on v1 .

v2 and v3 are adjacent to v1 .

e2 , e3 , and e4 are adjacent to e1 .

e6 and e7 are loops.

e2 and e3 are parallel.

v5 and v6 are adjacent to themselves.

v4 is an isolated vertex.

■

As noted earlier, a given pictorial representation uniq uely determines a graph.

However, a given graph may have more than one pictorial representation. Such things

as the lengths or curvatures of the edges and the relative position of the vertices on the
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution
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edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
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v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
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Basics
Two vertices that are connected by an edge are called adjacent ( ةرواجتم ); and 
a vertex that is an endpoint of a loop is said to be adjacent to itself. An 
edge is said to be incident ( ةطقاس ) on each of its endpoints, and two edges 
incident on the same endpoint are called adjacent. A vertex on which no 
edges are incident is called isolated.

10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniq uely determines a graph.
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution
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edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniq uely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint

function.b. Find all edges that are incident on v1 , all vertices that are adjacent to v1 , all edges

that are adjacent to e1 , all loops, all parallel edges, all vertices that are adjacent to

themselves, and all isolated vertices.

Solution
a. vertex set = {v1 , v2 , v3 , v4 , v5 , v6 }

edge set = {e1 , e2 , e3 , e4 , e5 , e6 , e7 }

edge-endpoint function:
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{v2 , v3 }
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e6
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e7
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Note that the isolated vertex v4 does not appear in this table. Although each edge must

have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1 , e2 , and e3 are incident on v1 .

v2 and v3 are adjacent to v1 .

e2 , e3 , and e4 are adjacent to e1 .

e6 and e7 are loops.

e2 and e3 are parallel.

v5 and v6 are adjacent to themselves.

v4 is an isolated vertex.

■

As noted earlier, a given pictorial representation uniq uely determines a graph.

However, a given graph may have more than one pictorial representation. Such things

as the lengths or curvatures of the edges and the relative position of the vertices on the
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function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
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e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
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e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
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e1, e2, and e3 are incident on v1. 

v2 and v3 are adjacent to v1.

e2, e3, and e4 are adjacent to e1

v5 and v6 are adjacent to 
themselves.

v4 is an isolated vertex.
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Same Graphs
Two Drawings represent the same graph if the have same edge-
endpoint function 

628 Chapter 10 Graphs and Trees

Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {v1, v2, v3, v4}
edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.

e4

e1

e2
e2

e4

e3 e1

e3

v3

v2 v4

v1

v2 v1

v3

v4

(a) (b) ■

Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
waythat both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finallyto the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.

e3
e1

e4
e2

e5

v3 v4

v5 v2

v1
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Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {v1, v2, v3, v4}
edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.
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Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
waythat both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finallyto the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.
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Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {v1, v2, v3, v4}
edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.
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Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
waythat both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finallyto the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.
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Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {v1, v2, v3, v4}
edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.
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Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
waythat both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finallyto the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.
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Same Graphs
Label these graphs to make them the same graph

628 Chapter 10 Graphs and Trees

Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:
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edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.
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Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
waythat both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finallyto the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.
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Now imagine picking up the piece of string, together with its labels, and repositioning it
as follows:

e3

e1

e4 e2

v4

v1

v5 v2

v3

e5

This is the same as Figure 10.1.1(b), so both drawings are representations of the graph
with vertex set {v1, v2, v3, v4, v5}, edge set {e1, e2, e3, e4, e5}, and edge-endpoint function
as follows:

Edge Endpoints

e1 {v1, v2}
e2 {v2, v3}
e3 {v3, v4}
e4 {v4, v5}
e5 {v5, v1} ■

In Chapter 8 we discussed the directed graph of a binary relation on a set. The general
definition of directed graph is similar to the definition of graph, except that one associates
an ordered pair of vertices with each edge instead of a set of vertices. Thus each edge of
a directed graph can be drawn as an arrow going from the first vertex to the second vertex
of the ordered pair.

• Definition

A directed graph, or digraph, consists of two finite sets: a nonempty set V (G) of
vertices and a set D(G) of directed edges, where each is associated with an ordered
pair of vertices called its endpoints. If edge e is associated with the pair (v,w) of
vertices, then e is said to be the (directed) edge from v to w.

Note that each directed graph has an associated ordinary (undirected) graph, which is
obtained by ignoring the directions of the edges.

Examples of Graphs
Graphs are a powerful problem-solving tool because they enable us to represent a com-
plex situation with a single image that can be analyzed both visually and with the aid of
a computer. A few examples follow, and others are included in the exercises.

Example 10.1.4 Using a Graph to Represent a Network

Telephone, electric power, gas pipeline, and air transport systems can all be represented
by graphs, as can computer networks—from small local area networks to the global
Internet system that connects millions of computers worldwide. Questions that arise in
the design of such systems involve choosing connecting edges to minimize cost, optimize
a certain type of service, and so forth. A typical network, called a hub and spoke model,
is shown on the next page.
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10.1 Graphs

In this lecture:
q Part 1: Concept and Terminology
q Part 2: Directed Graphs
q Part 3: Examples of Graphs
q Part 4: Graphs Types (Simple, Complete, Bipartite, Sub graphs)
q Part 5: Node/Graph Degree
q Part 6: Handshake and other Graph Theorems

Counting

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015
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Directed Graph
A directed graph, or digraph, consists of two finite sets: a nonempty set V (G) 
of vertices and a set D(G) of directed edges, where each is associated with an 
ordered pair of vertices called its endpoints. If edge e is associated with the 
pair (v, w) of vertices, then e is said to be the (directed) edge from v to w.
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10.1 Graphs

In this lecture:
q Part 1: Concept and Terminology
q Part 2: Directed Graphs
q Part 3: Examples of Graphs
q Part 4: Graphs Types (Simple, Complete, Bipartite, Sub graphs)
q Part 5: Node/Graph Degree
q Part 6: Handshake and other Graph Theorems

Counting

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015
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Road Graphs

Nodes are road conjunctions, edges are roads
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Nodes pages/bookmarks, edges are URLs

Internet Graph

18,

10.1 Graphs: Definitions and Basic Properties 631

Example 10.1.6 Using a Graph to Represent Knowledge

In many applications of artifical intelligence, a knowledge base of information is col-
lected and represented inside a computer. Because of the way the knowledge is repre-
sented and because of the properties that govern the artificial intelligence program, the
computer is not limited to retrieving data in the same form as it was entered; it can also
derive new facts from the knowledge base by using certain built-in rules of inference.
For example, from the knowledge that the Los Angeles Times is a big-city daily and
that a big-city daily contains national news, an artifical intelligence program could infer
that the Los Angeles Times contains national news. The directed graph shown in Fig-
ure 10.1.2 is a pictorial representation for a simplified knowledge base about periodical
publications.

According to this knowledge base, what paper finish does the New York Times use?

Paper
made-of Periodical contains

is-ais-a

is-ais-ais-a

is-a

is-a

Printed
writing

Sports
Illustrated

instance-of
Sports
magazine

Motor Trend
instance-of

Newspaper

Big-city
daily

contains

Suburban
weekly

Scholarly
journal

Scientific
journal

Literary
journal

instance-of

ins
tan

ce
-o

f instance-of

Poetry
Magazine

Los Angeles
Times

New York
Times

contains
contains

contains

National
news

Local
news

Sports
news

Glossy

paper-finish

paper-finish
Matte

Long
words

Figure 10.1.2

Solution The arrow going from New York Times to big-city daily (labeled “instance-of”)
shows that the New York Times is a big-city daily. The arrow going from big-city daily to
newspaper (labeled “is-a”) shows that a big-city daily is a newspaper. The arrow going
from newspaper to matte (labeled “paper-finish”) indicates that the paper finish on a news-
paper is matte. Hence it can be inferred that the paper finish on the New York Times is
matte. ■

Example 10.1.7 Using a Graph to Solve a Problem: Vegetarians and Cannibals

The following is a variation of a famous puzzle often used as an example in the study
of artificial intelligence. It concerns an island on which all the people are of one of two
types, either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on
the left bank of a river. With them is a boat that can hold a maximum of two people.
The aim of the puzzle is to find a way to transport all the vegetarians and cannibals to
the right bank of the river. What makes this difficult is that at no time can the number
of cannibals on either bank outnumber the number of vegetarians. Otherwise, disaster
befalls the vegetarians!

Solution A systematic way to approach this problem is to introduce a notation that can
indicate all possible arrangements of vegetarians, cannibals, and the boat on the banks of
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the river. For example, you could write (vvc/Bc) to indicate that there are two vegetarians
and one cannibal on the left bank and one cannibal and the boat on the right bank. Then
(vvccB/) would indicate the initial position in which both vegetarians, both cannibals,
and the boat are on the left bank of the river. The aim of the puzzle is to figure out
a sequence of moves to reach the position (/Bvvcc) in which both vegetarians, both
cannibals, and the boat are on the right bank of the river.

Construct a graph whose vertices are the various arrangements that can be reached
in a sequence of legal moves starting from the initial position. Connect vertex x to ver-
tex y if it is possible to reach vertex y in one legal move from vertex x . For instance,
from the initial position there are four legal moves: one vegetarian and one cannibal
can take the boat to the right bank; two cannibals can take the boat to the right bank;
one cannibal can take the boat to the right bank; or two vegetarians can take the boat
to the right bank. You can show these by drawing edges connecting vertex (vvccB/) to
vertices (vc/Bvc), (vv/Bcc), (vvcBc), and (cc/Bvv). (It might seem natural to draw
directed edges rather than undirected edges from one vertex to another. The rationale
for drawing undirected edges is that each legal move is reversible.) From the position
(vc/Bvc), the only legal moves are to go back to (vvccB/) or to go to (vvcB/c). You
can also show these by drawing in edges. Continue this process until finally you reach
(/Bvvcc). From Figure 10.1.3 it is apparent that one successful sequence of moves is
(vvccB/) → (vc/Bvc) → (vvcB/c) → (c/Bvvc) → (ccB/vv) → (/Bvvcc).

vc/Bvc

vv/Bcc

vvccB/

vvc/Bc

cc/Bvv

vvcB/c c/Bvvc /Bvvcc

ccB/vv

vcB/vc

Figure 10.1.3 ■

Special Graphs
One important class of graphs consists of those that do not have any loops or parallel
edges. Such graphs are called simple. In a simple graph, no two edges share the same set
of endpoints, so specifying two endpoints is sufficient to determine an edge.

• Definition and Notation

A simple graph is a graph that does not have any loops or parallel edges. In a simple
graph, an edge with endpoints v and w is denoted {v,w}.

Example 10.1.8 A Simple Graph

Draw all simple graphs with the four vertices {u , v, w, x} and two edges, one of which
is {u , v}.

Solution Each possible edge of a simple graph corresponds to a subset of two vertices.
Given four vertices, there are

(4
2

)
= 6 such subsets in all: {u , v}, {u , w}, {u , x}, {v,w},

{v, x}, and {w, x}. Now one edge of the graph is specified to be {u , v}, so any of the
remaining five from this list can be chosen to be the second edge. The possibilities are
shown on the next page.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.

v1

v2

v3

v1

v2

v3

w1

w2

w3

w2

w1

K3, 2 K3, 3 ■
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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w2

w1

K3, 2 K3, 3 ■
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:
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v2 v4
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v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3
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v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2
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v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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w1

K3, 2 K3, 3 ■
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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K3, 2 K3, 3 ■
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Bipartite Graphs (Bigraphs)
Vertex set can be separated into two subsets: Each vertex in one of the subsets is connected 
by exactly one edge to each vertex in the other subset, but not to vertices in its own subset.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:
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K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected byedges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactlyone edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2 , K3 , K4 , K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4
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v4
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v3

v1
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v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected byexactlyone edge to each vertex in the other
subset, but not to anyvertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm and w1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . , m and for all j, l =
1, 2, . . . , n ,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from anyvertex vi to anyother vertex vk .

3. There is no edge from anyvertex w j to anyother vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3 ,2 and K3 ,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.
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Subgraphs634 Chapter 10 Graphs and Trees

• Definition

A graph H is said to be a subgraph of a graph G if, and onlyif, everyvertex in H
is also a vertex in G, everyedge in H is also an edge in G, and everyedge in H has
the same endpoints as it has in G.

Example 10.1.11 Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.

v1

v2

e1

e2

e3

There are 11 subgraphs of G, which can be grouped according to those that do not have
anyedges, those that have one edge, those that have two edges, and those that have three
edges. The 11 subgraphs are shown in Figure 10.1.4.
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v1v1

v2

e2

v2

e3
v1 v1

v2

v1

v2

e1

1 2 3 4 5 6

7 8 9 10 11

Figure 10.1.4 ■

The Concept of Degree
The degree of a vertex is the number of end segments of edges that “stick out of” the
vertex. We will show that the sum of the degrees of all the vertices in a graph is twice the
number of edges of the graph.
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• Definition

A graph H is said to be a subgraph of a graph G if, and onlyif, everyvertex in H
is also a vertex in G, everyedge in H is also an edge in G, and everyedge in H has
the same endpoints as it has in G.

Example 10.1.11 Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.

v1

v2

e1

e2

e3

There are 11 subgraphs of G, which can be grouped according to those that do not have
anyedges, those that have one edge, those that have two edges, and those that have three
edges. The 11 subgraphs are shown in Figure 10.1.4.

v1

v2v2

e1

e2

v1

v2

e1

e2

e3
v1 e3

v1

v2

e1

e3 v1

v2

e2

e3

v1v1

v2

e2

v2

e3
v1 v1

v2

v1

v2

e1

1 2 3 4 5 6

7 8 9 10 11

Figure 10.1.4 ■

The Concept of Degree
The degree of a vertex is the number of end segments of edges that “stick out of” the
vertex. We will show that the sum of the degrees of all the vertices in a graph is twice the
number of edges of the graph.
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• Definition

A graph H is said to be a subgraph of a graph G if, and onlyif, everyvertex in H
is also a vertex in G, everyedge in H is also an edge in G, and everyedge in H has
the same endpoints as it has in G.

Example 10.1.11 Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.
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There are 11 subgraphs of G, which can be grouped according to those that do not have
anyedges, those that have one edge, those that have two edges, and those that have three
edges. The 11 subgraphs are shown in Figure 10.1.4.
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The Concept of Degree
The degree of a vertex is the number of end segments of edges that “stick out of” the
vertex. We will show that the sum of the degrees of all the vertices in a graph is twice the
number of edges of the graph.
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• Definition

A graph H is said to be a subgraph of a graph G if, and onlyif, everyvertex in H
is also a vertex in G, everyedge in H is also an edge in G, and everyedge in H has
the same endpoints as it has in G.

Example 10.1.11 Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.
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There are 11 subgraphs of G, which can be grouped according to those that do not have
anyedges, those that have one edge, those that have two edges, and those that have three
edges. The 11 subgraphs are shown in Figure 10.1.4.
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The Concept of Degree
The degree of a vertex is the number of end segments of edges that “stick out of” the
vertex. We will show that the sum of the degrees of all the vertices in a graph is twice the
number of edges of the graph.
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In this lecture:
q Part 1: Concept and Terminology
q Part 2: Directed Graphs
q Part 3: Examples of Graphs
q Part 4: Graphs Types (Simple, Complete, Bipartite, Sub graphs)
q Part 5: Node/Graph Degree
q Part 6: Handshake and other Graph Theorems

26,

10.1 Graphs: Definitions and Basic Properties 635

• Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.
The total degree of G is the sum of the degrees of all the vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Example 10.1.12 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.

v1

v2

v3

e1 e2

e3

Solution deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).

deg(v2) = 2 since both e1 and e2 are incident on v2.

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is also
incident on v3 (and contributes 2 to the degree of v3).

total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6. ■

Note that the total degree of the graph G of Example 10.1.12, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes hands with various other people. So each person participates in a certain number of
handshakes—perhaps many, perhaps none—but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.
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The concept of Degree

10.1 Graphs: Definitions and Basic Properties 635

• Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.
The total degree of G is the sum of the degrees of all the vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Example 10.1.12 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.
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Solution deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).

deg(v2) = 2 since both e1 and e2 are incident on v2.

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is also
incident on v3 (and contributes 2 to the degree of v3).

total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6. ■

Note that the total degree of the graph G of Example 10.1.12, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes hands with various other people. So each person participates in a certain number of
handshakes—perhaps many, perhaps none—but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.
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10.1 Graphs: Definitions and Basic Properties 635

• Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.
The total degree of G is the sum of the degrees of all the vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Example 10.1.12 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.

v1

v2

v3

e1 e2

e3

Solution deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).

deg(v2) = 2 since both e1 and e2 are incident on v2.

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is also
incident on v3 (and contributes 2 to the degree of v3).

total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6. ■

Note that the total degree of the graph G of Example 10.1.12, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes hands with various other people. So each person participates in a certain number of
handshakes—perhaps many, perhaps none—but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.
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deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).
deg(v2) = 2 since both e1 and e2 are incident on v2.
deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is 
also incident on v3 (and contributes 2 to the degree of v3).
Total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6

The concept of Degree
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10.1 Graphs: Definitions and Basic Properties 635

• Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.
The total degree of G is the sum of the degrees of all the vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Example 10.1.12 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.
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v3
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e3

Solution deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).

deg(v2) = 2 since both e1 and e2 are incident on v2.

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is also
incident on v3 (and contributes 2 to the degree of v3).

total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6. ■

Note that the total degree of the graph G of Example 10.1.12, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes hands with various other people. So each person participates in a certain number of
handshakes—perhaps many, perhaps none—but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.
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deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).
deg(v2) = 2 since both e1 and e2 are incident on v2.
deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is 
also incident on v3 (and contributes 2 to the degree of v3).
Total degree of G = deg(v1) + deg(v2) + deg(v3) = 0 + 2 + 4 = 6

The concept of Degree

Can we calculate the graph degree directly?!

Yes, it is (2 . number of edges) 
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636 Chapter 10 Graphs and Trees

Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice
the number of edges of G. Specifically, if the vertices of G are v1, v2, . . . , vn, where
nis a nonnegative integer, then

the total degree of G = deg(v1) + deg(v2) + · · · + deg(vn)

= 2 ·(the number of edges of G).

Proof:

Let G be a particular but arbitrarily chosen graph, and suppose that G has nvertices
v1, v2, . . . , vn and m edges, where n is a positive integer and m is a nonnegative
integer. We claim that each edge of G contributes 2 to the total degree of G. For sup-
pose e is an arbitrarily chosen edge with endpoints vi and v j . This edge contributes 1
to the degree of vi and 1 to the degree v j . As shown below, this is true even if i = j ,
because an edge that is a loop is counted twice in computing the degree of the vertex
on which it is incident.

vi

vj
e e

vi = vj

i = ji ≠ j

Therefore, e contributes 2 to the total degree of G. Since e was arbitrarily chosen,
this shows that eachedge of G contributes 2 to the total degree of G. Thus

the total degree of G = 2 · (the number of edges of G).

The following corollary is an immediate consequence of Theorem 10.1.1.

Corollary 10.1.2

The total degree of a graph is even.

Proof:

By Theorem 10.1.1 the total degree of G equals 2 times the number of edges, which
is an integer, and so the total degree of G is even.

Example 10.1.13 Determining Whether Certain Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A graph with four vertices of degrees 1, 1, 2, and 3

b. A graph with four vertices of degrees 1, 1, 3, and 3

c. A simple graph with four vertices of degrees 1, 1, 3, and 3
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The Handshake Theorem
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Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice
the number of edges of G. Specifically, if the vertices of G are v1, v2, . . . , vn, where
nis a nonnegative integer, then

the total degree of G = deg(v1) + deg(v2) + · · · + deg(vn)

= 2 ·(the number of edges of G).

Proof:

Let G be a particular but arbitrarily chosen graph, and suppose that G has nvertices
v1, v2, . . . , vn and m edges, where n is a positive integer and m is a nonnegative
integer. We claim that each edge of G contributes 2 to the total degree of G. For sup-
pose e is an arbitrarily chosen edge with endpoints vi and v j . This edge contributes 1
to the degree of vi and 1 to the degree v j . As shown below, this is true even if i = j ,
because an edge that is a loop is counted twice in computing the degree of the vertex
on which it is incident.

vi

vj
e e

vi = vj

i = ji ≠ j

Therefore, e contributes 2 to the total degree of G. Since e was arbitrarily chosen,
this shows that eachedge of G contributes 2 to the total degree of G. Thus

the total degree of G = 2 · (the number of edges of G).

The following corollary is an immediate consequence of Theorem 10.1.1.

Corollary 10.1.2

The total degree of a graph is even.

Proof:

By Theorem 10.1.1 the total degree of G equals 2 times the number of edges, which
is an integer, and so the total degree of G is even.

Example 10.1.13 Determining Whether Certain Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A graph with four vertices of degrees 1, 1, 2, and 3

b. A graph with four vertices of degrees 1, 1, 3, and 3

c. A simple graph with four vertices of degrees 1, 1, 3, and 3
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Handshaking at a party: if the numbers experienced by each person are added together, the 
sum will equal twice the total number of handshakes.
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31,

Draw a graph with the specified properties or show that no 
such graph exists. 

è A graph with four vertices of degrees 1, 1, 2, and 3

Exercise 

No such graph is possible. 
By Corollary 10.1.2, the total degree of a graph is even. 
But a graph with four vertices of degrees 1, 1, 2, and 3 
would have a total degree of 1 + 1 + 2 + 3 = 7, which is 
odd.

32,

Draw a graph with the specified properties or show that no 
such graph exists. 

è A graph with four vertices of degrees 1, 1, 3, and 3

Exercise 

10.1 Graphs: Definitions and Basic Properties 637

Solution

a. No such graph is possible. By Corollary 10.1.2, the total degree of a graph is even.
But a graph with four vertices of degrees 1, 1, 2, and 3 would have a total degree of
1 + 1 + 2 + 3 = 7, which is odd.

b. Let G be any of the graphs shown below.

a

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

In each case, no matter how the edges are labeled, deg(a) = 1, deg(b) = 1, deg(c) =
3, and deg(d ) = 3.

c. There is no simple graph with four vertices of degrees 1, 1, 3, and 3.

Proof (by contradiction):

Suppose there were a simple graph G with four vertices of degrees 1, 1, 3, and 3. Call a
and bthe vertices of degree 1, and call c and d the vertices of degree 3. Since deg(c) = 3
and G does not have any loops or parallel edges (because it is simple), there must be
edges that connect c to a, b, and d .

a

d

b

c

By the same reasoning, there must be edges connecting d to a, b, and c.

a

d

b

c

But then deg(a) ≥ 2 and deg(b) ≥ 2, which contradicts the supposition that these vertices
have degree 1. Hence the supposition is false, and consequently there is no simple graph
with four vertices of degrees 1, 1, 3, and 3. ■

Example 10.1.14 Application to an Acquaintance Graph

Is it possible in a group of nine people for each to be friends with exactly five others?

Solution The answer is no. Imagine constructing an “acquaintance graph” in which each
of the nine people represented by a vertex and two vertices are joined by an edge if, and
only if, the people they represent are friends. Suppose each of the people were friends
with exactly five others. Then the degree of each of the nine vertices of the graph would
be five, and so the total degree of the graph would be 45. But this contradicts Corollary
10.1.2, which says that the total degree of a graph is even. This contradiction shows that
the supposition is false, and hence it is impossible for each person in a group of nine
people to be friends with exactly five others. ■

The following proposition is easily deduced from Corollary 10.1.2 using properties
of even and odd integers.
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Any of these:
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Draw a graph with the specified properties or show that no 
such graph exists. 

è A simple graph with four vertices of degrees 1, 1, 3, and 3

Exercise 

There is no simple graph with four vertices of degrees 1, 1, 3, and 3.

34,

Is it possible in a group of nine people for each to be friends 
with exactly five others?

Exercise (Acquaintance graphs)

No
Otherwise, 
the degree of the graph would 5 for each node, thus = 5 . 9 = 45
And 45 is odd, so it is not possible.
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35,
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Proposition 10.1.3

In anygraph there are an even number of vertices of odd degree.

Proof:

Suppose G is anygraph, and suppose G has n vertices of odd degree and m vertices
of even degree, where n is a positive integer and m is a nonnegative integer. [We
must show that n is even.] Let E be the sum of the degrees of all the vertices of even
degree, O the sum of the degrees of all the vertices of odd degree, and T the total
degree of G. If u1, u2, . . . , um are the vertices of even degree and v1, v2, . . . , vn are
the vertices of odd degree, then

E = deg(u1) + deg(u2) + · · · + deg(um),

O = deg(v1) + deg(v2) + · · · + deg(vn), and

T = deg(u1) + · · · + deg(um) + deg(v1) + · · · + deg(vn) = E + O.

Now T , the total degree of G, is an even integer byCorollary10.1.2. Also E is
even since either E is zero, which is even, or E is a sum of the numbers deg(ui ),
each of which is even. But

T = E + O,

and therefore O = T − E .

Hence O is a difference of two even integers, and so O is even.
Byassumption, deg(vi ) is odd for all i = 1, 2, . . . , n. Thus O , an even integer,

is a sum of the n odd integers deg(v1), deg(v2), . . . , deg(vn). But if a sum of n odd
integers is even, then n is even. (See exercise 32 at the end of this section.) Therefore,
n is even [as was to be shown].

Example 10.1.15 Applying the Fact That the Number of Vertices with Odd Degree Is Even

Is there a graph with ten vertices of degrees 1, 1, 2, 2, 2, 3, 4, 4, 4, and 6?

Solution No. Such a graph would have three vertices of odd degree, which is impossible
byProposition 10.1.3.

Note that this same result could have been deduced directlyfrom Corollary10.1.2 by
computing the total degree (1 + 1 + 2 + 2 + 2 + 3 + 4 + 4 + 4 + 6 = 29) and noting
that it is odd. However, use of Proposition 10.1.3 gives the result without the need to
perform this addition. ■

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. A graph consists of two finite sets: _____ and _____, where
each edge is associated with a set consisting of _____.

2. A loop in a graph is _____.

3. Two distinct edges in a graph are parallel if, and only if,
_____.

4. Two vertices are called adjacent if, and onlyif, _____.

5. An edge is incident on _____.

6. Two edges incident on the same endpoint are _____.

7. A vertexon which no edges are incident is _____.

8. In a directed graph, each edge is associated with _____.

9. A simple graph is _____.

10. A complete graph on n vertices is a _____.

11. A complete bipartite graph on (m, n) vertices is a simple
graph whose vertices can be partitioned into two disjoint sets
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Number of Vertices with Odd Degree

Exercise:
Is there a graph with ten vertices of degrees 1, 1, 2, 2, 2, 
3, 4, 4, 4, and 6?

èNo
(1+1+2+2+2+3+4+4+4+6 = 29) which is odd


