Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2017

Propositional Logic

2.1. Introduction and Basics

- 2.2 Conditional Statements
- 2.3 Inferencing

1

Watch this lecture and download the slides

Course Page: http://www.jarrar.info/courses/DMath/ More Online Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on (but not limited to) to chapter 2 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

(2)

Negation

Definition

If p is a statement variable, the **negation** of p is "not p" or "It is not the case that p" and is denoted $\sim p$. It has opposite truth value from p: if p is true, $\sim p$ is false; if p is false, $\sim p$ is true.

p	~ <i>p</i>
T	F
F	T

4

/

Conjunction

Definition

If p and q are statement variables, the **conjunction** of p and q is "p and q," denoted $p \wedge q$. It is true when, and only when, both p and q are true. If either p or q is false, or if both are false, $p \wedge q$ is false.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

5

5

Disjunction

Definition

If p and q are statement variables, the **disjunction** of p and q is "p or q," denoted $p \lor q$. It is true when either p is true, or q is true, or both p and q are true; it is false only when both p and q are false.

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

6

Truth Table for Exclusive Or

$$p \oplus q$$
 or $p XOR q$

$$(p \lor q) \land \sim (p \land q)$$

p	q	$p \lor q$	$p \wedge q$	$\sim (p \wedge q)$	$(p \lor q) \land \sim (p \land q)$
T	Т	T	T	F	F
T	F	T	F	T	T
F	Т	T	F	T	T
F	F	F	F	T	F

7

7

Logical Equivalence

Definition

Two *statement forms* are called **logically equivalent** if, and only if, they have identical truth values for each possible substitution of statements for their statement variables. The logical equivalence of statement forms P and Q is denoted by writing $P \equiv Q$.

Two *statements* are called **logically equivalent** if, and only if, they have logically equivalent forms when identical component statement variables are used to replace identical component statements.

p	q	$p \wedge q$	$q \wedge p$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

 $p \wedge q$ and $q \wedge p$ always have the same truth values, so they are

logically equivalent

8

Negations of And and Or: De Morgan's Laws

$$\sim (p \wedge q) \equiv \sim p \vee \sim q.$$

$$\sim (p \lor q) \equiv \sim p \land \sim q.$$

p	\boldsymbol{q}	~ <i>p</i>	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$	$\sim p \vee \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

 \sim $(p \land q)$ and $\sim p \lor \sim q$ always have the same truth values, so they are logically equivalent

10

Tautologies and Contradictions

• Definition

A **tautology** is a statement form that is always true regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a tautology is a **tautological statement**.

A **contradication** is a statement form that is always false regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a **contradication** is a **contradictory statement**.

p	t	$p \wedge t$	p	с	<i>p</i> ∧ c
T	T	T	T	F	F
F	T	F	F	F	F
		same values $p \wedge \mathbf{t}$	s, so	valu	e truth es, so $\mathbf{c} \equiv \mathbf{c}$

p	~ <i>p</i>	$p \lor \sim p$	$p \wedge \sim p$
T	F	T	F
F	T	T	F
		↑	↑
		all T's so $p \lor \sim p$ is a tautology	all F's so $p \land \sim p$ is a contradiction
			(

11

Summary of Logical Equivalences

Theorem 2.1.1 Logical Equivalences

1. Commutative laws:

4. Identity laws:

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

```
2. Associative laws: (p \land q) \land r \equiv p \land (q \land r)
3. Distributive laws: p \land (q \lor r) \equiv (p \land q) \lor (p \land r)
```

 $p \wedge q \equiv q \wedge p$

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \qquad p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ $p \wedge \mathbf{t} \equiv p \qquad \qquad p \vee \mathbf{c} \equiv p$

5. Negation laws: $p \lor \sim p \equiv \mathbf{t}$ 6. Double negative law: $\sim (\sim p) \equiv p$

 $p \wedge \sim p \equiv \mathbf{c}$

7. Idempotent laws: $p \wedge p \equiv p$ 8. Universal bound laws: $p \vee \mathbf{t} \equiv \mathbf{t}$

 $p \equiv p$ $p \lor p \equiv p$ $\mathbf{t} \equiv \mathbf{t}$ $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws: $\sim (p \land q) \equiv \sim p \lor \sim q$ 10. Absorption laws: $p \lor (p \land q) \equiv p$ $\sim (p \lor q) \equiv \sim p \land \sim q$ $p \land (p \lor q) \equiv p$

 $p \vee q \equiv q \vee p$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

11. Negations of \mathbf{t} and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

12

Simplifying Statement Forms

$$\sim (\sim p \land q) \land (p \lor q) \equiv p$$

$$\sim (\sim p \land q) \land (p \lor q) \equiv (\sim (\sim p) \lor \sim q) \land (p \lor q) \qquad \text{by De Morgan's laws}$$

$$\equiv (p \lor \sim q) \land (p \lor q) \qquad \text{by the double negative law}$$

$$\equiv p \lor (\sim q \land q) \qquad \text{by the distributive law}$$

$$\equiv p \lor (q \land \sim q) \qquad \text{by the commutative law for } \land$$

$$\equiv p \lor \mathbf{c} \qquad \text{by the negation law}$$

$$\equiv p \qquad \text{by the identity law.}$$

13