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Watch this lecture 
and download the slides

Acknowledgement:  
This lecture is based on (but not limited to) to chapter 4 in “Discrete Mathematics with Applications 
by Susanna S. Epp (3rd Edition)”. 

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/DMath/
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4.4 Quotient-Remainder Theorem 
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qPart 2: div and mod, and applications in real-life
qPart 3: Representing Integers in Quotient-Remainder 
qPart 4: Absolute Value

Keywords: Number Theory, Quotient-Remainder Theorem, div, mod, divide into cases” Proof Method, 
Parity, Integers Modulo, Absolute Value
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180 Chapter 4 Elementary Number Theory and Methods of Proof

4.4 Direct Proof and Counterexample IV: Division
into Cases and the Quotient-Remainder Theorem

Be especially critical of any statement following the word “obviously.”
— Anna Pell Wheeler 1883–1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2 ← quotient

4 11
8
3 ← remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

xxxx xxxx xxx
↑ ↑

2 groups of 4 3 left over

Or,

11 = 2 ·4 + 3.
↑ ↑

2 groups of 4 3 left over

Of course, the number left over (3) is less than the size of the groups (4) because if 4 or
more were left over, another group of 4 could be separated off.

The quotient-remainder theorem says that when any integer n is divided by any pos-
itive integer d, the result is a quotient q and a nonnegative remainder r that is smaller
than d.

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such
that

n = dq + r and 0 ≤ r < d.

The proof that there exist integers q and r with the given properties is in Section 5.4;
the proof that q and r are unique is outlined in exercise 18 in Section 4.7.

If n is positive, the quotient-remainder theorem can be illustrated on the number line
as follows:

0 2d 3dd qd n

r

If n is negative, the picture changes. Since n = dq + r , where r is nonnegative, d must
be multiplied by a negative integer q to go below n. Then the nonnegative integer r is
added to come back up to n. This is illustrated as follows:

0–2d–3d –dqd n

r
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Quotient-Remainder Theorem

Notice that: 

54 = 4 · 13 + 2               q = 13      r = 2
−54 = 4 · (−14) + 2          q =−14     r = 2

54 = 70 · 0 + 54            q = 0         r = 54

Examples:

Theorem 4.4.1 The Quotient-Remainder Theorem 

Given any integer n and positive integer d, there exist 
unique integers q and r such that 

and    0 ≤ r < d

11 = 4×2 + 3
← 

← 

quotient 

remainder

n
q

d

r
...

n = dq + r
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div and mod

Examples: 
32  div  9  = 3 
32 mod 9  = 5

Given an integer n and a positive integer d, 

n div d = the integer quotient obtained 
when n is divided by d, and 

n mod d = the nonnegative integer remainder obtained
when n is divided by d. 

Symbolically, if n and d are integers and d > 0, then
n div d = q and n mod d = r  ⇔ n = dq + r 

Where q and r are integers and 0 ≤ r <d

Definition 

“/” in C++, JAVA, .net

“%” in C,JAVA
“\” in .net
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Application of div and mod
Computing the Day of the Week 

365 div 7 = 52

and after 365 it will be Wednesday

Suppose today is Tuesday, and neither this year nor next year is 
a leap year ( ةسیبك ةنس تسیل ). What day of the week will it be 1 
year from today? 

and 365 mod 7 = 1

It means that a year (365) is 52 weeks + 1 day

So, 

after 364 it will be Tuesday

7
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That	is,	after	17	weeks	the	day	will	be	Thursday,	and	two	days	after,	
it	will	be:	

Application of div and mod
Computing the Day of the Week 

If today is Thursday and it is 16/10/2014, which day it will be 
the valentine's day in 2015? Valentine’s	day	=	14/2/2015

The	number	of	days	from	today	to	14/2/2015	=	 15 in	October
+	30 in	November	
+	31 in	December	
+	31 in	January	

=	121	days	
+	14 in	February	

121	div	7	=			
121	mod	7	=

So?

Saturday

17	
2	
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Application of div and mod
Solving a Problem about mod 

Suppose m is an integer. If m mod 11 = 6, what is 4m mod 11? 

m =	
So,

4m	= 44q +	24

=		44q +	22	+2

=	11(4q +	2)	+2 (4q +	2)	is	integer	

4m mod 11	=	Thus,		

11q +	6

2
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Representing Integers using 
the quotient-remainder theorem 

Parity Property

We represent any number as:
n = 2q + r        and  0 ≤ r < 2

Because we have only r = 0 and  r =1, then:  

n = 2q + 0          or       n = 2q + 1
Even Odd

Therefore, n  is either even or odd (parity)

11
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Proof by 
division into cases

Proving Parity Property

Theorem 4.4.2 The Parity of Property

Any two consecutive integers have opposite parity

Given m and m+1 are consecutive integers.
Then, one is odd and the other is even (by parity property)

thus m + 1 is even.

So, m+1 =

Case 1 (m is even): m = 2k

Case 2 (m is odd): m = 2k + 1

So, m +1 = 2k +1, which is odd 

(2k+1) + 1 

= 2(k+1). 
= 2k + 2 

Representing Integers using 
the quotient-remainder theorem 
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The “divide into cases” Proof Method

Method of Proof by Division into Cases 
To prove a statement of the form “If A1 or A2  or ... or An, then 
C,” prove all of the following: 

If A1, then C, 
If A2, then C, 

.

.

.

If An, then C. 

This process shows that C is true regardless of which of 
A1, A2 , ..., An, happens to be the case. 
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Integers Modulo 4 

We represent any integer as:

n=4q     or    n=4q+1    or    n=4q+2    or    n=4q+3 

This implies that there exist an integer quotient q and a 
remainder r such that 

n = 4q + r      and   0 ≤ r < 4.

Representing Integers using 
the quotient-remainder theorem 
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Hint: any odd integer can be (4q+1) or (4q+3).

Case 1 (n=4q+1):

Case 2 (n=4q+3):

thus  n2 = 

(2q2 + 3q+1) 
is an integer m

Using the “divide into cases” Method
Theorem 4.4.3 

The square of any odd integer has the form 8m + 1 for some integer m. 

∃mÎZ . n2 = 8m + 1∀nÎZodd,
n2 = 8m + 1 = (4q+1)2

=  16q2 + 8q +1 
= 8(2q2 + q) +1 (2q2 + q) is an 

integer m
8m + 1 

n2 = 8m + 1 = (4q+3)2

=  16q2 + 24q +8 +1 
= 8(2q2 + 3q+1) +1

thus  n2 = 8m + 1
15
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Congruence Modulo

A ≡ B (mod C) A is congruent to B modulo C.

1. ≡ is the symbol for congruence ( !قفاوت ), which means the 
values A and B are in the same equivalence class.

2. (mod C) tells us what operation we applied to A and B.

3. when we have both of these, we call “≡” congruence modulo C.

e.g. 26 ≡ 11 (mod 5) è 5| (26-11)

e.g. a ≡ 3 (mod 2) è 2| (a-3)

Given: x ≡ −2 (mod 2) 
Which of the following integers are valid solutions for x ?

-49 -44

26 -23

✘

✘✓

✓

è C | (A-B)
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Absolute Value

For any real number x, the absolute value of x, denoted |x|, 
is defined as follows: 

Definition

|2| = 2
|-2| = 2

Example:

|x| =
x if  x ≥ 0
-x if  x < 0

18
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Case 1 (r ≥ 0): 
|r| = r           by definition,
−|r| < r           as r is positive and so −|r| is negative

∴ −|r| ≤ r ≤ |r| 

Case 2 (r < 0):
|r | = −r        by definition, 

thus,  −|r| = r
r < |r|           as r is negative and |r| is positive

∴ −|r| ≤ r ≤ |r| 

Absolute Value

Suppose r is any real number. 

Thus, in either case,   −|r| ≤ r ≤ |r| 

Lemma 4.4.4
For all real numbers r, -|r| ≤ r ≤ |r|

Proof:

Try it 
yourself

19
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Absolute Value

Suppose r is any real number. By Theorem T23 in Appendix A, if r > 0, 
then −r <0, and if r <0, then −r >0. Thus 

Lemma 4.4.5

For all real numbers r, |-r| = |r|

by definition of absolute value 

because −(−r) = r by Theorem 
T4 in Appendix A  

because, by Theorem T24 in Appendix A, 
when −r >0, then r < 0, when −r < 0, then 
r >0, and when −r = 0, then r =0 

by definition of absolute value. 

– r if  –r > 0
0      if  –r = 0    

–(–r)   if  –r < 0
– r if  –r > 0
0       if  –r = 0       
r if  –r < 0

r if  r ≥ 0        
– r if  r < 0

| –r| =

=

– r if  r < 0        
0       if  –r = 0 
r if  r > 0

by reformatting the previous result

=

=

=  | r |

Try it 
yourself
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Case 1 (x + y ≥ 0):
|x + y| = x + y by Lemma 4.4.4

so     x ≤ |x|  &  y ≤ |y| 
∴ |x + y| = x + y ≤ |x| + |y|

Case 2 (x + y < 0):
| x + y| = −(x + y) =  −x +  −y by Lemmas 4.4.4 &4.4.5

so     −x ≤ |−x| = |x|   and  −y ≤ |−y| = |y|.
∴ |x + y| = (−x) + (−y) ≤ |x| + |y|. 

Absolute Value and Triangle Inequality 

Theorem 4.4.6 The Triangle Inequality

For all real numbers x and y, |x+y| ≤ |x| + |y|

Try it 
yourself
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