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5.1 Sequences

In this lecture:

q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Dummy Variables

Mustafa Jarrar: Lecture Notes on Sequences & Mathematical Induction.
Birzeit University, Palestine, 2015
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A mathematician, like a painteror poet, is a maker of patterns. 
-G. H. Hardy, A Mathematicians Apology, 1940

Motivation 
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CHAPTER 5

SEQUENCES, MATHEMATICAL
INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular
patterns, such as those associated with processes that are repeated. The main mathemati-
cal structure used in the study of repeated processes is the sequence, and the main mathe-
matical tool used to verify conjectures about sequences is mathematical induction. In this
chapter we introduce the notation and terminology of sequences, show how to use both
ordinary and strong mathematical induction to prove properties about them, illustrate the
various ways recursively defined sequences arise, describe a method for obtaining an
explicit formula for a recursively defined sequence, and explain how to verify the cor-
rectness of such a formula. We also discuss a principle—the well-ordering principle for
the integers—that is logically equivalent to the two forms of mathematical induction, and
we show how to adapt mathematical induction to prove the correctness of computer algo-
rithms. In the final section we discuss more general recursive definitions, such as the one
used for the careful formulation of the concept of Boolean expression, and the idea of
recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.
— G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, . . .

The symbol “. . .” is called an ellipsis. It is shorthand for “and so forth.”
To express the pattern of the numbers, suppose that each is labeled by an integer

giving its position in the row.

Position in the row 1 2 3 4 5 6 7 . . .

Number of ancestors 2 4 8 16 32 64 128 . . .

The number corresponding to position 1 is 2, which equals 21. The number corresponding
to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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In Nature

https://www.youtube.com/watch?v=ahXIMUkSXX0
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IQ Tests

1 2 3 4 5

Determine the number of points in the 4th and 5th figure

? ?

https://www.youtube.com/watch?v=ahXIMUkSXX0
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In programing

Any difference between these loops

4.1 Sequences 211

Note that the subscript labels are written inside square brackets. The reason is that until
relatively recently, it was impossible to type actual dropped subscripts on most computer
keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping
the labels straight.

Example 4.1.17 Dummy Variable in a Loop
The index variable for a for-next loop is a dummy variable. For example, the following
three algorithm segments all produce the same output:

1. fori:=lton 2. for j:=Oton-l 3. fork:=2ton-+ I
print a[i] print a[j + 1] print a[k - I]

next i next j next D

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum of
a[l], a[2], . .. , a[n]. The one on the left exactly mimics the recursive definition by ini-
tializing the sum to equal a[ I]; the one on the right initializes the sum to equal 0. In both
cases the output is Fk=, a[k].

s := a[l] s := 0
fork :=2ton fork := ton

s :=s+a[k] s :=s+a[k]
next k next k

Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2

Section 1.5 contains some examples of converting integers from decimal to binary nota-
tion. The method shown there, however, is only convenient to use with small numbers. A
systematic algorithm to convert any nonnegative integer to binary notation uses repeated
division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder
theorem to obtain a quotient q [0] and a remainder r [0]. If the quotient is nonzero, divide
by 2 again to obtain a quotient q [11 and a remainder r [I]. Continue this process until a
quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which
is 2. Thus each remainder is either 0 or 1. The process is illustrated below for a = 38.
(Read the divisions from the bottom up.)

0 remainder = I = r[5]

2 1 remainder = 0 = r[4]

2 2 remainder = 0 = r[3]

2 l 4 remainder = I = r[2]

2 l 9 remainder= I = rI]

2 l19 remainder = r=O]

2 38
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5.1 Sequences

In this lecture:
q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Change of Variables
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a sequence is a set of elements written in a row. 

Each individual element ak is called a term. 

The k in ak is called a subscript or index

am, am+1, am+2,  . . . , an
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Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, . . . and b2, b3, b4, . . . by the following 
explicit formulas: 

Compute the first five terms of both sequences. 

ak = k for some integers k ≥ 1 
k+1  

bi = i -1   for some integers i ≥ 2 
i
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Finding Terms of Sequences Given by Explicit Formulas

Compute the first six terms of the sequence c0 , c1 , c2 , . . . defined 
as follows:   cj= (−1) j       for all integers j ≥ 0. 

Solution: 

c0 = (−1)0 =   1
c1 = (−1)1 = −1 
c2 = (−1)2 =   1 
c3 = (−1)3 = −1 
c4 = (−1)4 =   1 
c5 = (−1)5 = −1 
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Finding an Explicit Formula to Fit Given Initial Terms

OR

èHow to prove such formulas of sequences?

Find an explicit formula for a sequence that has the following 
initial terms: 

1,   _ 1 ,    1 ,    _ 1 ,      1 ,    _ 1 , …...
4        9         16        25         36
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5.1 Sequences

In this lecture:
q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and PaBerns
q Part 3: Summa.on: Nota.on, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: ProperHes of SummaHons and Products
q Part 6: Sequence in Computer Loops and Change of Variables

Mustafa Jarrar: Lecture Notes on Sequences & Mathematical Induction.
Birzeit University, Palestine, 2015
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Summation

Upper limit

Lower limit

index

n 
∑ ak =  am + am+1 + am+2 +… an
k=m
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Example 
Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. 
Compute the following: 

5 

a.  ∑ ak
k=1

2 

b.  ∑ ak
k=2

2 

c.  ∑ a2.k  
k=1

Solution:

18
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When the terms of a summation are given by a formula

Example 

Compute the following summation: 

5 
∑ k2
k=1

Solution:
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• Summation to Expanded Form

• Expanded Form to Summation

• Separating Off a Final Term

• Telescoping

Useful Operations

èThese concepts are very important to understand computer loops

20
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Summa'on to Expanded Form

Write the following summation in expanded form: 

n 
∑
i=0

(-1)i
i+1

Solution:



11/25/18

11

21
%

Expanded Form to Summation

1 +   2   +    3    +  .  .  .  + n+1 
n         n+1 n+2                          2n

Express the following using summation notation:

1 + 2   +   3   + . . . + n+1 
n      n+1 n+2                  2n

n 
= ∑

k=0

k+1 
n+k

Solution:

22
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Separating Off a Final Term and Adding On a Final Term n

Rewrite                   by separating off the final term. 

Write                               as a single summation.

n+1 

∑
i=1

1 
i2

n

∑
k=0

2k + 2n+1



11/25/18

12

23
%

Telescoping

Example: 

A telescoping series is a series whose partial sums eventually 
only have a fixed number of terms after cancellation [wiki].

232 Chapter 5 Sequences, Mathematical Induction, and Recursion

Example 5.1.8 Evaluating a1, a2, a3, . . . , an for Small n

What is the value of the expression
1

1 ·2 + 1
2 ·3 + 1

3 ·4 + · · · + 1
n ·(n + 1)

when

n = 1? n = 2? n = 3?

!
Caution! Do not write
that for n = 1, the sum is

1
1 ·2

+ 1
2 ·3

+ 1
3 ·4

+ · · · + 1
1 ·2

.

This is crossed out
because it is incorrect.

Solution

When n = 1, the expression equals
1

1 ·2 = 1
2

.

When n = 2, it equals
1

1 ·2 + 1
2 ·3 = 1

2
+ 1

6
= 2

3
.

When n = 3, it is
1

1 ·2 + 1
2 ·3 + 1

3 ·4 = 1
2

+ 1
6

+ 1
12

= 3
4
.

■

A more mathematically precise definition of summation, called a recursive definition,
is the following:∗ If m is any integer, then

m∑

k=m

a k = a m and
n∑

k=m

a k =
n− 1∑

k=m

a k + a n for all integers n > m.

When solving problems, it is often useful to rewrite a summation using the recursive form
of the definition, either by separating off the final term of a summation or by adding a
final term to a summation.

Example 5.1.9 Separating Off a Final Term and Adding On a Final Term

a. Rewrite
n+1∑

i=1

1
i2

by separating off the final term.

b. Write
n∑

k=0

2k + 2n+1 as a single summation.

Solution

a.
n+1∑

i=1

1
i2

=
n∑

i=1

1
i2

+ 1
(n + 1)2

b.
n∑

k=0

2k + 2n+1 =
n+1∑

k=0

2k ■

In certain sums each term is a difference of two quantities. When you write such sums
in expanded form, you sometimes see that all the terms cancel except the first and the last.
Successive cancellation of terms collapses the sum like a telescope.

Example 5.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a
simple expression. For instance, observe that

1
k
− 1

k + 1
= (k + 1) − k

k(k + 1)
= 1

k(k + 1)
.

Use this identity to find a simple expression for
n∑

k=1

1
k(k + 1)

.

∗Other recursively defined sequences are discussed later in this section and, in greater detail, in
Section 5.6.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
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n

i=1
i – (i+1) =(1-2) + (2-3) + . . . + (n –(n+1))

= 1 – (n+1) 

=-n

S=0
For (i=1;i<=n;i++)

S= S+ i-(i+1);
S = -n;

This is very useful in programing: 

24
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Telescoping

A telescoping series is a series whose partial sums eventually 
only have a fixed number of terms after cancellation [1].

Example: S=0;
For (k=1;k<=n;k++)

S=S+ 1/k*(k+1);

S = 1- (1/(n+1);

n

∑
k=1

1     
k(k+1)

n

=∑( )
k=1

1 _ 1   
k        k+1
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5.1 Sequences

In this lecture:
q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Change of Variables
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Product Notation

5.1 Sequences 233

Solution
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(
1
k
− 1

k + 1

)

=
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · · +

(
1

n− 1
− 1

n

)
+
(

1
n
− 1

n+ 1

)

= 1− 1
n+ 1

. ■

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for
their sum. The Greek capital letter pi, !, denotes a product. For example,

5∏

k=1

ak = a1a2a3a4a5.

• Definition

If m and n are integers and m ≤ n, the symbol
n∏

k=m
ak , read the product from k

equals m to n of a-sub-k, is the product of all the terms am, am+1, am+2, . . . , an.

We write n∏

k=m

ak = am ·am+1 ·am+2 · · · an.

A recursive definition for the product notation is the following: If m is any
integer, then

m∏

k=m

ak = am and
n∏

k=m

ak =
(

n−1∏

k=m

ak

)

·an for all integers n> m.

Example 5.1.11 Computing Products

Compute the following products:

a.
5∏

k=1

k b.
1∏

k=1

k
k + 1

Solution

a.
5∏

k=1

k = 1 ·2 ·3 ·4 ·5 = 120 b.
1∏

k=1

k
k + 1

= 1
1 + 1

= 1
2

■

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 5.6.
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Factorial Notation

5.1 Sequences 237

Factorial and “n Choose r” Notation
The product of all consecutive integers up to a given integer occurs so often in mathemat-
ics that it is given a special notation—factorial notation.

• Definition

For each positive integer n , the quantity n factorial denoted n!, is defined to be the
product of all the integers from 1 to n :

n ! = n ·(n − 1) · · · 3 ·2 ·1.

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 9, it is convenient for many mathematical formulas.

Example 5.1.15 The First Ten Factorials

0! = 1 1! = 1

2! = 2 ·1 = 2 3! = 3 ·2 ·1 = 6

4! = 4 ·3 ·2 ·1 = 24 5 ! = 5 ·4 ·3 ·2 ·1 = 120

6! = 6 · 5 ·4 ·3 ·2 ·1 = 720 7! = 7 ·6 · 5 ·4 ·3 ·2 ·1 = 5 ,040

8! = 8 ·7 ·6 · 5 ·4 ·3 ·2 ·1 9! = 9 ·8 ·7 ·6 · 5 ·4 ·3 ·2 ·1
= 40,320 = 362,880 ■

As you can see from the example above, the values of n ! grow very rapidly. For
instance, 40! ∼= 8.16× 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol ∼= means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer n ,

n ! =
{

1 if n = 0
n ·(n − 1)! if n ≥ 1.

The next example illustrates the usefulness of the recursive definition for making
computations.

!
Caution! Note that
n · (n − 1)! is to be
interpreted as
n · [(n − 1)!].

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
8!
7! b.

5 !
2! ·3! c.

1
2! ·4! + 1

3! ·3! d.
(n + 1)!

n ! e.
n !

(n − 3)!
Solution

a.
8!
7! = 8 ·7!

7! = 8

b.
5 !

2! ·3! = 5 ·4 ·3!
2! ·3! = 5 ·4

2 ·1 = 10
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0! =1
2! = 2·1 = 2
4! = 4·3·2·1 = 24
6! = 6·5·4·3·2·1 = 720 
8! = 8·7·6·5·4·3·2·1 
= 40,320 

1! =1
3! =3·2·1=6
5! = 5·4·3·2·1 = 120
7! = 7·6·5·4·3·2·1 = 5,040
9! = 9·8·7·6·5·4·3·2·1 
= 362,880 
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A recursive definition for factorial

Factorial Notation

0! =1
2! = 2·1 = 2
4! = 4·3·2·1 = 24
6! = 6·5·4·3·2·1 = 720 
8! = 8·7·6·5·4·3·2·1 = 40,320 

1! =1
3! =3·2·1=6
5! = 5·4·3·2·1 = 120
7! = 7·6·5·4·3·2·1 = 5,040
9! = 9·8·7·6·5·4·3·2·1 = 362,880 

n! = 1                if  n = 0
n . (n-1)!    if  n ≥ 1
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Computing with Factorials

206 Chapter 4 Sequences and Mathematical Induction

Factorial Notation
The product of all consecutive integers up to a given integer occurs so often in mathematics
that it is given a special notation-factorial notation.

I. I.j !

For each positive integer n, the quantity n factorial denoted n!, is defined to be the
product of all the integers from I to n:

n! =n -(n-1) ... 3 2 1.

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 6, it is convenient for many mathematical formulas.

Example 4.1.12 The First Ten Factorials
0! = I
2! = 2* 1 = 2
4! = 4.3 2. 1 = 24
6! = 6. 5 4 3 .2 1 = 720

8! =8 7.6.54.3-2.1
= 40,320

1! = 1
3! =3 .2. 1 = 6
5! = 5 .4. 3 * 2. 1 = 120
7! = 765 6 454-3 -2. 1 = 5,040
9! =9 8 - 7-6.5-4-3 2.- 1

= 362,880

As you can see from the example above, the values of n! grow very rapidly. For
instance, 40! - 8.16 x 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol - means "is approximately equal to.")

A recursive definition for factorial is the following: Given any nonnegative integer n,

! ( I if n =0
1)! if n > 1

Example 4.1.13 illustrates the usefulness of the recursive definition for making computa-
tions.

Example 4.1.13 Computing with Factorials
Simplify the following expressions:

8! 5! 1 1a. - b. c. +
7! 2! .3! 2!. 4! 3!.3!

Solution

8! 8. _f
a. 7!= X =8

5! 5- 4 .1 5 4b. -2= - = = 2 o10
2! -3! 2! -Y! 2 -1

d. (n + 1)! e__n!
d. __-3 e.n ! (n-3) !

.
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l 1 1 3 1 4c. I+ I = I .- 3+ I .- 4
2! 4! 3! 3! 2! * 4! 3 3! 3! 4

3 4
3 -2! 4! 3! 4 3!

3 4
3! 4! 3! 4!

7
3! . 4!

7
144

d (n + 1)! (n + 1) _.d. n! - = l

by multiplying each numerator and
denominator by just what is necessary to
obtain a common denominator

by rearranging factors

because 3 * 2! = 3! and 4 3! = 4!

by the rule for adding fractions
with a common denominator

n!
e. (n =

(n -3)!
n * (n - 1) * (n -2) I

= n (n - 1) * (n -2)

= n3- 3n2 + 2n

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 8.4.

Example 4.1.14 Using Properties of Summation and Product
Let ak = k + 1 and bk = k - 1 for all integers k. Write each of the following expressions
as a single summation or product:

n n
a. Lak, +2- b,

k=m k=m

.

Theorem 4.1.1

If am, am+I, am+2, ... and bi, bm+i, bm+2,... are sequences of real numbers and c
is any real number, then the following equations hold for any integer n > m:

n n n
1. Eak + Ebk = TLak + bk)

k=m k=m k=M

n n
2. c *E ak =E c *a, generalized distributive law

k=m k=m

3. ( ak) ( bk) = (ak .bk

k=m k=m k=m

b. ( ' ak) - ( " bk)fl H
k=m k=m
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5.1 Sequences

In this lecture:
q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Change of Variables

Mustafa Jarrar: Lecture Notes on Sequences & Mathema;cal Induc;on.
Birzeit University, Palestine, 2015

Sequences & Mathematical Induction
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Properties of Summations and Products

è Remember to apply these in programing Loops

234 Chapter 5 Sequences, Mathematical Induction, and Recursion

Theorem 5.1.1

If am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are sequences of real numbers and c
is any real number, then the following equations hold for any integer n≥ m:

1.
n∑

k=m

ak +
n∑

k=m

bk =
n∑

k=m

(ak + bk)

2. c ·
n∑

k=m

ak =
n∑

k=m

c ·ak generalized distributive law

3.

(
n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

=
n∏

k=m

(ak ·bk).

Example 5.1.12 Using Properties of Summation and Product

Let ak = k + 1 and bk = k − 1 for all integers k. Write each of the following expressions
as a single summation or product:

a.
n∑

k=m

ak + 2 ·
n∑

k=m

bk b.

(
n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

Solution

a.
n∑

k=m

ak + 2 ·
n∑

k=m

bk =
n∑

k=m

(k + 1) + 2 ·
n∑

k=m

(k − 1) by substitution

=
n∑

k=m

(k + 1) +
n∑

k=m

2 ·(k − 1) by Theorem 5.1.1 (2)

=
n∑

k=m

((k + 1) + 2 ·(k − 1)) by Theorem 5.1.1 (1)

=
n∑

k=m

(3k − 1)
by algebraic
simplification

b. ( n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

=
(

n∏

k=m

(k + 1)

)

·
(

n∏

k=m

(k − 1)

)

by substitution

=
n∏

k=m

(k + 1) ·(k − 1) by Theorem 5.1.1 (3)

=
n∏

k=m

(k2 − 1)
by algebraic
simplification

■

Change of Variable
Observe that

3∑

k=1

k2 = 12 + 22 + 32

and also that
3∑

i=1

i2 = 12 + 22 + 32.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Which is better 
in programing?

32
%

Let ak = k + 1 and bk = k - 1 for all integers k. Write each of the 
following expressions as a single summation or product:

Example

n                         n

∑ak + 2 . ∑ bk
k=m                    k=m

n                         n

∏ ak . ∏ bk
k=m                    k=m
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5.1 Sequences

Mustafa Jarrar: Lecture Notes on Sequences & Mathematical Induction.

Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

In this lecture:

q Part 1: Why we need Sequences (Real-life examples). 

q Part 2: Sequence and Patterns

q Part 3: Summation: Notation, Expanding & Telescoping

q Part 4: Product and Factorial

q Part 5: Properties of Summations and Products

q Part 6: Sequence in Computer Loops and Change of Variables
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Change of Variable

Replaced Index by any other symbol (called a dummy variable).

4.1 Sequences 209

The appearance of a summation can be altered by more complicated changes of variable
as well. For example, observe that

4
T -j _ 1)2 = (2 - 1)2 + (3 - 1)2 + (4 - 1)2
j=2

= 12+22+32
3

= EZk 2.
k=1

A general procedure to transform the first summation into the second is illustrated in
Example 4.1.15.

Example 4.1.15 Transforming a Sum by a Change of Variable
Transform the following summation by making the specified change of variable.

6 1
summation: A k +1 change of variable: j = k + 1

k=0

Solution First calculate the lower and upper limits of the new summation:

Whenk=O, j=k+1=O+I=1.
Whenk=6, j=k+1=6+1=7.

Thus the new sum goes from j = I to j = 7.
Next calculate the general term of the new summation. You will need to replace each

occurrence of k by an expression in j:

Since = k + 1, then k = j-1.
1 1 1

Hence = ______ = -

k+I (j-1)+1 j

Finally, put the steps together to obtain
6 7

4.1.1
k= o+l j=Ij

Equation (4.1.1) can be given an additional twist by noting that because the j in the
right-hand summation is a dummy variable, it may be replaced by any other variable name,
as long as the substitution is made in every location where j occurs. In particular, it is
legal to substitute k in place of j to obtain

7 l 7l

EJ Ek' 4.1.2
j=l k=1

Putting equations (4.1.1) and (4.1.2) together gives
6 7

k=o k + I kI

208 Chapter 4 Sequences and Mathematical Induction

Solution
n n n n

a. Eak+2 ELbk E=(k+ 1)+2 2 (k- 1) by substitution
k=m k=m k=m k=m

nl n

= (k+ 1) + E 2 (k- 1) by Theorem 4..1 (2)
k-m k=m

n

= ((k +1) + 2*(k-1)) by Theorem 4.1.1 (1)
k=m
k-n

E (3k-1) by algebraic
-) simplification

k=m

b. ( ak) ( bk) = (h(k + )) (h(k - 1)) by substitution
k=m k=m k=m k=m

n

= 17(k + 1) (k-1) by Theorem 4.1.1 (3)
k=m

n

= n(k2 1) by algebraic
simplification

k=m

Change of Variable
Observe that

Lk 2 = 12 + 22 + 32
k=l

and also that
3

i2= 12+22+32.
i-1

Hence
3 3

k 2 = E i2.
k=l i=l

This equation illustrates the fact that the symbol used to represent the index of a summation
can be replaced by any other symbol as long as the replacement is made in each location
where the symbol occurs. As a consequence, the index of a summation is called a dummy
variable. A dummy variable is a symbol that derives its entire meaning from its local
context. Outside of that context (both before and after), the symbol may have another
meaning entirely.
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Observe:

Hence:

Also Observe:
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Programing Loops
Any difference between these loops

4.1 Sequences 211

Note that the subscript labels are written inside square brackets. The reason is that until
relatively recently, it was impossible to type actual dropped subscripts on most computer
keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping
the labels straight.

Example 4.1.17 Dummy Variable in a Loop
The index variable for a for-next loop is a dummy variable. For example, the following
three algorithm segments all produce the same output:

1. fori:=lton 2. for j:=Oton-l 3. fork:=2ton-+ I
print a[i] print a[j + 1] print a[k - I]

next i next j next D

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum of
a[l], a[2], . .. , a[n]. The one on the left exactly mimics the recursive definition by ini-
tializing the sum to equal a[ I]; the one on the right initializes the sum to equal 0. In both
cases the output is Fk=, a[k].

s := a[l] s := 0
fork :=2ton fork := ton

s :=s+a[k] s :=s+a[k]
next k next k

Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2

Section 1.5 contains some examples of converting integers from decimal to binary nota-
tion. The method shown there, however, is only convenient to use with small numbers. A
systematic algorithm to convert any nonnegative integer to binary notation uses repeated
division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder
theorem to obtain a quotient q [0] and a remainder r [0]. If the quotient is nonzero, divide
by 2 again to obtain a quotient q [11 and a remainder r [I]. Continue this process until a
quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which
is 2. Thus each remainder is either 0 or 1. The process is illustrated below for a = 38.
(Read the divisions from the bottom up.)

0 remainder = I = r[5]

2 1 remainder = 0 = r[4]

2 2 remainder = 0 = r[3]

2 l 4 remainder = I = r[2]

2 l 9 remainder= I = rI]

2 l19 remainder = r=O]

2 38
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Change Variables
Transform the following summation by making the specified 
change of variable.

Change variable j = k+1 For (k=0; k≤6; k++)
Sum = Sum + 1/(k+1)

For (k=1; k≤7; k++)
Sum = Sum + 1/(k)

6

∑
k=0

1    
k+1
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Change Variables
Transform the following summation by making the specified 
change of variable.

For (k=1; k<=n+1; k++)
Sum = Sum + k/(n+k)

For (k=0; k<=n; k++)
Sum = Sum + (k+1)/(n+k+1)

n+1

∑
k=1

k
n+k

Change of variable: j = k - 1
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Programing Loops

All questions in the exams will be loops

Thus, I suggest:
Convert all previous examples into loops and play 

with them


