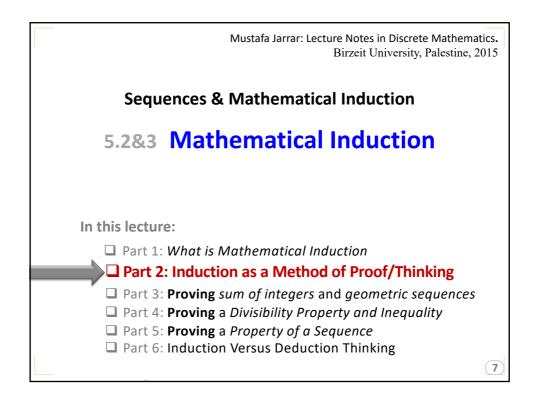
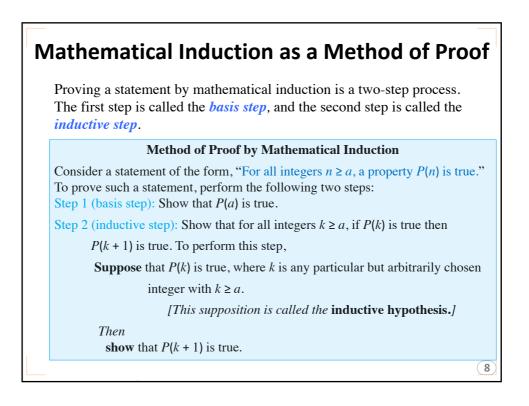
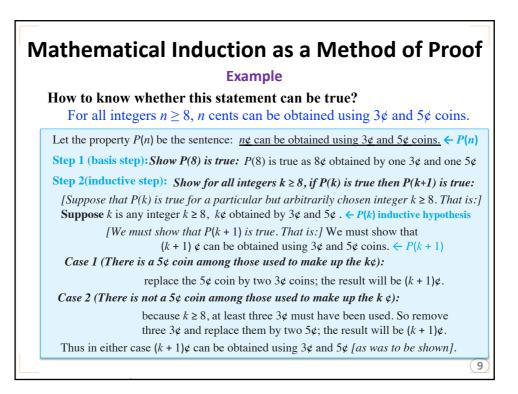


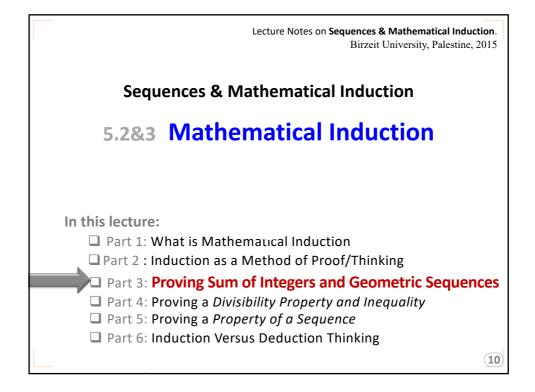
| What is Mathematical Induction<br>Example                               |                  |                                                                       |  |
|-------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|--|
| How to know whether this <i>P(n)</i> ca                                 | an be true?      |                                                                       |  |
| $P(n)$ : For all integers $n \ge 8$ , $n \sec 3\phi$ and $5\phi$ coins. | ents can be obta | ined using                                                            |  |
| For all integers $n \ge 8$ , $P(n)$ is true,                            | Number of Cents  | How to Obtain It                                                      |  |
| where $P(n)$ is the sentence "n cents                                   | 8¢               | 3¢ + 5¢                                                               |  |
| can be obtained using 3¢ and 5¢                                         | 9¢               | $3\phi + 3\phi + 3\phi$                                               |  |
| coins."                                                                 | 10¢              | 5¢+5¢                                                                 |  |
|                                                                         | 11¢              | $3\phi + 3\phi + 5\phi$                                               |  |
| Then we need to prove that <i>P(n+1)</i> is                             | 12¢              | $3\mathbf{e} + 3\mathbf{e} + 3\mathbf{e} + 3\mathbf{e}$               |  |
| also true                                                               | 13¢              | $3\phi + 5\phi + 5\phi$                                               |  |
|                                                                         | 14¢              | $3\mathbf{x} + 3\mathbf{x} + 3\mathbf{x} + 5\mathbf{x}$               |  |
|                                                                         | 15¢              | $5\phi + 5\phi + 5\phi$                                               |  |
|                                                                         | 16¢              | $3\mathbf{x} + 3\mathbf{x} + 5\mathbf{x} + 5\mathbf{x}$               |  |
|                                                                         | 17¢              | $3\mathbf{v} + 3\mathbf{v} + 3\mathbf{v} + 3\mathbf{v} + 5\mathbf{v}$ |  |
|                                                                         |                  | . (                                                                   |  |

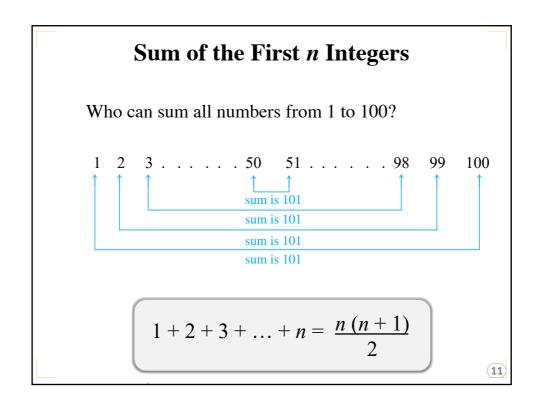
3

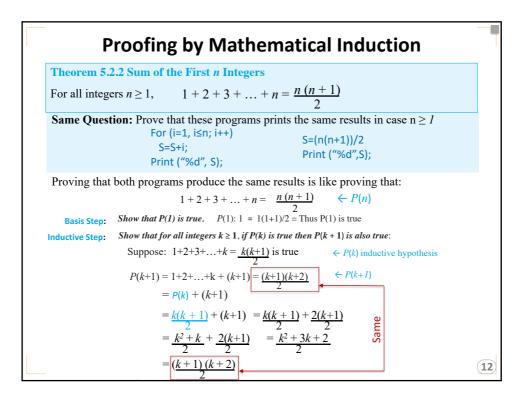


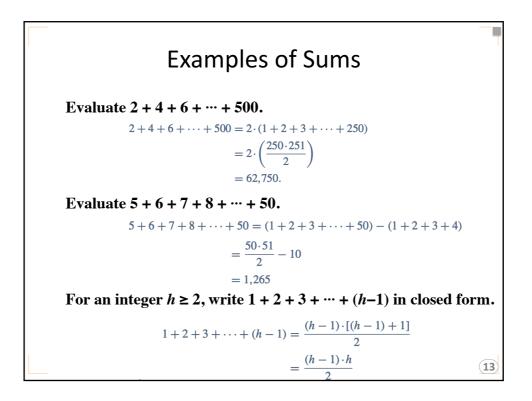


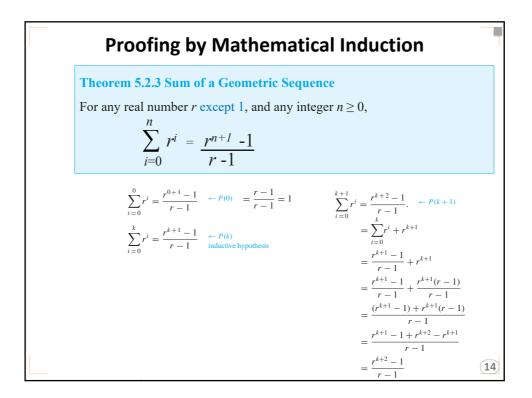


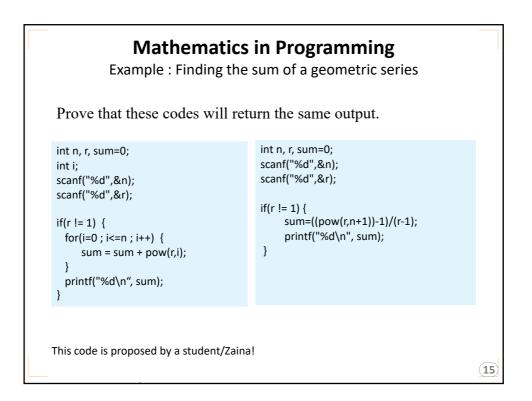


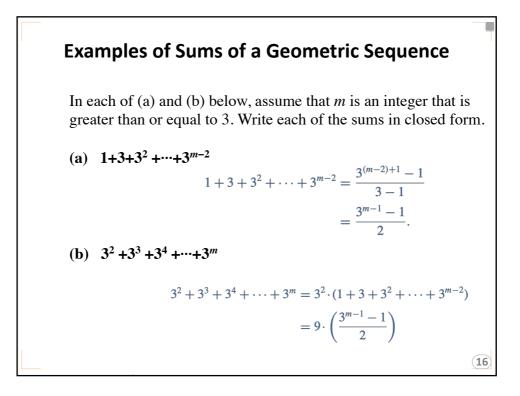


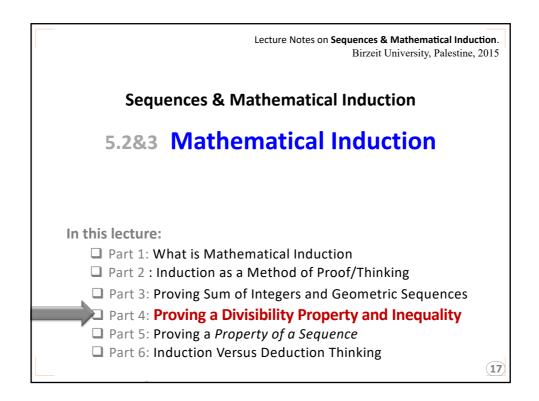


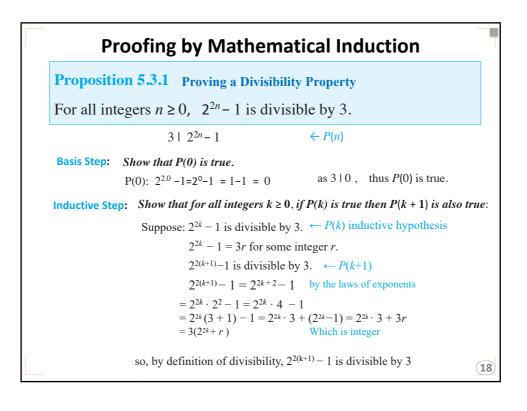






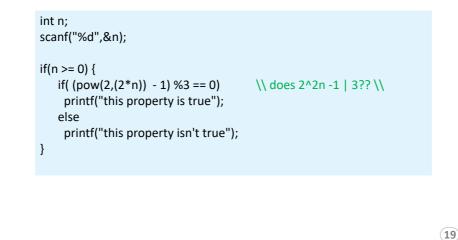


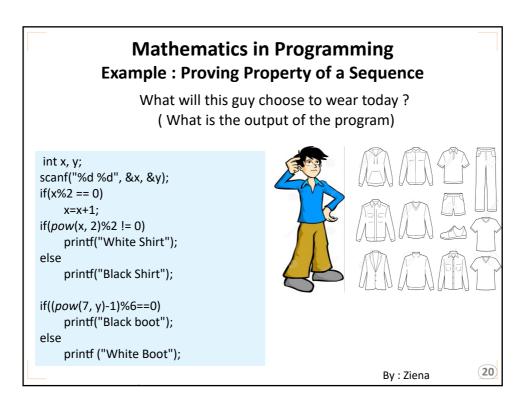




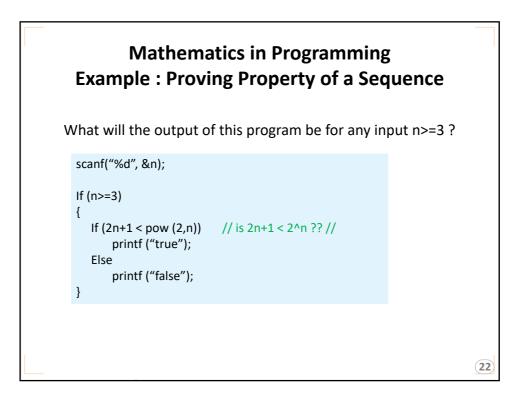


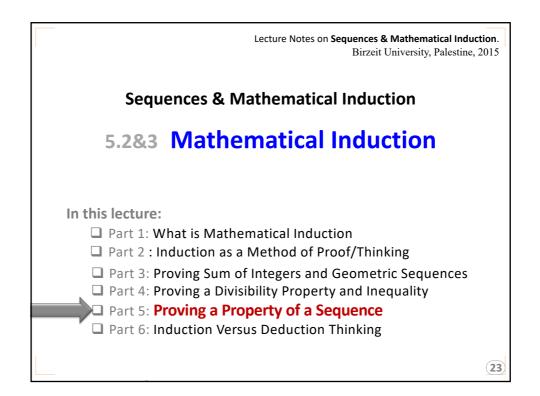
What will the output of this program be for any input n?





| Proofing by Mathematical Induction |                                                                   |                                                                              |     |  |
|------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|-----|--|
| Propositio                         | on 5.3.2 Proving Inc                                              | equality                                                                     |     |  |
| For all int                        | egers $n \ge 3$ , $2n + 1 < 2^n$                                  |                                                                              |     |  |
| Basis Step:                        | Let $P(n)$ be $2n+1<2^n$<br>Show that $P(3)$ is true. $P(3): 2$ . | $3+1 < 2^3$ which is true.                                                   |     |  |
| Inductive Step:                    | Show that for all integers $k \ge 3$ , i                          | f P(k) is true then $P(k + 1)$ is also true                                  | le: |  |
|                                    | Suppose: $2k + 1 < 2^k$ is true                                   | $\leftarrow P(k)$ inductive hypothesis                                       |     |  |
|                                    | $2(k+1)+1 < 2^{k+1}$                                              | $\leftarrow P(k+1)$                                                          |     |  |
|                                    | 2k+3 = (2k+1)+2                                                   | by algebra                                                                   |     |  |
|                                    | $< 2^k + 2^k$                                                     | as $2k - 1 \le 2^k$ by the hypothesis<br>and because $2 \le 2^k$ $(k \ge 2)$ |     |  |
|                                    | $\therefore 2k+3 < 2 \cdot 2^k = 2^{k+1}$                         | -1                                                                           |     |  |
|                                    | [This is what we needed to sho                                    | w.]                                                                          | 21  |  |

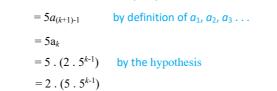




## Proving a Property of a Sequence Example Define a sequence $a_1, a_2, a_3 \dots$ as follows: $a_1 = 2$ $a_k = 5a_{k-1}$ for all integers $k \ge 2$ . Write the first four terms of the sequence. $a_1 = 2$ $a_2 = 5a_{2-1} = 5a_1 = 5 \cdot 2 = 10$ $a_3 = 5a_{3-1} = 5a_2 = 5 \cdot 10 = 50$ $a_4 = 5a_{4-1} = 5a_3 = 5 \cdot 50 = 250$ The terms of the sequence satisfy the equation $a_n = 2 \cdot 5^{n-1}$

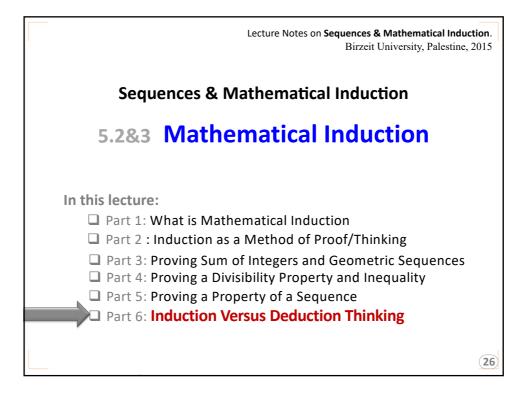
## **Proving a Property of a Sequence Example** Prove this property: $a_n = 2 \cdot 5^{n-1}$ for all integers $n \ge 1$ Basis Step: Show that P(1) is true. $a_1 = 2 \cdot 5^{1-1} = 2 \cdot 5^0 = 2$

Inductive Step: Show that for all integers  $k \ge 1$ , if P(k) is true then P(k + 1) is also true: Suppose:  $a_k = 2 \cdot 5^{k \cdot 1} \qquad \leftarrow P(k)$  inductive hypothesis  $a_{k+1} = 2 \cdot 5^k \qquad \leftarrow P(k+1)$ 



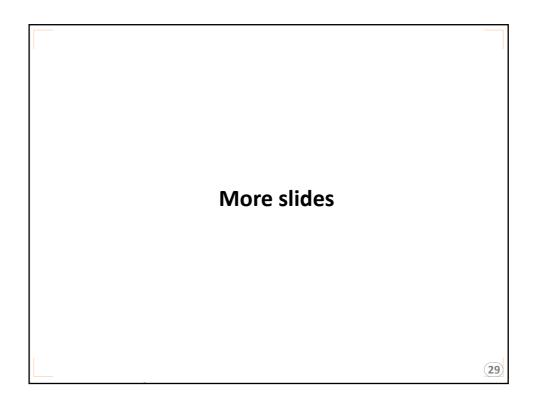
 $= 2 \cdot 5^k$ [This is what we needed to show.]

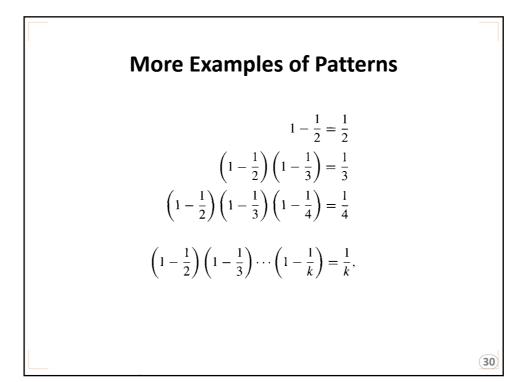


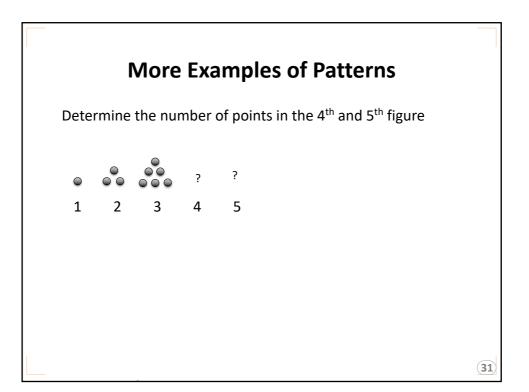


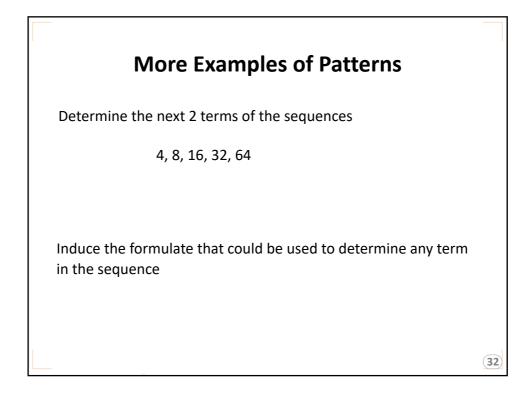
| Induction Versus Deduction Reasoning                                                        |                                                                                            |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Deduction Reasoning                                                                         | Induction Reasoning                                                                        |  |  |
| If every man is a person and<br>Sami is Man,<br>then Sami is a Person                       | For all integers <i>n</i> ≥ 8, <i>n</i><br>cents can be obtained<br>using 3¢ and 5¢ coins. |  |  |
| If my highest mark this<br>semester is 82%, then my<br>average will not be more than<br>82% | We had a quiz each lecture<br>in the past months, so we<br>will have a quiz next lecture   |  |  |

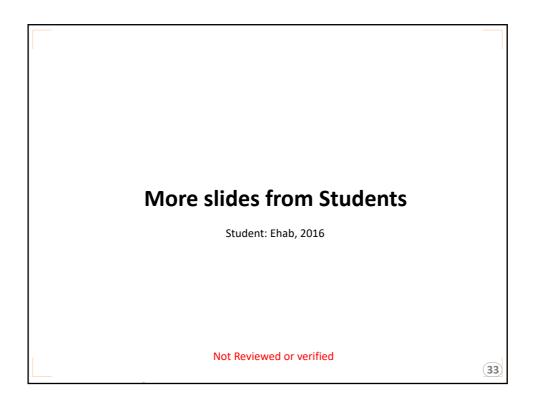
| Induction Versus Deduction Reasoning               |                                                    |  |  |  |
|----------------------------------------------------|----------------------------------------------------|--|--|--|
| Deduction Reasoning                                | Induction Reasoning                                |  |  |  |
| Based on facts, definitions, ,<br>theorems, laws   | Based on observation, past experience, patterns    |  |  |  |
| Moves from general observation to specific results | Moves from specific cases to create a general rule |  |  |  |
| Provides proofs                                    | حدس /Provides conjecture                           |  |  |  |
|                                                    | 28                                                 |  |  |  |











| Example <sup>1</sup>                                                                                                                                                                                                    |                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| prove the following property:<br>for all integers $n \ge 1$ , $1 \times 2 + 2 \times 3 + 3 \times 4 + + (n)(n+1) = (n)(n+1)/3$                                                                                          | ( <u>n+2</u> )               |  |  |
| basis step : show p(1) is true.P(1): $1x2 = (1)(2)(3)$ left-hand side is $1 \times 2 = 2$ right-hand side is $(1)(2)(3) = 2$ 3                                                                                          | 2 <u>)</u><br>3              |  |  |
| thus p(1) is true<br>inductive step : Show that for all integers $k \ge 1$ , if P(k) is true<br>suppose that p(k) is true<br>p(k) = $1 \times 2 + 2 \times 3 + 3 \times 4 + + (k)(k+1) = (k)(k+1)(k+2) \leftarrow P(k)$ | , ,                          |  |  |
| $3$ $p(k+1)= 1\times 2 + 2\times 3 + 3\times 4 + + (k)(k+1) + (k+1)((k+1)+1)$ $= [1\times 2 + 2\times 3 + 3\times 4 + + (k)(k+1)] + (k+1)((k+1)+1)$ $= (k)(k+1)(k+2) + (k+1)(k+2)$                                      |                              |  |  |
| $3 = \frac{(k)(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3}$ $= \frac{(k+1)(k+2)(k+3)}{3} = \text{right side}^{his is what we needed to show}$                                                                                 | .]                           |  |  |
| Then $p(k)$ works for all $n \ge 1$ .<br><sup>1</sup> CALCULUS with Analytic                                                                                                                                            | Geometry, Earl W.Swokwski 34 |  |  |

