

Proving and Disproving Subset Relations Define sets A and B as follows: $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$ $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}$. **Prove that** $A \subseteq B$. Suppose x is a particular but arbitrarily chosen element of A. Show that $x \in B$, means show that x = 3 (integer). x = 6r + 12 $= 3 \cdot (2r + 4)$. Let s = 2r + 4. Also, 3s = 3(2r + 4) = 6r + 12 = xTherefore, x is an element of B.

Indexed Collection of Sets
Definition
Unions and Intersections of an Indexed Collection of Sets Given sets $A_0, A_1, A_2,$ that are subsets of a universal set U and given a nonneg- ative integer n , $\bigcup_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2,, n\}$ $\bigcup_{i=0}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i\}$ $\bigcap_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2,, n\}$
$\bigcap_{i=0}^{\infty} A_i = \{ x \in U \mid x \in A_i \text{ for all nonnegative integers } i \}.$

ExampleLet Z be the set of all integers and let $T_0 = \{n \in \mathbb{Z} \mid n = 3k,$ for some integer $k\}$, $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}$, $T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}$.Is $\{T_0, T_1, T_2\}$ a partition of Z?Yes. By the quotient-remainder theorem, every integer n can berepresented in exactly one of the three formsn=3k or n=3k+1 or n=3k+2It also implies that every integer is in one of the sets $T_0, T_1, \text{ or } T_2$.,

n-tuples

• Definition

Let *n* be a positive integer and let $x_1, x_2, ..., x_n$ be (not necessarily distinct) elements. The **ordered** *n*-tuple, $(x_1, x_2, ..., x_n)$, consists of $x_1, x_2, ..., x_n$ together with the ordering: first x_1 , then x_2 , and so forth up to x_n . An ordered 2-tuple is called an **ordered pair**, and an ordered 3-tuple is called an **ordered triple**.

Two ordered *n*-tuples $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are **equal** if, and only if, $x_1 = y_1, x_2 = y_2, ..., x_n = y_n$. Symbolically:

 $(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \Leftrightarrow x_1 = y_1, x_2 = y_2, \dots, x_n = y_n.$

In particular,

 $(a, b) = (c, d) \Leftrightarrow a = c \text{ and } b = d.$

Order *n*-tuples:

Is (1,2) =(2,1)?

Is $(3, (-2)^2, 1/3) = (\sqrt{9}, 4, \frac{3}{9})?$

35

$\begin{array}{l} \textbf{Cartesian Products} \\ \textbf{Summa for the set of all ordered n-tuples } (A_1, A_2, \ldots, A_n denoted A_1 \times A_2 \times \ldots \times A_n, \text{ is the set of all ordered n-tuples } (A_1, A_2, \ldots, A_n) where A_1 \times A_2 \times \ldots \times A_n, \text{ is the set of all ordered n-tuples } (A_1, A_2, \ldots, A_n) where A_1 \in A_1, A_2 \in A_2, \ldots, A_n \in A_n. \\ \text{Symbolically:} \\ A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}. \\ \text{In particular,} \\ A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1 \text{ and } a_2 \in A_2\} \\ \text{is the Cartesian product of } A_1 \text{ and } A_2. \\ \end{array}$

Example

Let $A = \{Ali, Ahmad\},\$ $B = \{AI, Dmath, DB\},\$ $C = \{Pass, Fail\}$

Find $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} =$

Find $\mathbf{A} \times \mathbf{B} \times \mathbf{C} =$

37