

(17

Proving: Uniqueness of the Empty Set

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

Suppose E_1 and E_2 are both sets with no elements. By Theorem 6.2.4, $E_1 \subseteq E_2$ since E_1 has no elements. Also $E_2 \subseteq E_1$ since E_2 has no elements. Thus $E_1 = E_2$ by definition of set equality.

Proving: a Conditional Statement Example: If every student is smart and every smart is notfoolish, then there are no foolish students Proposition 6.2.6 For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^{c}$, then $A \cap C = \emptyset$. **Proof:** Suppose not, Suppose there is an element x in $A \cap C$. Then $x \in A$ and $x \in C$ (By definition of intersection). $A \subseteq B$ then $x \in B$ (by definition of subset). As Also, as $B \subseteq C^c$, then $x \in C^c$ (by definition of subset). (by definition of complement) So, $x \notin C$ Thus, $x \in C$ and $x \notin C$, which is a contradiction. So the supposition that there is an element x in $A \cap C$ is false, and thus $A \cap C = \emptyset$ [as was to be shown]. (18)