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6.2 Properties of Sets

In this lecture:

q Part 1: Set Rela:ons and Iden::es 
q Part 2: Proving Set Iden22es (Element Argument)
q Part 3: Examples of proving Set Iden22es
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352 Chapter 6 Set Theory

Answers for Test Yourself
1. the set A is a subset of the set B; for all x , if x ∈ A then x ∈ B (Or : every element of A is also an element of B) 2. x is any
[particular but arbitrarily chosen] element of X; x is an element of Y 3. an element in X that is not in Y 4. x is in A or x is in B
(Or : x is in at least one of the sets A and B) 5. x is in A and x is in B (Or : x is in both A and B) 6. x is in B and x is not in
A 7. x is in the universal set and is not in A 8. no elements 9. the set of all subsets of A 10. A ∩ B = ∅ (Or : A and B have no
elements in common) 11. A is the union of all the sets A1, A2, A3, . . . and Ai ∩ A j = ∅ whenever i ̸= j. 12. the set of all ordered
n-tuples (a1, a2, . . . , an), where ai is in Ai for all i = 1, 2, . . . , n

6.2 Properties of Sets

. . . only the last line is a genuine theorem here—everything else is in the fantasy.
—Douglas Hofstadter, Gödel, Escher, Bach, 1979

It is possible to list many relations involving unions, intersections, complements, and
differences of sets. Some of these are true for all sets, whereas others fail to hold in
some cases. In this section we show how to establish basic set properties using element
arguments, and we discuss a variation used to prove that a set is empty. In the next section
we will show how to disprove a proposed set property by constructing a counterexample
and how to use an algebraic technique to derive new set properties from set properties
already known to be true.

We begin by listing some set properties that involve subset relations. As you read
them, keep in mind that the operations of union, intersection, and difference take prece-
dence over set inclusion. Thus, for example, A ∩ B ⊆ C means (A ∩ B) ⊆ C .

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

(a) A ∩ B ⊆ A and (b) A ∩ B ⊆ B.

2. Inclusion in Union: For all sets A and B,

(a) A ⊆ A ∪ B and (b) B ⊆ A ∪ B.

3. Transitive Property of Subsets: For all sets A, B, and C ,

if A ⊆ B and B ⊆ C, then A ⊆ C.

The conclusion of each part of Theorem 6.2.1 states that one set x is a subset of
another set Y and so to prove them, you suppose that x is any [particular but arbitrarily
chosen] element of X and you show that x is an element of Y .

In most proofs of set properties, the secret of getting from the assumption that x is in
X to the conclusion that x is in Y is to think of the definitions of basic set operations in
procedural terms. For example, the union of sets X and Y , X ∪ Y , is defined as

X ∪ Y = {x | x ∈ X or x ∈ Y }.
This means that any time you know an element x is in X ∪ Y , you can conclude that x
must be in X or x must be in Y . Conversely, any time you know that a particular x is in
some set X or is in some set Y , you can conclude that x is in X ∪ Y . Thus, for any sets X
and Y and any element x ,

x ∈ X ∪ Y if, and only if, x ∈ X or x ∈ Y.
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Procedural Versions of Set Defini5ons  

Let X and Y be subsets of a universal set U and 
suppose a and b are elements of U. 

1.        a ∈ X ∪ Y ⇔ a ∈ X or  a ∈ Y
2.        a ∈ X ∩ Y ⇔ a ∈ X and  a ∈ Y
3.        a ∈ X − Y ⇔ a ∈ X and  a ∉ Y
4.        a ∈ Xc ⇔ a ∉ X
5.   (a,b)∈ X × Y ⇔ a ∈ X and  b ∈ Y
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6.2 Properties of Sets 355

Set Identities
An identity is an equation that is universally true for all elements in some set. For exam-
ple, the equation a + b = b + a is an identity for real numbers because it is true for
all real numbers a and b. The collection of set properties in the next theorem consists
entirely of set identities. That is, they are equations that are true for all sets in some
universal set.

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U .

1. Commutative Laws: For all sets A and B,

(a) A ∪ B = B ∪ A and (b) A ∩ B = B ∩ A.

2. Associative Laws: For all sets A, B, and C ,

(a) (A ∪ B) ∪ C = A ∪ (B ∪ C) and

(b) (A ∩ B) ∩ C = A ∩ (B ∩ C).

3. Distributive Laws: For all sets, A, B, and C ,

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

4. Identity Laws: For all sets A,

(a) A ∪ ∅ = A and (b) A ∩U = A.

5. Complement Laws:

(a) A ∪ Ac = U and (b) A ∩ Ac = ∅.
6. Double Complement Law: For all sets A,

(Ac)c = A.

7. Idempotent Laws: For all sets A,

(a) A ∪ A = A and (b) A ∩ A = A.

8. Universal Bound Laws: For all sets A,

(a) A ∪U = U and (b) A ∩ ∅ = ∅.
9. De Morgan’s Laws: For all sets A and B,

(a) (A ∪ B)c = Ac ∩ Bc and (b) (A ∩ B)c = Ac ∪ Bc.

10. Absorption Laws: For all sets A and B,

(a) A ∪ (A ∩ B) = A and (b) A ∩ (A ∪ B) = A.

11. Complements of U and ∅:

(a) U c = ∅ and (b) ∅c = U.

12. Set Difference Law: For all sets A and B,

A − B = A ∩ Bc.
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6.2 Properties of Sets
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qPart 1: Set Relations and Identities 

q Part 2: Proving Set Identities (Element Argument)
q Part 3: Examples of proving Set Identities
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Proving Set Identities
Proving That Sets Are Equal 

Basic Method for Proving That Sets Are Equal 

Let sets X and Y be given. To prove that  X = Y:

1. Prove that  X ⊆ Y.

2. Prove that   Y ⊆ X. 

But: How to prove that    X⊆Y ? 

e.g., prove: HumanMale = Man

10,

i.e., Prove that every element in HumanMale is an element in Man

The Element Argument Method
For Proving a set is a subset of another 

e.g., prove: HumanMale ⊆ Man

The Element Argument Method:

Let sets X and Y be given, to prove that X ⊆ Y:

Step 1. Suppose that x is a particular but arbitrarily chosen element in X.

Step 2. Show that x is an element of Y.



11/25/18

6

11,

The Element Argument Method
In details

Example: Prove that:     A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
That is:

That is, show ∀x, if x ∈ A ∪ (B ∩ C) then x ∈ (A ∪ B) ∩ (A ∪ C)
Prove: A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

Prove: (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C)

Thus (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C).

Suppose x ∈ A ∪ (B ∩ C). [Show x ∈ (A ∪ B) ∩ (A ∪ C).]
...
Thus x ∈ (A ∪ B) ∩ (A ∪ C).

Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

That is, show ∀x, if x ∈ (A ∪ B) ∩ (A ∪ C) then x ∈ A ∪ (B ∩ C).
Suppose x ∈ (A ∪ B) ∩ (A ∪ C). [Show x ∈ A ∪ (B ∩ C).]
...
Thus x ∈ A ∪ (B ∩ C).

Hence (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).
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Theorem 6.2.2(3)(a) A Distributive Law for Sets
For all sets A, B, and C,  

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proving: A Distribu,ve Law for Sets 

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C): (A ∪ B) ∩ (A ∪ C) ⊆A ∪ (B ∩ C):
Suppose x ∈A ∪ (B ∩ C). 
x ∈A  or  x ∈ B ∩ C. (by def. of union)
Case 1 (x ∈A): then 
x ∈A ∪ B (by def. of union) and
x ∈A ∪ C (by def. of union)
∴ x∈(A∪B) ∩ (A∪C) (def. of intersection)
Case 2 (x ∈ B ∩ C): then
x ∈ B and x ∈ C (def. of intersection)
As x∈B, x∈A∪B (by def. of union)
As x∈C, x∈A∪C, (by def. of union)
∴ x∈(A∪B)∩(A∪C) (def. of intersection)

In both cases, x ∈ (A ∪ B) ∩ (A ∪ C). 
Thus: A∪(B∩C) ⊆ (A∪B) ∩ (A∪C)
by definition of subset

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). 
x ∈A ∪ B   and  x ∈A ∪ C. (def. of intersection)
Case 1 (x ∈A): then 
x ∈A ∪ (B ∩ C) (by def. of union)
Case 2 (x ∉A): then
x ∈ B and x ∈ C, (def. of intersection)
Then, x ∈ B ∩ C (def. of intersection)
∴ x ∈A ∪ (B ∩ C)

In both cases x ∈A ∪ (B ∩ C). 
Thus:  (A ∪ B) ∩ (A ∪ C) ⊆A ∪ (B ∩ C)
by definition of subset,

Conclusion: Since both subset relations have been proved, it follows by definition of set 
equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

14,

360 Chapter 6 Set Theory

And to show the second containment means to show that

∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.

Since each of these statements is universal and conditional, for the first containment, you

suppose x ∈ (A ∪ B)c,

and then you show that x ∈ Ac ∩ Bc.

And for the second containment, you

suppose x ∈ Ac ∩ Bc,

and then you show that x ∈ (A ∪ B)c.

To fill in the steps of these arguments, you use the procedural versions of the definitions
of complement, union, and intersection, and at crucial points you use De Morgan’s laws
of logic.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets

For all sets A and B, (A ∪ B)c = Ac ∩ Bc.

Proof:
Suppose A and B are sets.

Proof that (A ∪ B)c ⊆ Ac ∩ Bc:
[We must show that ∀x, if x ∈ (A ∪ B)c then x ∈ Ac ∩ Bc.]

Suppose x ∈ (A ∪ B)c. [We must show that x ∈ Ac ∩ Bc.] By definition of
complement,

x /∈ A ∪ B.

But to say that x /∈ A ∪ B means that

it is false that (x is in A or x is in B).

By De Morgan’s laws of logic, this implies that

x is not in A and x is not in B,

which can be written x /∈ A and x /∈ B.

Hence x ∈ Ac and x ∈ Bc by definition of complement. It follows, by definition
of intersection, that x ∈ Ac ∩ Bc [as was to be shown]. So (A ∪ B)c ⊆ Ac ∩ Bc by
definition of subset.

Proof that Ac ∩ Bc ⊆ (A ∪ B)c:
[We must show that ∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.]

Suppose x ∈ Ac ∩ Bc. [We must show that x ∈ (A ∪ B)c.] By definition of
intersection, x ∈ Ac and x ∈ Bc, and by definition of complement,

x /∈ A and x /∈ B.

In other words, x is not in A and x is not in B.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360 Chapter 6 Set Theory

And to show the second containment means to show that

∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.

Since each of these statements is universal and conditional, for the first containment, you

suppose x ∈ (A ∪ B)c,

and then you show that x ∈ Ac ∩ Bc.

And for the second containment, you

suppose x ∈ Ac ∩ Bc,

and then you show that x ∈ (A ∪ B)c.

To fill in the steps of these arguments, you use the procedural versions of the definitions
of complement, union, and intersection, and at crucial points you use De Morgan’s laws
of logic.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets

For all sets A and B, (A ∪ B)c = Ac ∩ Bc.

Proof:
Suppose A and B are sets.

Proof that (A ∪ B)c ⊆ Ac ∩ Bc:
[We must show that ∀x, if x ∈ (A ∪ B)c then x ∈ Ac ∩ Bc.]

Suppose x ∈ (A ∪ B)c. [We must show that x ∈ Ac ∩ Bc.] By definition of
complement,

x /∈ A ∪ B.

But to say that x /∈ A ∪ B means that

it is false that (x is in A or x is in B).

By De Morgan’s laws of logic, this implies that

x is not in A and x is not in B,

which can be written x /∈ A and x /∈ B.

Hence x ∈ Ac and x ∈ Bc by definition of complement. It follows, by definition
of intersection, that x ∈ Ac ∩ Bc [as was to be shown]. So (A ∪ B)c ⊆ Ac ∩ Bc by
definition of subset.

Proof that Ac ∩ Bc ⊆ (A ∪ B)c:
[We must show that ∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.]

Suppose x ∈ Ac ∩ Bc. [We must show that x ∈ (A ∪ B)c.] By definition of
intersection, x ∈ Ac and x ∈ Bc, and by definition of complement,

x /∈ A and x /∈ B.

In other words, x is not in A and x is not in B.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Properties of Sets 361

By De Morgan’s laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written x /∈ A ∪ B

by definition of union. Hence, by definition of complement, x ∈ (A ∪ B)c [as was to
be shown]. It follows that Ac ∩ Bc ⊆ (A ∪ B)c by definition of subset.

Conclusion: Since both set containments have been proved, (A ∪ B)c = Ac ∩ Bc

by definition of set equality.

The set property given in the next theorem says that if one set is a subset of another,
then their intersection is the smaller of the two sets and their union is the larger of the two
sets.

Theorem 6.2.3 Intersection and Union with a Subset

For any sets A and B, if A ⊆ B, then

(a) A ∩ B = A and (b) A ∪ B = B.

Proof:

Part (a): Suppose A and B are sets with A ⊆ B. To show part (a) we must show
both that A ∩ B ⊆ A and that A ⊆ A ∩ B. We already know that A ∩ B ⊆ A by
the inclusion of intersection property. To show that A ⊆ A ∩ B, let x ∈ A. [We must
show that x ∈ A ∩ B.] Since A ⊆ B, then x ∈ B also. Hence

x ∈ A and x ∈ B,

and thus x ∈ A ∩ B

by definition of intersection [as was to be shown].

Proof:

Part (b): The proof of part (b) is left as an exercise.

■

The Empty Set
In Section 6.1 we introduced the concept of a set with no elements and promised that in
this section we would show that there is only one such set. To do so, we start with the
most basic—and strangest—property of a set with no elements: It is a subset of every
set. To see why this is true, just ask yourself, “Could it possibly be false? Could there
be a set without elements that is not a subset of some given set?” The crucial fact is that
the negation of a universal statement is existential: If a set B is not a subset of a set A,
then there exists an element in B that is not in A. But if B has no elements, then no such
element can exist.
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Same As: proving whether: the people who are not students or employees is 
the same as the people who are either students nor employees.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets

For all sets A and B,      (A ∪ B)c= Ac∩ Bc

Proving: A De Morgan’s Law for Sets

(A ∪ B)c⊆ Ac∩ Bc Ac∩ Bc ⊆ (A ∪ B)c
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If every student is a Palestinian, then the set of Palestinian 
students the same as the set of students
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362 Chapter 6 Set Theory

Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then E ⊆ A.

Proof (by contradiction):

Suppose not. [We take the negation of the theorem and suppose it to be true.] Suppose
there exists a set E with no elements and a set A such that E ! A. [We must deduce a
contradiction.] Then there would be an element of E that is not an element of A [by
definition of subset]. But there can be no such element since E has no elements. This
is a contradiction. [Hence the supposition that there are sets E and A, where E has no
elements and E ! A, is false, and so the theorem is true.]

The truth of Theorem 6.2.4 can also be understood by appeal to the notion of vacuous
truth. If E is a set with no elements and A is any set, then to say that E ⊆ A is the same
as saying that

∀x, if x ∈ E, then x ∈ A.

But since E has no elements, this conditional statement is vacuously true.
How many sets with no elements are there? Only one.

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

Suppose E1 and E2 are both sets with no elements. By Theorem 6.2.4, E1 ⊆ E2

since E1 has no elements. Also E2 ⊆ E1 since E2 has no elements. Thus E1 = E2

by definition of set equality.

It follows from Corollary 6.2.5 that the set of pink elephants is equal to the set of all
real numbers whose square is − 1 because each set has no elements! Since there is only
one set with no elements, we are justified in calling it by a special name, the empty set
(or null set) and in denoting it by the special symbol ∅.

Note that whereas ∅ is the set with no elements, the set {∅} has one element, the empty
set. This is similar to the convention in the computer programming languages LISP and
Scheme, in which ( ) denotes the empty list and (( )) denotes the list whose one element
is the empty list.

Suppose you need to show that a certain set equals the empty set. By Corollary 6.2.5
it suffices to show that the set has no elements. For since there is only one set with no
elements (namely ∅), if the given set has no elements, then it must equal ∅.

Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set ∅, prove that X has no elements. To
do this, suppose X has an element and derive a contradiction.
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Proof by Contradiction: 

Suppose not. [We take the negation of the theorem and suppose it to be true.]
That is, Suppose:   E with no elements, and E ⊈ A.
assuming (E ⊈ A) means there x∈E and this x ∉ A [by definition of subset].

But there can be no such element since E has no elements. This is a contradiction. 

Hence the supposition that there are sets E and A, where E has no
elements and E ⊈ A, is false, and so the theorem is true.
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Proof: 

Suppose E1 and  E2  are both sets with no elements. 

By Theorem 6.2.4,   E1 ⊆ E2 since E1 has no elements. 

Also    E2⊆ E1 since E2 has no elements. 

Thus E1= E2 by definition of set equality.

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proving: Uniqueness of the Empty Set

18,

Example: If every student is smart and every smart is not-
foolish, then there are no foolish students

Proving: a Conditional Statement

Proposition 6.2.6

For all sets A, B, and C,   if A ⊆ B and B ⊆ Cc, then A ∩ C = ∅.
Proof:

Suppose not,   Suppose there is an element x in A ∩ C. 
Then        x ∈ A and x ∈ C (By definition of intersection).
As            A ⊆ B then x ∈ B (by definition of subset). 
Also, as    B ⊆ Cc, then x ∈ Cc (by definition of subset). 
So,             x ∉ C (by definition of complement ) 

Thus,        x ∈ C and x ∉ C,              which is a contradiction.

So the supposition that there is an element x in A ∩ C is false, 
and thus  A ∩ C = ∅ [as was to be shown].


