

Comp	are
Logical Equivalences	Set Properties
For all statement variables p , q , and r :	For all sets A, B, and C:
a. $p \lor q \equiv q \lor p$	a. $A \cup B = B \cup A$
b. $p \wedge q \equiv q \wedge p$	b. $A \cap B = B \cap A$
a. $p \wedge (q \wedge r) \equiv p \wedge (q \wedge r)$	a. $A \cup (B \cup C) \equiv A \cup (B \cup C)$
b. $p \lor (q \lor r) \equiv p \lor (q \lor r)$	b. $A \cap (B \cap C) \equiv A \cap (B \cap C)$
a. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	a. $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$
b. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	b. $A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$
a. $p \lor \mathbf{c} \equiv p$	a. $A \cup \emptyset = A$
b. $p \wedge \mathbf{t} \equiv p$	b. $A \cap U = A$
a. $p \lor \sim p \equiv \mathbf{t}$	a. $A \cup A^c = U$
b. <i>p</i> / Both are special cases	of the same general
$\stackrel{\sim}{\longrightarrow}$ structure, known as a <i>E</i>	Boolean Algebra.
a. $p \lor p \equiv p$ b. $n \land n \equiv n$	a. $A \bigcirc A = A$ b. $A \bigcirc A = A$
$0. \ p \land p = p$	0. A + A = A

• Definition: Boolean Algebra
A Boolean algebra is a set <i>B</i> together with two operations, generally denoted $+$ and \cdot , such that for all <i>a</i> and <i>b</i> in <i>B</i> both $a + b$ and $a \cdot b$ are in <i>B</i> and the following properties hold:
1. Commutative Laws: For all a and b in B,
(a) $a + b = b + a$ and (b) $a \cdot b = b \cdot a$.
2. Associative Laws: For all a, b , and c in B ,
(a) $(a + b) + c = a + (b + c)$ and (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
3. <i>Distributive Laws:</i> For all a, b , and c in B ,
(a) $a + (b \cdot c) = (a + b) \cdot (a + c)$ and (b) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.
4. <i>Identity Laws:</i> There exist distinct elements 0 and 1 in B such that for all a in B ,
(a) $a + 0 = a$ and (b) $a \cdot 1 = a$.
5. <i>Complement Laws:</i> For each a in B , there exists an element in B , denoted \overline{a} and called the complement or negation of a , such that
(a) $a + \overline{a} = 1$ and (b) $a \cdot \overline{a} = 0$.

(11)

Proving of Boolean Algebra Properties Uniqueness of the Complement Law: For all a and x in B, if a + x = 1 and $a \cdot x = 0$ then $x = \overline{a}$. **Proof:** Suppose a and x are particular, but arbitrarily chosen, elements of B that satisfy the following hypothesis: a + x = 1 and $a \cdot x = 0$. Then $x = x \cdot 1$ because 1 is an identity for . $= x \cdot (a + \overline{a})$ by the complement law for + $= x \cdot a + x \cdot \overline{a}$ by the distributive law for \cdot over + $= a \cdot x + x \cdot \overline{a}$ by the commutative law for . $= 0 + x \cdot \overline{a}$ by hypothesis $= a \cdot \overline{a} + x \cdot \overline{a}$ by the complement law for \cdot $= (\overline{a} \cdot a) + (\overline{a} \cdot x)$ by the commutative law for \cdot $= \overline{a} \cdot (a + x)$ by the distributive law for \cdot over + $= \overline{a} \cdot 1$ by hypothesis

because 1 is an identity for

 $=\overline{a}$

