

Proving/Disproving Functions are One-to-One Example 1

Define $f: \mathbf{R} \to \mathbf{R}$ by the rule f(x) = 4x-1 for all $x \in \mathbf{R}$

Is *f* one-to-one? Prove or give a counterexample.

Suppose x_1 and x_2 are real numbers such that $f(x_1) = f(x_2)$. [We must show that $x_1 = x_2$] By definition of f, $4x_1 - 1 = 4x_2 - 1$. Adding 1 to both sides gives $4x_1 = 4x_2$, and dividing both sides by 4 gives

 $x_1 = x_2$, which is what was to be shown.

Proving/Disproving Functions are One-to-One Example 3 Define g: MobileNumber \rightarrow People by the rule g(x) = Person for all $x \in$ MobileNumber Is g one-to-one? Prove or give a counterexample. Counter example: 0599123456 and 0569123456 are both for Sami

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ f(x) = 4x - 1 for all $x \in \mathbf{R}$

Is f onto? Prove or give a counterexample.

Let $y \in \mathbf{R}$. [We must show that $\exists x \text{ in } \mathbf{R} \text{ such that } f(x) = y$.] Let x = (y + 1)/4. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

 $f(x) = f\left(\frac{y+1}{4}\right)$ by substitution $= 4 \cdot \left(\frac{y+1}{4}\right) - 1$ by definition of f= (y+1) - 1 = y by basic algebra. [This is what was to be shown.]

(13)

