

Mathematics Department

Student name:

Math 233

1st Semester 6/07

Student no.:

Final Exam

1) Let $f: R \to R$ and $a \in R$. Given the statement:

"If f(x) is differentiable at x = a then f(x) is continuous at x = a"

Which of the following statements have the same meaning:

- (a) If f(x) is continuous at x = a then f(x) is differentiable at x = a.
- (b) If f(x) is not differentiable at x = a then f(x) is not continuous at x = a.
- (c) If f(x) is not continuous at x = a then f(x) is not differentiable at x = a.
- (d) f(x) is not differentiable at x = a or f(x) is continuous at x = a.
- (e) f(x) is not continuous at x = a or f(x) is differentiable at x = a.
- (f) f(x) is differentiable at x = a and f(x) is not continuous at x = a.
- 2) Write the negation of the following statement:

 $\forall \varepsilon > 0$ $\exists \delta > 0$ such that $\forall x \ 0 < |x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$ is

3) Prove the following statement using contra positive:

If $ab \equiv 0 \pmod{5}$ then $a \equiv 0 \pmod{5}$ or $a \equiv 0 \pmod{5}$

4) Let A, B be sets. Prove that if $A \cap B = \phi$ then A - B = A

- 5) For every $n \in N$ let $A_n = \left[2 \frac{1}{n}, 2 + \frac{1}{n}\right]$
 - (a) Find $\bigcap_{n \in N} A_n$
 - (b) Find $\bigcup A_n$

BIRZEIT UNIVERSITY

6) (a) Find gcd(952,901)

2017 والمنظمة 2016

(b) Find the integers x, y such that gcd(952,901) = 952x + 901y.

7) Use Mathematical induction to prove that $\forall n \in \mathbb{N} \ \ 3 \setminus n^3$ -n

- 8) Define the relation $S = \{(x, y) \in ZxZ : x = y \text{ or } x = -y\}$
 - (a) Prove that S is an equivalence relation.

BIRZEIT UNIVERSITY

2017 建筑 2016

(b) Find the partition of Z induced by the above equivalence relation.

- 9) Let $f: ZxZ \to ZxZ$ be defined as f((x, y)) = (2x, x + y)
 - (a) Prove that f is a function.

(b) Is it one? Give full details.

(c) Is it onto? Give full details.

2017 2016

10) Let P be a family of sets. Define the relation on P

 $\forall A, B \in P \quad A \sim B \Leftrightarrow A \text{ and } B \text{ have the same cardinality. Prove that this relation}$ is an equivalence relation

(11) Mark each of the following statement True a False:

 $(p \land q) \land (\sim p)$

If $A \subseteq B$ $a \in B$ then $a \in A \cap B$.

 $\forall n \in N \quad n^2 + n \quad \text{is even}.$

 $\{x, y\} = \{a\} \Leftrightarrow x = y = a .$

 $\exists p$ prime that is greater than all other primes.

If $a^2 \equiv 4 \pmod{5}$ then $a \equiv 2 \pmod{5}$.

The relation on z defined as $\forall a, b \in Z$ $a \sim b \Leftrightarrow a - b > 0$ is reflexive.

 $f: X \to Y$ is a function. If $f(x) \in f(A)$ where $A \subseteq X$ then $x \in A$ then

_ N is a finite set.

12) Prove or disprove. Give full details.

(a)
$$\sqrt{x+y} = \sqrt{x} + \sqrt{y}$$
 $\forall x,y \in \mathbb{N}$

(b) Let $A = \{x \in R : x < 5\}$ and $B = \{x \in R : x^2 < 25\}$ then $B \subseteq A$

(c) Let a,b be nonzero integers. If $a \ b$ and $b \ a$ then $a = \pm b$

(d) The relation $S = \{(x, y) \in ZxZ : \gcd(x, y) = 1\}$ is an equivalence relation.

(e) $f: Z \to Z$ defined by $f(x) = 8x^3 + 1$ is a one to one, onto function. (Prove or disprove Algebraicaly)

BIRZEIT UNIVERSITY

2017 2016

(f) Z is countably infinite.