Birzeit University Mathematics Department Math 233

Final Exam	Second Semester 2006/2007
Student Name:	Dr. K. Altakhman
Question 1 (10 points). Mark each o	f the following by True or False
(1) () The contrapositive of "If $ab \neq 0$ "	$\neq 0$, then $a = 0$ or $b = 0$ " is "If $a \neq 0$ or $b \neq 0$, then
(2) () $\forall x$ real number, $\exists y$ real numb	per such that $x - y > 3$.
(3) () If $f: X \to Y$ is a function, B	$\subseteq Y$, $B \neq \phi$, then $f^{-1}(B) \neq \phi$.
(4) () If $f: X \to Y$, $g: Y \to Z$ are	$1-1$ functions, then $g \circ f: X \to Z$ is $1-1$.
(5) () If S is a relation on \mathbb{Z} defined	by $(a, b) \in S$ if $a - b > 0$, then S is transitive.
(6) () If S is a relation on $\mathbb Z$ defined	1 by $(a, b) \in S$ if $a \leq b$, then S is symmetric.
(7) $()$ Let S be an equivalence relati	ion on a set X. If $(x,y) \in S$, then $x \in [y]$.
(8) () If $A \cap B$ is an infinite set, the	en A is an infinite set.
(9) () If $A \cup B$ is an infinite set, the	en A is infinite.
(10) () Let $f: X \to Y$ be a function	, $B \subseteq Y$, if $x \in f^{-1}(B)$, then $f(x) \in B$.
Question 2 (12 points). (a) Write the	negation of the following statement
$orall arepsilon > 0, \exists M > 0,$	such that, $\forall m, n > M, \mid m-n \mid < \varepsilon$
(b) Write the negation of the stateme	nt "If $a \mid bc$, then, $a \mid b$ or $a \mid c$."
(c) Write the converse of the stateme	nt in (b)

(d) Write the contrapositive of the statement in (b)

Question 3 (6+3 points). (a) Let $A_n = [\frac{1}{n}, \frac{3}{n} + 1), n \in \mathbb{N}$. Then

$$\bigcup_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} A_n =$$

(b) If A, B are disjoint sets, such that $A \subseteq B$. Prove that $A = \phi$

Question 4 (8 points). Use induction to show that, for all $n \in \mathbb{N}$, $2 \mid 3^n - 1$

S. Call

BIRZEIT UNIVERSITY 2017 2016

Question 5 (8 points). Let a, b be integers, $a \neq 0$, prove that gcd(ka + b, a) = gcd(b, a), for any $k \in \mathbb{Z}$.

Question 6 (8 points). Let R be an equivalence relation on a set X. Prove that $R \circ R = R$.

2017 2016

EN II

Question 7 (4+4 points). 1. Let $f:A\to B$, $g:B\to A$ be functions. If $g\circ f:A\to A$ is 1-1, prove that f is 1-1.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin x$, $D = [0, \frac{\pi}{2}]$. Find

$$f(D) =$$

$$f^{-1}(D) =$$

$$f^{-1}(f(D)) =$$

$$f(f^{-1}(D)) = .$$

Question 8 (4+4 points). Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by f(m,n) = 6m + 3n

1. Is f = 1 - 1?. Show your work.

BIRZEIT UNIVERSITY

2017 علي 2016

2. Is f onto? Show your work.

E COL

Question 9 (3+6+3+5 points). Prove or disprove each of the following

1. If A, B are sets, then $A \times B$ and $A \times B'$ are disjoint.

2. $S = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : mn \ge 0\}$ is an equivalence relation.

BIRZEIT UNIVERSITY 2017 A SELECTION 2016

3. If $f: \mathbb{N} \to \mathbb{N}$ is a 1-1 function, then it is onto.

Z. Call

4. If $f: X \to Y$ is a function, A, B are subsets of X, then $f(A - B) \subseteq f(A) - f(B)$

Question 10 (12 points). 1. Give an example of a relation on a set X that is symmetric and transitive, but not reflexive on X.

BIRZEIT UNIVERSITY

2. Give an example of a function $f: X \to Y$, $A, B \subseteq X$ and $f(A \cap B) \neq f(A) \cap f(B)$.

3. Give an example of a set X and a partition of X.

Question 9 (3+6+3+5 points). Prove or disprove each of the following

1. If A,B are sets, then $A\times B$ and $A\times B'$ are disjoint.

2. $S = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : mn \ge 0\}$ is an equivalence relation.

BIRZEII UNIVERSIIY

3. If $f: \mathbb{N} \to \mathbb{N}$ is a 1-1 function, then it is onto.

E CONTRACTOR OF THE PARTY OF TH

4. If $f: X \to Y$ is a function, A, B are subsets of X, then $f(A - B) \subseteq f(A) - f(B)$

Question 10 (12 points). 1. Give an example of a relation on a set X that is symmetric and transitive, but not reflexive on X.

BIRZEIT UNIVERSITY

2. Give an example of a function $f: X \to Y$, $A, B \subseteq X$ and $f(A \cap B) \neq f(A) \cap f(B)$.

3. Give an example of a set X and a partition of X.