
Instructor :

Murad Njoum

Objectives:
After completing this lab, the student should be able to:
- Include programming selection constructs in shell
scripts.
- Use the if/else statement to manipulate integer and string
values as well as file properties.
- Apply the case statement programming construct for
efficient selections as well as creating menus

Unix commands return a value (success = zero and failure
or error = non-zero) to the shell. This value is stored in the
variable (?) as follows

CONT..
Run the command:
ls –al
Now run the command:
echo $?
What result did you get? ___________ Why?
________________________________.
Now run the command:
cp
followed by the command:
echo $?
What result did you get? ___________ Why?
________________________________.

0
0 : NO ERRORS, SUCCESS COMMAND EXECUTION

1
(1) NONE ZERO :ERRORS FAILURE COMMAND EXECUTION

 Re-Write the following

 if $1 > out 2> err

then

echo Command $1 succeed

else

echo Command $1 failed

fi

:wq

Write the following script (checkcommand):

#!/bin/bash

if $1

then

echo command $1 succeed

else

echo command $1 failed

fi
:wq

• checkcommand date
What result did you get? ___________ Why?_________________________________.

• Now run the command:
checkcommand mv

What result did you get? ___________ Why? _________________________________.

SUCCESS COMMAND DATE IS SUCCESS CORRECTLY AND VALUE OF ? IS
ZERO (RETURN TO IF STATEMENT)

COMMAND MV ISN'T SUCCESS AND VALUE OF ? IS NON-ZEROFAILURE

CONT..
 This is one way to use the if/else structure.

 Still, many scripts do not check commands, but rather check for variable
values, file properties, and number of arguments.

 To do that we need to use one of two syntaxes:

if test condition (e.g. if test $# -eq 2)
or
if [condition] (e.g. if [$# -eq 2])

if [conditional expression]

then

statement1

statement2

…..

fi

In Bash, we have the following conditional statements:

if..then..fi statement (Simple If)

if..then..else..fi statement (If-Else)

if..elif..else..fi statement (Else If ladder)

if..then..else..if..then..fi..fi..(Nested if)

if [conditional

expression]

then statement1

statement2

else

statement3

statement4

fi

if..elif..else..fi statement (Else If ladder) if..then..else..if..then..fi..fi..(Nested if)

if [conditional expression1]

then

statement1

statement2

else

if [conditional expression2]

then

statement3

fi

fi

if [conditional expression1]

then

statement1

statement2

elif [conditional expression2]

then

statement3

statement4

else

statement5

fi

To compare integer values, we use the following relational operators:

-lt (less than),

-gt (greater than)

-eq (equal)
-le (less than or equal)

-ge (greater than or equal),

-ne (not equal).

INTEGER
VALUES:

X=5

Y=10

expr $X + $Y

Or you can use

echo (($X + $Y))

#! /bin/bash

echo "Enter two numbers"

read num1 num2

sum=$(expr $num1 + $num2)

#without spaces:print
concatof two numbers 10+10

echo "The sum is = $sum"

#! /bin/bash

echo "Enter two numbers"

read num1 num2

sum=$(($num1+$num2))

echo "The sum is = $sum"

• Write a script called sum, that
accepts integer number and print
the sum

echo enter two numbers

read num1

read num2

sums=$((num1+num2))

echo sum=$sums

echo sum=$(($1+$2))

Let us rewrite the delete script we wrote in the previous lab to check

for the correct number of arguments as follows:

vi delete

if [$# -eq 1]

then

rm $1

echo $1 has been deleted

exit 0 #This line return 0 from the script (success)

else

echo Usage: delete filename

exit 1

fi

:wq

 Now try the above script as follows:

 delete myfile (assuming myfile exists and is a regular file)
Then run the command:
echo $?
Did it work?__________________________.
What is the value of variable (?) ?____________________________

 Now try it as follows:
delete
Then run the command:
echo $?
What happened? ______________________

 Why?__________________________.
What is the value of variable (?) ?____________________________

YES
0

1
DISPLAY ERROR MESSAGE

NO ARGUMENT

To check file values we use the following

operators:

-f filename (to check if file exists and is of type

file)

-d filename (to check if directory exists and is

of type directory)

-x,-r,-w (to check if a user has execute, read, or

write permissions on a file)

Let us rewrite our delete script to include those:

#!/bin/bash

if [$# -ne 1]

then

echo usage: delete filename

exit 1

else

if [-f $1]

then

rm –f $1

echo $1 has been deleted

exit 0

elif [-d $1]

then

rm –rf $1

echo $1 directory has been deleted

exit 0

else

echo $1: No such file or directory

exit 2

fi

fi

#! /bin/bash
if [$# -ne 2]

then
echo Usage: copy file from source to destination
exit 1

else
if [-f $1]

then
cp $1 $2
echo $1 has bee copied to $2
exit 0

elif [-d $1]
then
cp -r $1 $2
echo $1 directory has been copied to $2 directory
exit 0

else
echo No such file or directory has been copied
exit 2

fi
fi

if [$# -ne 1]

then echo Usage: checkname name

exit 1

else

if ["$1" = "ahmad"]

then echo $1:Hello

exit 0

else

echo $1:Goodbye

exit 0

fi

fi

Sometimes our scripts need to check string values. To do that we need to use the following operators:

= (equal), != (not equal) ,-n (none null string) -z (zero string (null))

Let us try some of those. let us write a script to check the value of the name entered by the user:

vi checkname

Try it as follows:

checkname ahmad

What happened?__________________.

checkname suha

What happened?__________________.

checkname

What happened?__________________.

#! /bin/bash
if [-z "$1"]
then
echo usage: cannot be empty, enter string
exit 1
else
if ["$1" = "ahmad"]
then
echo hello

else
echo Goodbye
exit 0
fi

fi

Try Update to

following code:

Write a script called checkusername

which works as follows:

checkusername

No names were entered

checkusername u1112233

u1112233 = Ahmad Hamdan

checkusername u11

u11 = No such user name

checkusername bash

bash = No such user name

#! /bin/bash

if [-z "$1"]
then
echo No names were entered
exit 1
fi

var=$(grep ^$1 /etc/passwd |cut -d : -f1)

if ["$var" = "$1"]
then
name=$(grep ^$1 /etc/passwd |cut -d : -f5 |tr '_' ' ')
echo $1=$name
exit 0

else
echo $1=No Such user name
exit 2

fi

Case Statement

We can also use a case statement (similar to switch in c) to check for values. The syntax

is as follows:

case value in

pattern1) statements

;; # ;; is the break statement

pattern2) statements

;;

*) statements # * stand for default case

esac

#! /bin/bash

echo "Please Select your choice (1-4):

1-Run script1

2-Run Script2

3-Run Script3

4-Exit main script"

read choice

case $choice in

1) ./script1

;;

2) ./script2

;;

3) ./script3

;;

4) exit

esac

echo hi from script 1

echo hi from script 2

echo hi from script 3

