LAB10. SHELL SCRIPTS (II)- PROGRAMMING
(SELECTION CONSTRUCTSY

Instructor : - _
Murad Njoum

Objectives:

After completing this lab, the student should be able to:

- Include programming selection constructs in shell
scripts.

- Use the if/else statement to manipulate integer and string
values as well as file properties.

- Apply the case statement programming construct for
efficient selections as well as creating menus

Unix commands return a value (success = zero and failure
or error = non-zero) to the shell. This value is stored in the

variable (?) as follows
()

CONT..

Run the command:
Is —al

Now run the command.: p
echo $? 0
What result did you get? Why?

__0 : NO ERRORS, SUCCESS COMMAND EXECUTION -

Now run the command:

cp

followed by the command:

echo $?

What result did you get? 1 Why?

(1) NONE ZERO :ERRORS FAILURE COMMAND EXECUTION . @

EX AMPLE » Re-Write the following

. . . =if $1 > out 2> err
Write the following script (checkcommand):

then
#!/bin/bash echo Command $1 succeed
if 81 else
echo Command $1 failed
then fi
echo command $1 succeed -Wq

else
echo command $1 failed
fi
1wWq

e checkcommand date

What result did you get? _ SUCCESS yypy> COMMAND DATE IS SUCCESS CORRECTLY AND VALUE OF ? IS
ZERO (RETURN TO IF STATEMENT)

e Now run the command:
checkcommand mv

What result did you get? L PILURE

Why? __ COMMAND MV ISN'T SUCCESS AND VALUE OF ? IS NON-ZERO @

CONT.

= This is one way to use the if/else structure.

= Still, many scripts do not check commands, but rather check for
values, file properties, and number of arguments.

= To do that we need to use one of two syntaxes:

=if test condition (e.q.iftest$# -eq?2)
or
if [condition] (e.q.if[$H-eq2])

In Bash, we have the following conditional statements:

if..then..fi statement (Simple If)

if..then..else..fi statement (If-Else) if [conditional
if..elif..else..fi statement (Else If ladder) o CEER G
if..then..else..if..then..fi..fi..(Nested if) then statementl
statement2
if [conditional expression |
else
then
statementl statement3
statement?2 statement4
fi

fi

if..elif..else..fi statement (Else If ladder) if..then..else..if..then. fi..fi..(Nested if)

; C . if [conditional expressionl]
i1f [conditional expressionl]
then then
Statementl statementl
statement? statement?
elif [conditional expressionZ? | else
then if [conditional expression?2]
statement3 -
statement4 ’\ /\
else j statement?3 &)
@° \Q/
statementb fi

_ £i
fi

PREDTRESTTTONYR | SSISSTISSUTIOnTEY

CONT.

To compare integer values, we use the following relational operators:

-It (less than),
-gt (greater than)

-eq (equal)
-le (less than or equal)

-ge (greater than or equal),
-ne (not equal).

INTEGER
VALUES:

» Write a script called sum, that
accepts integer number and print
the sum

X=5
Y=10
+
expr $X + §Y echo enter two numbers
Or you can use read numl
echo (($X + $Y)) read num?2

sums=%((numl+num?2))
echo sum=%sums

Let us rewrite the delete script we wrote in the previous lab to check
for the correct number of arguments as follows:

vi delete
if [$# -eq 1]
then
rm S$1
echo $1 has been deleted
exit O #This line return 0 from the script (success)
else
echo Usage: delete filename
exit 1
fi
wWq

CON.. as

= Now try the above script as follows: S -

= delete myfile (assuming myfile exists and is a regular file)
Then run the command: 1[I ar—

echo $?
Did it work? YES .
What is the value of variable (?) ? 0

= Now try it as follows:
delete

Then run the command:
echo $?

What happened? DISPLAY ERROR MESSAGE
- why? NO ARGUMENT , 1

What is the value of variable (?) ?

To check file values we use the following
operators:

-f filename (to check if file exists and is of type
file)

-d filename (to check if directory exists and is
of type directory)

-X,-I,-w (to check if a user has execute, read, or
write permissions on a file)

€

Let us rewrite our delete script to include those:

#!/bin/bash

if | $#
then
echo usage: delete filename
exit
else
if $1
then
rm
echo %! has been deleted
exit
elif $1
then
rm $1
echo $1 directory has been deleted
exit
else
echo $1:No such file or directory
exit
fi
fi

Now create a file and a directory using the following commands:
touch myfile; mkdir mydir

No try the updated delete script in the following ways:
delete

What happened?

delete myfile (myfile exists and is a file)

What happened?

delete mydir (mydir exists and is a directory)

What happened?

delete wrong (wrong does not exist)

What happened?

OUESTION:

Now rewrite the copy script to act as follows:
copy

Usage: copy src dest
copy myfile newfile

File myfile is copied to file newfile
copy mydir newdir

Directory mydir is copied to newdir
copy wrong good

wrong: No such file or directory

#! /bin/bash
if [$# -ne 2]
then
echo Usage: copy file from source to destination
exit 1
else
if [-f $1]
then
cp $1 $2
echo $1 has bee copied to $2
exit ©
elif [-d $1]
then
cp -r $1 $2
echo $1 directory has been copied to $2 directory
exit ©

else

echo No such file or directory has been copied
exit 2
fi
fi

Sometimes our scripts need to check string values. To do that we need to use the following operators:
= (equal), = (not equal) ,-n (none null string) -z (zero string (null))

Let us try some of those. let us write a script to check the value of the name entered by the user:

vi checknarme if [S# -ne 1]

then echo Usage: checkname name

exit 1
Try it as follows:
checkname ahmad else
What happened? . if ["$1" = "ahmad"]
checkname suha then echo $1:Hello
What happened? . exit 0
checkname
What happened? eise

echo $1:Goodbye
exit O

fi

fi

Try Update to #! /bin/bash

following code: if [-z "$1"]
then

echo usage: cannot be empty, enter string
exit 1
else
if ["$1" = "ahmad"]
then
echo hello

else
echo Goodbye
exit ©
fi

fi @Eb

Write a script called checkusername

which works as follows: if [-z "s1"]

then

echo No names were entered
checkusername oxit 1
No names were entered fi

var=$(grep ~$1 /etc/passwd |cut -d : -f1
checkusername u1112233 (grep P |)

ull12233 = Ahmad Hamdan if ["$var" = "$1"]

then
name=$(grep ~$1 /etc/passwd |cut -d : -f5 |tr '_" ' ")
checkusername ull echo $1-$name
ull = No such user name exit @
else

echo $1=No Such user name
checkusername bash oxit 2

bash = No such user name
fi

Case Statement

We can also use a case statement (similar to switch in c) to check for values. The syntax
IS as follows:

case value in

patternl) statements
S #,Is the break statement

pattern2) statements
*) statements # * stand for default case

esac

The patterns may be strings or parts of strings. Those can include the * wild card, the (|)
OR operator, as well as ranges (e.g [0-9] or [a-f]) as follows:

s*| S* | good)
means any pattern that starts with s or S or the word good.
[A-Z]*[0-5])
means any pattern with any size that starts with a capital letter and ends
with a number between 0 and 5
[a-z][0-9][0-9][0-9] | [0-9][A-Z][A-Z][A-Z][a-1])
means the accepted pattern must consist of exactly four characters the first
1s a small letter and the next three are numbers or the pattern must be
exactly five characters with the first being a number followed by three
capital letters and then one small letter between a and f.

Case statements are usually used for handling menus and menu options. Let us try a
simple example that uses a menu to call different scripts (modular programming):

Create three different scripts called scriptl, script2, and script3 respectively. In each
script put one line to display which script you’re in (e.g in scriptl put the line “echo this
is script 17).
Now create a script called mainscript that displays the following menu:
Please select your choice (1-4):
1 - Run scriptl
2- Run script2
3- Run script3
4- Exit main script

#! /bin/bash
echo "Please Select your choice (1-4):
1-Run scriptl
2-Run Script?2
3-Run Script3

4-Exit main script" echo hi from script 1
read choice
case S$choice in echo hi from script 2

1) ./scriptl
echo hi from script 3

2) ./script?
3) ./script3
4) exit

esac

