
8/10/20218/10/2021

Comp311- Lab Linux

Instructor :Murad Njoum

Lab 7
Job and Process Management

Kingsoft Office

After completing this lab, the student should be able to:

- Manage several jobs running in the background.

- Understand how processes are created using the fork

and exec steps.

- Control the priority of newly created processes using the

nice command.

- Identify and use signals for manipulating processes.

Objectives

Job Control:

Sometimes we need to execute more than one job on the same terminal, but we are forced

to wait until one command is done executing and getting the shell prompt back before we

can execute the next command. This is especially a problem if the one of the jobs we are

executing takes a long time such as a backup job. To get around this, Linux allows us to

run several jobs at the same time in the background. This is called job control.

To be able to understand job control, we need to create and use a command that will take

a long time. To do this, we do the following steps:

Use sleep command

sleep 100

ctrl+z

jobs

sleep 200 ctrl+z

sleep 300 ctrl+z

sleep 400 ctr+z

jobs %2 %4

jobs

fg %3

bg %4

jobs

1- Create a new file called

forever using vi as follows:

vi forever

while true

do

echo running > myfile

done

:wq

This is basically a script file

with an infinite loop.

What is the

difference ?

sleep

sleep&

forever

forever&

Cont..:

2- Now we have to make sure that our PATH variable includes the

current directory (.). This step is important for the shell to locate

our newly created command forever. This is done as follows:

PATH=$PATH:. ??

3- The third step is adding the execute (x) permission to the

command to make it executable. This is done by adding x to all

parts of the mode as follows:

.bash_profile

chmod +x forever

Cont..

Now we have a command called forever that runs for a long time and that can be used to

understand job control.

To run a job in the background, we follow the command with an ampersand (&). In our

case we are going to run three forever jobs in the background as follows:

forever&

[1][2000]

forever&

[2][2500]

forever&

[3][2503]

Each time we run a job in the background the system displays two numbers. The first is

the job id number and the second is the job process number. These numbers are

important to be able to reference the job later on for manipulation

Cont..

[1]

[2] -

[3] +

Running

Running

Running

forever

forever

forever

We can display our background job by using the command:

jobs

This will display an output similar to the following:

The number is the job id number. The plus and minus signs reference the last and the one

before last stopped jobs. The status of all jobs is running. The last column is the name of the

command used to create the job.

We can manipulate the jobs in several ways, as follows:

To get a job back to the foreground we use the fg (foreground) command followed by the

job id number. E.g. to get job 2 to the foreground, we run the command:

fg %2

Continue
This brings the job to the foreground. To send the job to the background, we press ctrl-z.

The job is moved back to the background.

Run the following command:

jobs

What do you notice different about job # 2?

__.

To resume a stopped or suspended job, we use the bg (background) command followed

by the job id number. To resume job 2 (change its status to running) we use the

command:

bg %2

Run the command:

jobs

What is the status of job # 2 now? ____________________________.

To terminate a job we use the kill command followed by the job id number. E.g. to kill

job 3 we issue the following command:

kill %3

If we type the command: jobs quickly enough we will see the status of job 3 changing to

Terminated and if we check again it will disappear.

Practice

Do the following:
kill all remaining jobs such that none are in the background.

Write the sequence of commands needed to have the following

output displayed when the command “jobs” is issued:

fg %1

Ctrl+z

kill %2; bg %3

[1]+ Stopped forever

[2] Terminated forever

[3]- running forever&

Practice 2

Do the following:
kill all remaining jobs such that none are in the background.

Write the sequence of commands needed to have the following

output displayed when the command “jobs” is issued:

[1] Running forever

[2]- Stopped forever

[3] Terminated forever

[4]+ Stopped forever

[5] Terminated forever

[6] Terminated forever

fg %2, ctrl+z

fg %4 ctrl+z

kill %3 %5 %6

Process Control

A process is simply a program in execution. Each command we run, results in one or

more processes. There are several processes running in the background that allow us to

use the system and provide us with different services. Interacting and manipulating

processes is called process control.

When a command is run, a duplicate copy of the parent process is created using the fork

function. This copy is similar to the original except for its process id number (pid). After

that the system executes the command using the exec step which basically loads the new

command on top of the copy created as follows:

When we run the command ls under the bash shell, a copy of bash is created and which is

replaced by ls.

Childparent Orignal

Continue..

Notice that the environment variables are passed from the parent process (bash) to the

child process (ls).

Let us now run through to see the some details on what happens above.

To view process information, we can use the ps (process status) command. To see our

running processes we use ps with the –f option as follows:

ps –f (do full format)

Describe the output?

___.

Let us create two variables called var1 and var2 respectively.

var1=first

var2=second

When new variables are created they are defined as local variables. To change a variable

from local to environment, we export it (use the export command). Let us make var2 an

environment variable as follows:

export var2

Cont..

The set command is used to display both local and environment variables. The command

env is used to check the environment variables only. Let us check for var1 and var2 in

our main process (bash shell):

Run the command:

set | grep var

Which of the two variables (var1 and var2) do you see in the output? Why?

__.

Now run the command:

env | grep var

Which do you see now? Why?

___.

8/10/2021

:~$ env|grep var2

:~$ set|grep var2

:~$ var1=first

:~$ var2=second

:~$ set|grep var2

var2=second

:~$ set|grep var1

var1=first

:~$ env|grep var1

:~$ env|grep var2

:~$ export var2

:~$ env|grep var2

var2=second

Cont:

Notice the numbers pid (process id) and ppid (parent process id). Those should tell you

that bash is the parent process and ksh is the child process.

You are now in the child process. Let us check for the variables var1 and var2 in the

child process (ksh).

Run the command:

set | grep var

Which of the two variables (var1 and var2) do you see in the output? Why?

__.

Now run the command:

env | grep var

Which do you see now? Why?

___.

This shows that only environment variables are passed from parent processes to child

processes.

Neither of them appears, because they are local in bash shell (parent)

Var2 appears, because it’s environment variable (global)

8/10/2021

mnjoum@ubuntu:~$ ksh

$ ps -f

UID PID PPID C STIME TTY TIME CMD

mnjoum 1902 1838 0 23:04 pts/1 00:00:00 -bash

mnjoum 1930 1902 0 23:05 pts/1 00:00:00 ksh

mnjoum 1932 1930 0 23:05 pts/1 00:00:00 ps –f

Now run a child processes (ksh) as follows:

ksh

Run the command:

ps -f

What is the output now?

___.

Continue:

As shown above any created process goes through the fork and exec steps explained

above. We can use the exec command to skip the fork step and just do the

exec step and

see what happens, as follows:

Run the command:

ps –f

You should have three processes (bash, ksh, and ps –f). ps –f does not exist anymore.

Now register the pid number for the ksh process. Now instead of running the “ps –f”

command as before, run is as follows:

exec ps –f

What processes do you see now? What happened to ksh (hint: note the pid number for

the ps –f process)

8/10/2021

What happen with ksh shell (parent of ps –f) process?

Destroyed

UID PID PPID C STIME TTY TIME CMD

mnjoum 2354 2267 0 12:26 pts/0 00:00:00 -bash

mnjoum 2373 2354 0 12:32 pts/0 00:00:00 ksh

mnjoum 2377 2373 0 12:33 pts/0 00:00:00 -sh

mnjoum 2378 2377 0 12:33 pts/0 00:00:00 ps -f

mnjoum 2354 2267 0 12:26 pts/0 00:00:00 -bash

mnjoum 2373 2354 0 12:32 pts/0 00:00:00 ksh

mnjoum 2377 2373 0 12:33 pts/0 00:00:00 ps -f

exec ps –f

More ..

What would you expect to happen if you run the command “exec ps –f” again?

__.

Try it. What happened?

__.

This shows that processes do go through both the fork and the exec steps, otherwise a

new child process will take over its parent process and destroy it.

Destroy the bash shell (system terminated)

Nice command
Users may decrease the priority of their processes (especially those that take a long time

and are not of high priority such as backups) to allow other users to run their processes at

a higher priority. When they do that, they are nice and to do that they use the nice

command. The only user that can both decrease and increase the priority of his/her

processes is the root (system administrator). Let us see how the nice command is used.

Run the command:

ps -l

Note the two new columns displayed namely:

PRI (which refers to the priority of the process)

NI (which refers to the nice value of the process)

Now run the above command as follows:

nice -6 ps –l or nice -n 10 ps –l (renice with -p, top,htop)
Notice what happened to the PRI and NI values for process “ps -l”. They increased.

Increasing the priority number actually makes the priority for that process less.

Now try to run the command:

nice --8 ps –l (--8 = two dashes then 8)

What happened? Why?

__.

Niceness values range from

-20 (most favorable to the process) to 19 (least favorable to the process).

Signals :

Users can control their processes through sending signals using the

“kill” command.

There are many signals that may be sent to a process. To get a list you

may use the following command:

man 7 signal

There are three interesting signals that stand out. Those are namely

TERM (also called SIGTERM) which has the number 15, HUP (also

called SIGHUP) which has the number 1, and KILL (also called

SIGKILL) which has the number 9. The default signal is the TERM

signal.

Signals :

The TERM signal tries to terminate signals cleanly and may be

blocked by processes such as shells. this signal can be

blocked, handled, and ignored. It is the normal way to

politely ask a program to terminate.

The HUP signal is used to restart a process to have it upload

any changes in its configuration files.

The KILL signal is used to kill a process uncleanly and cannot

be blocked.

Let us try the TERM and KILL signals:

• Run the command we created in the beginning of this lab

(forever) in the background and note the process id number

given (let us assume it is 1234). Check to see that the

process is running in the background (use the jobs

command).

Signals :

Try the following command:

kill 1234 (use the number shown for your process)

Now recheck if the process is running with the jobs command. What did you find?

___.

Now repeat the same steps (i.e. create the forever job in the background and check

its PID (we are assuming its 1234, but it could be anything)).

For each time you create the forever job try killing it with one of the following

commands:

kill -15 1234 (specify the correct PID, we are assuming its 1234)

kill -TERM 1234

kill -SIGTERM 1234

What did you notice about each of the three commands

above?

___.

8/10/2021

EXAMPLES

kill -9 -1

Kill all processes you can kill.

kill -l

List the available signal choices

kill 123 543 2341 3453

Send the default signal, SIGTERM, to all those processes.

8/10/2021

$ Kill -L

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37)

SIGRTMIN+3

38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42)

SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47)

SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52)

SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57)

SIGRTMAX-7

58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62)

SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

Signals :

Open two terminals (if you are using telnet then open two telnet connections)

Use the ps command to determine the process id number of the terminal you are not

using, as follows:

ps –f

What is the pid number for the bash process running on the pts number different from the

pts number that your ps –f process is running. That is the pid you need. Now try running

the following command:

kill pidbash (or kill -15 pidbash) (i.e kill -15 2890)

What happened? Why?

__________________.

Now try the following kill command:

Kill -9 pidofbash (-9 is equivalent to –KILL or -SIGKILL)

Now what happened?

___.

Nothing happen, because the term (-15) signal terminated when finish

the current process

Killed the process direct, because the KILL (-9) signal terminated immediately

the current process

Quiz (Bonus 5)

[1] Hangup forever

[2]- Stopped forever

[3] Terminated forever

[4]+ Stopped forever

[5] Hangup forever

[6] Killed forever

8/10/2021

1.Run script 6 times ,i.e: forever

2. kill -SIGSTOP %4 %2

3. kill -SIGHUP %1 %5 ; kill -SIGTERM %3; kill -SIGKILL %6

Without Using fg and ctrl+z command, show the result at screen

Thank You for attention !

Published By: Murad Njoum

