
HP Computer Systems
Training Course

Fundamentals of the UNIX
System for HP Channel
Partners

Student Workbook

Version G.00
51434P Student
Printed in USA 01/99

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD PROVIDES THIS MATERIAL “AS IS” AND MAKES NO WARRANTY
OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOST
PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF
THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of
liability for incidental or consequential damages, so the above limitations and exclusion may
not apply to you. This warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior consent of Hewlett-Packard Company.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are trademarks of the Open
Software Foundation in the U.S. and other countries.

UNIX® is a registered trademark of The Open Group.

X/Open is a trademark of X/Open Company Limited in the UK and other Countries.

HP Education
100 Mayfield Avenue
Mountain View, CA 94043 U.S.A.

© Copyright 1999 by the Hewlett-Packard Company

Contents

Overview
Student Performance Objectives . 1
Course Description . 4
Student Profile and Prerequisites . 4
Reference Documentation . 4

Module 1 — Logging In and General Orientation
Objectives . 1-1
1-1. SLIDE: Logging In and Out . 1-2
1-2. SLIDE: Command Line Format . 1-4
1-3. SLIDE: The Secondary Prompt . 1-6
1-4. SLIDE: The Manual . 1-7
1-5. SLIDE: Some Beginning Commands . 1-9
1-6. LAB: General Orientation . 1-10

Module 2 — Navigating the File System
Objectives . 2-1
2-1. SLIDE: What Is a File System? . 2-2
2-2. SLIDE: The Tree Structure . 2-3
2-3. SLIDE: The File System Hierarchy . 2-4
2-4. SLIDE: Path Names . 2-7
2-5. SLIDE: Some Special Directories . 2-10
2-6. SLIDE: Basic File System Commands . 2-13
2-7. SLIDE: pwd — Present Working Directory 2-14
2-8. SLIDE: ls — List Contents of a Directory 2-15
2-9. SLIDE: cd — Change Directory . 2-18
2-10. SLIDE: The find Command . 2-20
2-11. SLIDE: mkdir and rmdir — Create and

Remove Directories . 2-21
2-12. SLIDE: Review . 2-23
2-13. SLIDE: The File System — Summary . 2-25
2-14. LAB: The File System . 2-26

Module 3 — Managing Files
Objectives . 3-1
3-1. SLIDE: What Is a File? . 3-2
3-2. SLIDE: What Can We Do with Files? . 3-4
3-3. SLIDE: File Characteristics . 3-5
3-4. SLIDE: cat — Display the Contents of a File 3-7
3-5. SLIDE: more — Display the Contents of a File 3-9
3-6. SLIDE: tail — Display the End of a File 3-10

iii 51434P G.00
© 1999 Hewlett-Packard Company

3-7. SLIDE: The Line Printer Spooler System 3-11
3-8. SLIDE: The lp Command . 3-12
3-9. SLIDE: The lpstat Command . 3-14
3-10. SLIDE: The cancel Command . 3-16
3-11. SLIDE: cp — Copy Files . 3-18
3-12. SLIDE: mv — Move or Rename Files . 3-20
3-13. SLIDE: ln — Link Files . 3-22
3-14. SLIDE: rm — Remove Files . 3-24
3-15. SLIDE: File/Directory Manipulation Commands — Summary 3-26
3-16. LAB: File and Directory Manipulation . 3-27

Module 4 — File Permissions and Access
Objectives . 4-1
4-1. SLIDE: File Permissions and Access . 4-2
4-2. SLIDE: Who Has Access to a File? . 4-3
4-3. SLIDE: Types of Access . 4-5
4-4. SLIDE: Permissions . 4-7
4-5. SLIDE: chmod — Change Permissions of a File 4-9
4-6. SLIDE: umask — Permission Mask . 4-12
4-7. SLIDE: touch — Update Timestamp on File 4-13
4-8. SLIDE: chown — Change File Ownership 4-15
4-9. SLIDE: The chgrp Command . 4-17
4-10. SLIDE: su — Switch User Id . 4-19
4-11. SLIDE: File Permissions and Access — Summary 4-21
4-12. LAB: File Permissions and Access . 4-22

Module 5 — Shell Basics
Objectives . 5-1
5-1. SLIDE: What Is the Shell? . 5-2
5-2. SLIDE: Commonly Used Shells . 5-4
5-3. SLIDE: POSIX Shell Features . 5-6
5-4. SLIDE: Aliasing . 5-7
5-5. SLIDE: File Name Completion . 5-9
5-6. SLIDE: Command Line Editing . 5-11
5-7. SLIDE: Command Line Editing (continued) 5-13
5-8. SLIDE: The User Environment . 5-16
5-9. TEXT PAGE: Common Variable Assignments 5-18
5-10. SLIDE: What Happens at Login? . 5-20
5-11. LAB: Exercises . 5-22

Module 6 — Shell Advanced Features
Objectives . 6-1
6-1. SLIDE: Shell Substitution Capabilities . 6-2
6-2. SLIDE: Shell Variable Storage . 6-3
6-3. SLIDE: Setting Shell Variables . 6-5
6-4. SLIDE: Variable Substitution . 6-6
6-5. SLIDE: Command Substitution . 6-10
6-6. SLIDE: Tilde Substitution . 6-12

51434P G.00 iv
© 1999 Hewlett-Packard Company

6-7. SLIDE: Displaying Variable Values . 6-14
6-8. SLIDE: Transferring Local Variables to the Environment 6-15
6-9. SLIDE: Passing Variables to an Application 6-17
6-10. SLIDE: Monitoring Processes . 6-19
6-11. SLIDE: Child Processes and the Environment 6-21
6-12. LAB: The Shell Environment . 6-23

Module 7 — Input and Output Redirection
Objectives . 7-1
7-1. SLIDE: Input and Output Redirection — Introduction 7-2
7-2. SLIDE: stdin, stdout, and stderr . 7-4
7-3. SLIDE: Input Redirection — < . 7-6
7-4. SLIDE: Output Redirection — > and >> 7-8
7-5. SLIDE: Error Redirection — 2> and 2>> 7-10
7-6. SLIDE: What Is a Filter? . 7-11
7-7. SLIDE: wc — Word Count . 7-12
7-8. SLIDE: sort — Alphabetical or Numerical Sort 7-14
7-9. SLIDE: grep — Pattern Matching . 7-16
7-10. SLIDE: Input and Output Redirection — Summary 7-18
7-11. LAB: Input and Output Redirection . 7-19

Module 8 — Pipes
Objectives . 8-1
8-1. SLIDE: Pipelines — Introduction . 8-2
8-2. SLIDE: The | Symbol . 8-3
8-3. SLIDE: Pipelines versus Input and Output Redirection 8-5
8-4. SLIDE: Some Filters . 8-6
8-5. SLIDE: The cut Command . 8-7
8-6. SLIDE: The tr Command . 8-9
8-7. SLIDE: The tee Command . 8-10
8-8. SLIDE: The pr Command . 8-12
8-9. SLIDE: Printing from a Pipeline . 8-14
8-10. SLIDE: Pipelines — Summary . 8-15
8-11. LAB: Pipelines . 8-16

Module 9 — Using Network Services
Objectives . 9-1
9-1. SLIDE: What Is a Local Area Network? 9-2
9-2. SLIDE: LAN Services . 9-4
9-3. SLIDE: The hostname Command . 9-6
9-4. SLIDE: The telnet Command . 9-7
9-5. SLIDE: The ftp Command . 9-8
9-6. SLIDE: The rlogin Command . 9-10
9-7. SLIDE: The rcp Command . 9-11
9-8. SLIDE: The remsh Command . 9-13
9-9. SLIDE: Berkeley — The rwho Command 9-15
9-10. SLIDE: Berkeley — The ruptime Command 9-16
9-11. LAB: Exercises . 9-17

v 51434P G.00
© 1999 Hewlett-Packard Company

Module 10 — Process Control
Objectives . 10-1
10-1. SLIDE: The ps Command . 10-2
10-2. SLIDE: Background Processing . 10-4
10-3. SLIDE: Putting Jobs in Background/Foreground 10-6
10-4. SLIDE: The nohup Command . 10-7
10-5. SLIDE: The nice Command . 10-8
10-6. SLIDE: The kill Command . 10-10
10-7. LAB: Process Control . 10-12

Module 11 — Introduction to Shell Programming
Objectives . 11-1
11-1. SLIDE: Shell Programming Overview . 11-2
11-2. SLIDE: Example Shell Program . 11-3
11-3. SLIDE: Passing Data to a Shell Program 11-5
11-4. SLIDE: Arguments to Shell Programs . 11-7
11-5. SLIDE: Some Special Shell Variables — # and * 11-10
11-6. SLIDE: The shift Command . 11-13
11-7. SLIDE: The read Command . 11-15
11-8. LAB: Introduction to Shell Programming 11-18

Module 12 — Shell Programming — Branches
Objectives . 12-1
12-1. SLIDE: Return Codes . 12-2
12-2. SLIDE: The test Command . 12-4
12-3. SLIDE: The test Command — Numeric Tests 12-5
12-4. SLIDE: The test Command — String Tests 12-7
12-5. SLIDE: The test Command — File Tests 12-9
12-6. SLIDE: The test Command — Other Operators 12-11
12-7. SLIDE: The exit Command . 12-13
12-8. SLIDE: The if Construct . 12-14
12-9. SLIDE: The if-else Construct . 12-16
12-10. SLIDE: The case Construct . 12-18
12-11. SLIDE: The case Construct — Pattern Examples 12-20
12-12. SLIDE: Shell Programming — Branches — Summary 12-21
12-13. LAB: Shell Programming — Branches . 12-22

Module 13 — Shell Programming — Loops
Objectives . 13-1
13-1. SLIDE: Loops — an Introduction . 13-2
13-2. SLIDE: Arithmetic Evaluation Using let 13-3
13-3. SLIDE: The while Construct . 13-5
13-4. SLIDE: The while Construct — Examples 13-8
13-5. SLIDE: The until Construct . 13-9
13-6. SLIDE: The until Construct — Examples 13-11
13-7. SLIDE: The for Construct . 13-12

51434P G.00 vi
© 1999 Hewlett-Packard Company

13-8. SLIDE: The for Construct — Examples 13-14
13-9. SLIDE: The break , continue and exit Commands 13-16
13-10. SLIDE: break and continue — Example 13-18
13-11. SLIDE: Shell Programming — Loops — Summary 13-19
13-12. LAB: Shell Programming — Loops . 13-20

Appendix A — Commands Quick Reference Guide
Objectives . A-1
A-1. Commands Quick Reference Guide . A-2

Solutions

vii 51434P G.00
© 1999 Hewlett-Packard Company

51434P G.00 viii
© 1999 Hewlett-Packard Company

Figures
12-1. 12-15
12-2. 12-17
12-3. 12-19
13-4. 13-6
13-5. 13-10
13-6. 13-13

ix 51434P G.00
© 1999 Hewlett-Packard Company

51434P G.00 x
© 1999 Hewlett-Packard Company

Tables
5-1. 5-5
12-1. 12-12

xi 51434P G.00
© 1999 Hewlett-Packard Company

51434P G.00 xii
© 1999 Hewlett-Packard Company

Overview

Student Performance Objectives

Logging In and General Orientation

• Log in to a UNIX system.

• Log out of a UNIX system.

• Look up commands in the HP-UX Reference Manual.

• Look up commands using the online manual.

• Describe the format of the shell’s command line.

• Use some simple UNIX system commands for identifying system users.

• Use some simple UNIX system commands for communicating with system users.

• Use some simple UNIX system commands for miscellaneous utilities and output.

Navigating the File System

• Describe the layout of a UNIX system’s file system.

• Describe the difference between a file and a directory.

• Successfully navigate a UNIX system’s file system.

• Create and remove directories.

• Describe the difference between absolute and relative path names.

• Use relative path names (when appropriate) to minimize typing.

Managing Files

• Use the common UNIX system file manipulation commands.

• Explain the purpose of the line printer spooler system.

• Identify and use the line printer spooler commands used to interact with the system.

• Monitor the status of the line printer spooler system.

1 51434P G.00
© 1999 Hewlett-Packard Company

Overview

File Permissions and Access

• Describe and change the owner and group attributes of a file.

• Describe and change the permissions on a file.

• Describe and establish default permissions for new files.

• Describe how to change user and group identity.

Shell Basics

• Describe the job of the shell.

• Describe what happens when someone logs in.

• Describe user environment variables and their functions.

• Understand and change specific environment variables such as PATH and TERM.

• Customize the user environment to fit a particular application.

Shell Advanced Features

• Use shell substitution capabilities, including variable, command, and tilde substitution.

• Set and modify shell variables.

• Transfer local variables to the environment.

• Make variables available to subprocesses.

• Explain how a process is created.

Input and Output Redirection

• Change the destination for the output of UNIX system commands.

• Change the destination for the error messages generated by UNIX system commands.

• Change the source of the input to UNIX system commands.

• Define a filter.

• Use some elementary filters such as sort , grep , and wc.

Pipes

• Describe the use of pipes.

• Construct a pipeline to take the output from one command and make it the input for another.

• Use the tee , cut , tr , more , and pr filters.

51434P G.00 2
© 1999 Hewlett-Packard Company

Overview

Using Network Services

• Describe the different network services in HP-UX.

• Explain the function of a Local Area Network (LAN).

• Find the host name of the local system and other systems in the LAN.

• Use the ARPA/Berkeley Services to perform remote logins, remote file transfers, and remote
command execution.

Process Control

• Use the ps command.

• Start a process running in the background.

• Monitor the running processes with the ps command.

• Start a background process which is immune to the hangup (log off) signal.

• Bring a process to the foreground from the background.

• Suspend a process.

• Stop processes from running by sending them signals.

Introduction to Shell Programming

• Write basic shell programs.

• Pass arguments to shell programs through environment variables.

• Pass arguments to shell programs through the positional parameters.

• Use the special shell variables, * , and #.

• Use the shift and read commands.

Shell Programming — Branches

• Describe the use of return codes for conditional branching.

• Use the test command to analyze the return code of a command.

• Use the if and case constructs for branching in a shell program.

Shell Programming — Loops

• Use the while construct to repeat a section of code while some condition remains true.

• Use the until construct to repeat a section of code until some condition is true.

3 51434P G.00
© 1999 Hewlett-Packard Company

Overview

• Use the iterative for construct to walk through a string of white space delimited items.

Commands Quick Reference Guide

• To provide a list of frequently used commands along with an explanation of proper use.

Course Description

This course is designed to be the first course in the UNIX® curriculum presented by
Hewlett-Packard. It is intended to give anyone (system administrators, programmers, and
general users) a general introduction to UNIX®. It assumes that the student knows nothing
about UNIX®. (UNIX® is a registered trademark of The Open Group in the U.S.A. and other
countries) or any other UNIX-based operating system, but is designed to run in conjunction
with the self study course modules.

Student Profile and Prerequisites

There are no prerequisites for this course. It is assumed, however that students have been
exposed to computers, and that they are familiar with the keyboard.

Reference Documentation

• HP-UX Reference, P/N B2355-90033.

• Shells: User’s Guide, P/N B2355-90046.

51434P G.00 4
© 1999 Hewlett-Packard Company

Module 1 — Logging In and General Orientation

Objectives

Upon completion of this module, you will be able to do the following:

• Log in to a UNIX system.

• Log out of a UNIX system.

• Look up commands in the HP-UX Reference Manual.

• Look up commands using the online manual.

• Describe the format of the shell’s command line.

• Use some simple UNIX system commands for identifying system users.

• Use some simple UNIX system commands for communicating with system users.

• Use some simple UNIX system commands for miscellaneous utilities and output.

1-1 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-1. SLIDE: Logging In and Out

Student Notes

Perform the following steps to log in:

• Turn on the terminal. Some terminals have display timeouts, so you may only have to press
a key (Shift for example) to reactivate the display.

• If you do not get the login: prompt or if garbage is printed, press Return . If this still
doesn’t work, press the Break key. The garbage usually means that the computer was trying
to communicate with your terminal at the wrong speed. The Break key tells the computer to
try another speed. You can press the Break key repeatedly to try different speeds, but wait
for a response each time after you try it.

• When the login: prompt appears, type your login ID.

• If the password: prompt appears, type your password. To ensure security, the password
you type will not be printed. For both the login and password, the # key acts as a backspace
and the @ key deletes the entire line. Be careful: the keyboard backspace key will not have
the deleting function during the login process that it has once you are logged in.

51434P G.00 1-2
© 1999 Hewlett-Packard Company

Logging In and General Orientation

A $ symbol is the standard prompt for the Bourne shell (/usr/old/bin/sh), Korn
shell (/usr/bin/ksh) or POSIX shell (/usr/bin/sh) command interpreter. A %symbol
usually denotes the C shell (/usr/bin/csh). We will be using the POSIX shell, so you will
notice a $ prompt. A # prompt is usually reserved for the system administrator’s account. This
provides a helpful visual reminder while you are logged in as the system administrator, as the
administrator can modify (or remove) anything on the system.

Specifying a Password

The first time you log in, your user account may be set up so that you must provide a
password. The password that you provide must satisfy the following conditions:

• Your password must have at least six characters.

• At least two of the first six characters must be alphabetic.

• At least one of the first six characters must be non-alphabetic.

After you have entered your password the first time, the system will prompt you to reenter it
for verification. Then the system will reissue the log in prompt, and you may complete the
login sequence with your new password.

NOTE: When logging in with CDE or HP-VUE, you may have to select (with the
mouse) the field in front of login and type in your logname. Then, the
field in front of password will be automatically selected if you have a
password. So, you have to type in your password that doesn’t appear. To
correct your log name or password, you can use the Back space key. It is
already mapped by the CDE or HP-VUE login process.

1-3 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-2. SLIDE: Command Line Format

Student Notes

After you see the shell prompt ($) you can type a command. A recognized command name will
always be the first item on the command line. Many commands also accept options for
extended functionality, and arguments often represent a text string, a file name, or a directory
name that the command should operate upon. Options are usually prefixed with a hyphen (-).

White space is used to delimit (separate) commands, options, and arguments. White space is
defined as one or more blanks (Space)or tabs (Tab). Thus, for example, there is a big
difference between banner Hi and bannerHi . The computer will understand the first one as
the command banner with an argument to the command (Hi). The second one will be
interpreted as a command bannerHi , which is probably not a valid command name.

Every command will be concluded with a carriage return (Return). This transmits the
command to the computer for execution. After this slide the concluding Return will be
understood, and generally will not be presented on the slide.

51434P G.00 1-4
© 1999 Hewlett-Packard Company

Logging In and General Orientation

The terminal input/output supports typing ahead. This allows you to enter a command and
then enter the next command(s) before the prompt is returned. The command will be buffered
and executed when the current command has finished.

Multiple commands can be entered on one command line by separating them with a semicolon.

NOTE: The UNIX system command input is case-sensitive. Most commands and
options are defined in lowercase. Therefore, banner hi is a legal
command whereas BANNER hi would not be understood.

NOTE: You can type two commands on a single command line separated by a
semicolon (;). For example, $ ls;pwd

1-5 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-3. SLIDE: The Secondary Prompt

Student Notes

The Bourne, Korn, and POSIX shells support interactive multiline commands. If the shell
requires more input to complete the command, the secondary prompt (>) will be issued after
you enter the carriage return. Some commands require closing commands, and some
characters require a closing character. For example, an opening if requires fi to close,
opening parentheses require closing parentheses, and likewise an opening apostrophe requires
a closing apostrophe.

If you enter a command incorrectly, as illustrated on the slide, the shell will issue you a
secondary prompt. A special key sequence should be defined to interrupt the currently
executing program. Commonly Ctrl + c will terminate the currently running program and
return the shell prompt. You can issue the stty -a command to confirm the interrupt key
sequence for your session.

51434P G.00 1-6
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-4. SLIDE: The Manual

Student Notes

"The Manual" is the HP-UX Reference Manual. The manual is very useful for looking up
command syntax, but was not designed as a tutorial. Also, this was not very useful for
learning how to use the UNIX operating system. Experienced UNIX system users refer to the
manual for details about commands and their usage. The manual is divided into several
sections, as illustrated in the slide.

1-7 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

Following is a brief description of each section:

Section 1 User Commands
This section describes programs issued directly by users or from shell
programs. These are generally executable by any user on the system.

Section 1M System Maintenance
This section describes commands that are used by the system administrator
for system maintenance. These are generally executable only by the user root
, the login that is associated with the system administrator.

Section 2 System Calls
This section describes functions that interface into the UNIX system kernel,
including the C-language interface.

Section 3 Functions and Function Libraries
This section illustrates functions that are provided on the system in binary
format other than the direct system calls. They are usually accessed through
C programs. Examples include input and output manipulation and
mathematical operations.

Section 4 File Formats
This section defines the fields of the system configuration files (such as
/etc/passwd), and documents the structure of various file types (such as
a.out).

Section 5 Miscellaneous Topics
This section contains a variety of information such as descriptions of header
files, character sets, macro packages, and other topics.

Section 7 Device Special Files
This section discusses the characteristics of the special (device) files that
provide the link between the UNIX system and the system I/O devices (such
as disks, tapes, and printers).

Section 9 Glossary
This section defines selected terms used throughout the reference manual.

Within each section, commands are listed in alphabetical order. In order to find a given
command, users can reference the manual index.

51434P G.00 1-8
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-5. SLIDE: Some Beginning Commands

Student Notes

We will present some basic commands that allow you to practice submitting simple commands
to the UNIX system shell. Most of the commands presented have many options in addition to
those presented in the student workbook. Refer to the man pages for these commands if you
would like to investigate other options.

1-9 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

1-6. LAB: General Orientation

Directions

Complete the following exercises and answer the associated questions. You may need to use
the HP-UX Reference Manual in order to complete some of the exercises.

1. Log in to the system using the user name and password that the instructor assigned to
you. Did you have any trouble?

2. Which of the following commands are syntactically correct? Try typing them in to see what
the output or resulting error message would be.

$ echo
$ echo hello
$ echohello
$ echo HELLO WORLD
$ banner
$ banner hello
$ BANNER hello

3. Using variations of the who command or the whoami command, determine each of the
following with separate command lines. What commands did you use?

Who is on the system?

What terminal device are you logged in on?

Who does the system think you are?

4. Execute the date command with the proper arguments so that its output is in a mm-dd-yy
format. Hint: look at the examples provided in the reference manual entry for date(1) .

51434P G.00 1-10
© 1999 Hewlett-Packard Company

Logging In and General Orientation

5. Using the HP-UX Reference Manual, find the ls command. What is its function? What is
the minimum number of arguments that it requires?

1-11 51434P G.00
© 1999 Hewlett-Packard Company

Logging In and General Orientation

51434P G.00 1-12
© 1999 Hewlett-Packard Company

Navigating the File System

Module 2 — Navigating the File System

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the layout of a UNIX system’s file system.

• Describe the difference between a file and a directory.

• Successfully navigate a UNIX system’s file system.

• Create and remove directories.

• Describe the difference between absolute and relative path names.

• Use relative path names (when appropriate) to minimize typing.

2-1 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-1. SLIDE: What Is a File System?

Student Notes

The UNIX system provides a file system to manage and organize your files and directories. A
file is usually a container for data, while a directory is a container for files and/or other
directories. A directory contained within another directory is often referred to as a
subdirectory.

A UNIX system’s file system is very similar to a file cabinet. The entire file system is analogous
to the file cabinet, as it contains all of the drawers, file folders, and files. A drawer is similar to
a subdirectory in that it can contain reports or file folders. A file folder would also represent a
subdirectory as it contains reports. A report would represent a file, as it holds the actual data.

51434P G.00 2-2
© 1999 Hewlett-Packard Company

Navigating the File System

2-2. SLIDE: The Tree Structure

Student Notes

The directory organization can be represented graphically using a hierarchical tree structure.
Every item in the tree will be either a directory or a file. Directories are represented by ovals,
and files are represented by rectangles so that they may be easily distinguished in the diagram.

The slide illustrates a graphical tree representation of the filing cabinet from the first slide.

2-3 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-3. SLIDE: The File System Hierarchy

Student Notes

Like the filing cabinet, a UNIX system’s file system hierarchy provides an easy, effective
mechanism to organize your files. Since a UNIX system distribution normally contains
hundreds of files and programs, a hierarchy convention has been defined so that every UNIX
system supports a similar directory layout. The top of the hierarchy is referred to as the root
directory (because it is at the top of the inverted tree), and is denoted with a single forward
slash (/).

The UNIX system also provides commands that allow you to create new directories easily as
your organizational needs change, as well as to move or to copy files from one directory to
another. It’s as easy as adding a new file folder to one of the drawers in your file cabinet and
moving a report from an old folder to a new folder.

51434P G.00 2-4
© 1999 Hewlett-Packard Company

Navigating the File System

With the release HP-UX 10.0, the file system has been reorganized into two major parts: static
files and dynamic files.

Static Files (These are shared.) There are three important directories in this part:
/opt, /usr and /sbin .

/opt This directory will contain applications and products. The developers
and the administrators of HP-UX system will use it to install new
products or local applications.

/usr/bin This directory contains the programs for all reference manual section
1 commands that are necessary for basic UNIX system operation and
file manipulation. These are normally accessible by all users. ("bin" is
short for binary).

/usr/sbin This directory contains the programs for all reference manual section
1m commands. They are system administration commands. You must
be super-user to use many of them. These are documented in the
reference manual sections 1m .

/usr/lib This directory contains archive and shared libraries used for
applications.

/usr/share This directory contains vendor independent files (the most important
is the manual).

/usr/share/man This directory contains all files associated with the online manual
pages.

/usr/local/bin This directory usually stores locally developed programs and utilities.

/usr/contrib/bin This directory usually stores public programs and utilities. You might
retrieve these from a bulletin board service or a user group.

/sbin This directory contains the essential commands used for startup and
shutdown.

Dynamic Files (These are private.) There are seven important directories in this part:
/home, /etc, /stand, /tmp, /dev, /mnt and /var .

/home Every user on a UNIX system should have his or her own account.
Along with the login identification and password, the system
administrator will also provide you with your own directory. The /
home directory normally contains one subdirectory for each user
account on the system. You have complete control over the contents of
your own directory. You are responsible for organizing and managing
your work by creating subdirectories and files underneath the
directory associated with your account. When you log in to the
system, initially you will be located in the directory associated with
your account. This directory, therefore, is commonly referred to as the
HOME directory or login directory. From here, you can change your
position to any other directory in the hierarchy to which you have
access. At a minimum, you will be able to access everything
underneath your HOME directory; at a maximum, you will be able to

2-5 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

move to any directory in the UNIX system hierarchy (the default). It
is up to your system administrator to restrict users’ access to specific
directories on the system.

/etc This directory holds many of the system configuration files. These are
documented in the reference manual sections 4.

/stand/vmunix This file stores the program that is the UNIX system kernel. This
program is loaded into memory when your system is turned on, and
controls all of your system operations.

/tmp This directory commonly is used as a scratch space for Operating
System that need to create intermediate or working files. This
directory is cleared during reboot. Note: A UNIX system convention
defines that files under any directory called tmp can be removed at
any time.

/dev This directory contains the files that represent hardware devices that
may be connected to your system. Since these files act as a gateway to
the device, data will never be directly stored in the device files. They
are often referred to as special files or device files.

/mnt This directory will be used to mount other devices (laserROM for
instance).

/var/mail This directory contains a "mailbox" for each user who has incoming
mail.

/var/news This directory contains all of the files representing the current news
messages. Their contents would all be displayed by entering news -a .

/var/tmp This directory commonly is used as a scratch space for users.

51434P G.00 2-6
© 1999 Hewlett-Packard Company

Navigating the File System

2-4. SLIDE: Path Names

Student Notes

Absolute: Relative to /home/user3

1
 /home/user3/f1 1
 f1

2
 /home/user3/memo 2
 memo

3
 /home/user3/memo/f1 3
 memo/f1

Relative to /home/user1

4
 /home/user1/f1 4
 f1

Many UNIX system commands operate on files and/or directories. To inform a command of the
location of the requested file or directory you provide a path name as an argument to the
command. A path name represents the route through the hierarchy that is traversed to reach
the desired file or directory.

2-7 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

$ command [options] [pathname pathname ...]

To illustrate the concept of path names, we use the analogy of tracing along the branches of
the UNIX system tree with a pencil to get from one location to another. The path name will be
the list of all directories that the pencil point touches while tracing its way through the
hierarchy, concluding with the desired file or directory.

When designating the path name of a file or directory, a forward slash (/) is used to delimit
the directory and/or file names.

directory/directory/directory
directory/file

At all times while you are logged in to a UNIX system you will be positioned in some directory
in the hierarchy. You are able to change your position to some other directory through UNIX
system commands, but you will still always be in some directory. For example, when you log
in, you will be initially placed in your HOME directory.

File and directory locations can be designated with either an absolute path name or a relative
path name.

Absolute Path Name

• gives the complete designation of the location of a file or directory
• always starts at the top of the hierarchy (the root)
• always starts with a /
• not dependent on your current location in the hierarchy
• always is unique across the entire hierarchy

Absolute Path Name Examples

The following path names designate the location of all files called f1 in the hierarchy
illustrated on the slide. Note that there are many files called f1 , but they each have a unique
absolute path name.

/tmp/f1
/home/user1/f1
/home/user2/f1
/home/user3/f1
/home/user3/memo/f1

Relative Path Name

• always starts at your current location in the hierarchy
• will never start with a /
• is unique relative to your current location only
• is often shorter than the absolute path name

Relative Path Name Examples

The following examples are again referencing the files named f1 , but their relative path
designation is dependent on the user’s current position in the hierarchy.

51434P G.00 2-8
© 1999 Hewlett-Packard Company

Navigating the File System

Assume current position is /home :

user1/f1
user2/f1
user3/f1
user3/memo/f1

Assume current position is /home/user3 :

f1
memo/f1

Assume current position is /home/user3/memo :

f1

Notice that the relative file name, f1 is not unique, but the UNIX system knows which one to
retrieve because it knows that if you are currently located in the directory /home/user1 to
retrieve /home/user1/f1 or if you are currently located in the directory /home/user3/memo
to retrieve /home/user3/memo/f1 . Also notice that the relative path name can be much
shorter than the absolute path designation. For example, if you are in the directory
/home/user3/memo you can print f1 with either of the following commands:

Absolute path name lp /home/user3/memo/f1

Relative path name lp f1

In this case the relative path name can save you a lot of keystrokes.

NOTE: It is important that you know what directory you are currently located
when accessing files with relative path names to ensure that you are
accessing the correct file if files with the same name exist in more than
one directory on the system.

Internally, the UNIX system finds all files or directories by using an absolute path name. This
makes sense because the absolute path name absolutely and uniquely identifies a file or
directory (since there is only one root). The UNIX system allows the use of relative path
names only as a typing convenience for the user.

2-9 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-5. SLIDE: Some Special Directories

Student Notes

Absolute Relative to /home/user3

1
 /home 1
 ..
2
 /home/user2 2
 ../user2
3
 /home/user1/f1 3
 ../user1/f1
4
 / 4
 ../..
5
 /tmp/f1 5
 ../../tmp/f1
6
 /usr/bin/vi 6
 ../../usr/bin/vi

When any directory is created, two entries, called dot (.) and dot dot (..), are created
automatically. These are commonly used when designating relative path names. On the
previous slide you may have noticed that the relative path examples could only traverse down
through the hierarchy. With .. , you can traverse up through the hierarchy as well.

51434P G.00 2-10
© 1999 Hewlett-Packard Company

Navigating the File System

Login Directory

When a new user is added to the system, he or she will be assigned a login ID and possibly a
password, and a directory will be created that the user will own and control. This directory is
usually created under the /home directory, and has the same name as the user’s login ID. The
user can then create any files and subdirectories under this directory.

When you log into the system, the UNIX system will place you in this directory. This directory
is, therefore, referred to as your login directory or your HOME directory.

Dot (.)

The entry called dot represents your current directory position.

Examples of Dot (.)

If you are currently in the directory /home/user3 :

. represents the current directory /home/user3

./f1 represents /home/user3/f1

./memo/f1 represents /home/user3/memo/f1

Dot Dot (..)

The entry called dot dot represents the directory immediately above your current directory
position, often referred to as the parent directory. Every directory can have several files and
subdirectories contained within it, but every directory has only one parent directory. Thus,
there is no confusion when traversing up the hierarchy.

The root directory (/) is like any other directory, and contains entries for both dot and dot dot.
But since the root directory does not have a parent directory, its dot dot entry just refers to
itself.

Examples of Dot Dot (..)

If you are currently in the directory /home :

.. represents /

../.. also represents /

../tmp represents /tmp

../tmp/f1 represents /tmp/f1

If you are currently in the directory /home/user3 :

.. represents /home

../.. represents /

../user2 represents /home/user2

../user1/
f1

represents /home/user1/f1

../../tmp/
f1

represents /tmp/f1

2-11 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

Notice that in the last example, the absolute path is shorter than relative path in two cases. If
the relative path takes you through the root directory, you might as well just use the absolute
path instead of the relative path.

51434P G.00 2-12
© 1999 Hewlett-Packard Company

Navigating the File System

2-6. SLIDE: Basic File System Commands

Student Notes

A directory, like a file folder, is a way to organize your files. The remainder of this module will
introduce basic directory manipulation commands so that you can:

• Display the directory name of your current location in the hierarchy.
• See what files and directories are under the current directory.
• Change your location in the hierarchy to another directory.
• Create a directory.
• Remove a directory.

In this module we will not deal with the files within a directory. We will examine directories
only.

2-13 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-7. SLIDE: pwd — Present Working Directory

Student Notes

At all times while you are logged in to your UNIX system, you will be positioned in some
directory somewhere in the file system hierarchy. The directory you are located in is often
referred to as your working directory.

The pwd command reports the absolute path name to your current directory location in a
UNIX system’s file system and is a shorthand notation for present working directory.

Since the UNIX system allows you to move very easily through the file system, all users
depend on this command to verify their current location in the hierarchy. New users should
issue this command frequently to display their location as they move through the file system.

51434P G.00 2-14
© 1999 Hewlett-Packard Company

Navigating the File System

2-8. SLIDE: ls — List Contents of a Directory

Student Notes

The ls command is used to list the names of files and directories.

With no arguments, ls displays the names of the files and directories under the current
directory.

ls will accept arguments designating a relative or absolute path name of a file or directory.
When the path of a file is provided, ls will report information associated with the designated
file. When the path of a directory is provided, ls will display the contents of the requested
directory.

2-15 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

ls supports many options. The options cause ls to provide additional information. Multiple
options may be supplied on a single command line to display more complete file or directory
information. Some of the more frequently used options are listed on the slide. They are:

-a Lists all files, including those whose names start with a dot (.). Normally these dot
files are hidden except when the -a option is specified. These commonly hold
configuration information for your user session or applications.

-d Lists characteristics of the directory, instead of the contents of the directory. Often
used with -l to display status of a directory.

-l Provides a long listing that describes attributes about each file, including type,
mode, number of links, owner, group, size (in bytes), the modification date, and the
name.

-F Appends a slash (/) to each listed file that is a directory and an asterisk (*) to each
listed file that is executable.

-R Recursively lists files in the given directory and in all subdirectories.

Examples

$ pwd

/home/user3
$ ls -F /home Absolute path as an argument
user1/ user2/ user3/
$ ls -F .. Relative path as an argument
user1/ user2/ user3/
$ ls -F ../user1 Relative path as an argument
f1
$ ls -l memo Relative path of a dir as an argument
-rw-rw-rw- 1 user3 class 27 Jan 24 06:11 f1
-rw-rw-rw- 1 user3 class 37 Jan 23 19:03 f2
$ ls -ld memo Display info for directory memo
drwxr-xr-x 2 user3 class 1024 Jan 20 10:23 memo
$ ls -l f1 f2 Multiple arguments, relative paths of files
-rw-rw-rw- 1 user3 class 27 Jan 24 06:11 f1
-rw-rw-rw- 1 user3 class 37 Jan 23 19:03 f2
$ ls -R Recursive listing of subdirectories
memo f1 f2
./memo:
f1 f2
$ ls user2 user2 does not exist under current dir
user2 not found

HP-UX Shorthand Commands

Hewlett-Packard’s implementation of the UNIX system provides some shorthand commands
for common options used with the ls command:

UNIX System Command HP-UX Equivalent

ls -F lsf

51434P G.00 2-16
© 1999 Hewlett-Packard Company

Navigating the File System

ls -l ll
ls -R lsr

2-17 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-9. SLIDE: cd — Change Directory

Student Notes

Think of the tree diagram as a road map showing the location of all of the directories and files
on your system. You are always positioned in a directory. The cd command allows you to
change directory, and move to some other location in the hierarchy.

The syntax is

cd path_name

in which path_name is the relative or absolute path name of the directory to which you would
like to go. When executed with no arguments, the cd command will return you to your login or
HOME directory. So if you ever get "lost" in the hierarchy you can simply execute cd and you
will be HOME again.

NOTE: When using the cd command to move around the hierarchy, be sure to
issue the pwd command frequently to verify your location in the hierarchy.

51434P G.00 2-18
© 1999 Hewlett-Packard Company

Navigating the File System

POSIX Shell Enhanced cd

The POSIX shell has a memory of your previous directory location. The cd command still
changes directories as you would expect, but it has some additional features that will save
typing.

The cd command has a memory of your previous directory (stored in the environment variable
OLDPWD) and it can be accessed with cd - .

$ pwd

/home/user3/tree
$ cd /tmp

$ pwd

/tmp

$ cd - Takes you to the previous directory
/home/user3/tree

2-19 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-10. SLIDE: The find Command

Student Notes

The find command is the only command that performs an automated search through the file
system. It is very slow and uses a lot of the CPU capacity. It should be used sparingly.

The path_list is a list of path names, typically from one directory. Often dot (.) is specified.
The path names are searched recursively for files that satisfy the criteria specified in an
expression. When find locates a match, it performs the tasks also specified in the
expression. One of the most common tasks is to print the path name to the match.

The expression is made up of keywords and arguments that can specify search criteria and
tasks to perform upon finding a match. One of the things that can make find complicated is
that the keywords used in the expression are all preceded by a hyphen (-), so it looks as if the
arguments precede the options.

51434P G.00 2-20
© 1999 Hewlett-Packard Company

Navigating the File System

2-11. SLIDE: mkdir and rmdir — Create and
Remove Directories

Student Notes

The mkdir command allows you to make a directory. These directories can then be used to
help organize our files. When each directory is created, two subdirectories: dot (.) and dot dot
(..), representing the current and parent directories, are automatically created. Note that
creating directories does not change your location in the hierarchy.

By default, when specifying a relative or absolute path to the directory being created, all
intermediate directories must exist. Alternatively, you can use the following option:

-p This creates intermediate directories if they do not already exist.

-m mode After creating the directory as specified, the file permissions are set to mode.

2-21 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

The following command would make the fruit directory if it does not already exist:

$ mkdir -p fruit/apple fruit/grape fruit/orange

The rmdir command allows you to remove a directory. Directories must be empty (that is,
hold no entries except dot and dot dot) in order to be removed. Also, you cannot remove a
directory that is between your current location and the root directory.

Both commands can take multiple arguments. The arguments to mkdir represent the new
directory names. The arguments to rmdir must be existing directory names. As with any of
the commands that take file or directory names as arguments, absolute or relative path names
can be provided.

51434P G.00 2-22
© 1999 Hewlett-Packard Company

Navigating the File System

2-12. SLIDE: Review

Student Notes

Work through the examples on the slide to review the use of the cd and pwd commands and
the use of relative and absolute paths.

Using the directory structure on the slide, if you started at the directory user3 , where would
you be after typing each of the following cd commands?

$ pwd /home/user3
$ cd ..
$ pwd
$ cd usr
$ pwd
$ cd /usr
$ pwd
$ cd ../tmp
$ pwd
$ cd .

2-23 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

$ pwd

51434P G.00 2-24
© 1999 Hewlett-Packard Company

Navigating the File System

2-13. SLIDE: The File System — Summary

Student Notes

2-25 51434P G.00
© 1999 Hewlett-Packard Company

Navigating the File System

2-14. LAB: The File System

Directions

Complete the following exercises and answer the associated questions.

1. From your HOME directory, find out the entire tree structure rooted at the subdirectory
called tree using the ls command. Draw a picture of it, marking directories by circling them.
Use a separate sheet of paper if you need more space.

2. What is the full path name of the file labrador in the tree drawing from the previous
exercise? What is its relative path name from your HOME directory?

3. From your HOME directory, change into the retriever directory. Using a relative path
name, change into the shepherd directory. Again using a relative path name, change into the
car.models directory. Finally, return to your HOME directory. What commands did you use?
How did you know if you arrived at each of your destinations?

51434P G.00 2-26
© 1999 Hewlett-Packard Company

Managing Files

Module 3 — Managing Files

Objectives

Upon completion of this module, you will be able to do the following:

• Use the common UNIX system file manipulation commands.

• Explain the purpose of the line printer spooler system.

• Identify and use the line printer spooler commands used to interact with the system.

• Monitor the status of the line printer spooler system.

3-1 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-1. SLIDE: What Is a File?

Student Notes

Everything in the UNIX system is a file, which includes:

Regular files Text, mail messages, data, drawings, program source code

Programs Executable programs such as ksh , who, date , man, and ls

Directories Special files that contains the name and file system identifier for the files
and directories they contain

Devices Special files providing the interface to hardware devices such as disks,
terminals, printers, and memory

A file is simply a name and the associated data stored on a mass storage device, usually a disk.
As far as the UNIX system is concerned, a file is nothing more than a stream of data bytes.
There are no predefined records, fields, end-of-record marks, or end-of-file marks. This provides
a lot of flexibility for application developers to define their own internal file characteristics.

51434P G.00 3-2
© 1999 Hewlett-Packard Company

Managing Files

A regular file normally contains ASCII text characters, and is typically created using a text
editor at a terminal.

A program file is a regular file that contains executable instructions. It can include compiled
code that cannot be displayed on your terminal (mail , who, date) or it can contain
UNIX-system shell commands, commonly referred to as a shell script which can be displayed
to your terminal (.profile , .logout).

A directory is a special file containing the names of the files and directories that it holds. It
also stores an inode number for every entry, which identifies where file information and data
storage addresses can be found in the file system. (Note: This is not a regular text file.)

A device file is a special file that provides the interface between the kernel and the actual
hardware device. Since these files are for interface purposes, they will never hold any actual
data. These files are commonly stored under the /dev directory, and there will be a file for
each hardware device with which your computer needs to communicate.

3-3 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-2. SLIDE: What Can We Do with Files?

Student Notes

Given that most activity on a UNIX system focuses around files and directories, there are
many commands available to manipulate files and directories.

You know some introductory directory manipulation commands. In this module we will present
additional commands that may be used on files and directories.

You will also need to create files and manipulate their contents. This is commonly done
through the use of an editor such as vi .

51434P G.00 3-4
© 1999 Hewlett-Packard Company

Managing Files

3-3. SLIDE: File Characteristics

Student Notes

A file has several characteristics associated with it. They can be displayed using the ls -l
command.

Type Regular file or special file

Permissions or Mode Access definition for the file

Links Number of file names associated with a single collection of data

Owner User identification of file owner

Group Group identification for file access

Size Number of bytes file contains

Timestamp Date file last modified

3-5 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

Name Maximum of 14 characters (255 characters if long file names are
supported)

File Name Specifications

• maximum of 14 characters

• maximum of 255 characters if long file names are supported

• normally contain alpha characters (a–zA–Z), numeric (0–9), dot (.), dash (-), and
underscore(_)

Many of the other characters have a "special" meaning to the shell, such as a blank space or
the forward slash, so you normally cannot include these characters as part of a file name.
Other special characters include, *, <, >, \, $, and |. If you try to include these characters in a
file name, you often will get unexpected results.

File names that represent two words are often connected with an underscore:

$ cd a dir Illegal syntax—cd sees two arguments
$ cd a_dir Legal syntax—cd sees one argument

In the UNIX system the dot (.) is just a regular character, and, therefore, can appear
anywhere (and multiple times) in a file name, making file names a.bcdefg , a.b.c.d and
a...b legal. Dot is only somewhat special when it appears as the first character of a file
name, in which case it designates a hidden file. You can display file names containing a
leading dot by issuing ls -a .

File Types

There are many types of files supported in the UNIX system, and the file type is displayed
through the first character of the ls -l output. The common types include:

- A regular file

d A directory

l A symbolically linked file

n A network special file

c A character device file (terminals, printers)

b A block device file (disks)

p A named pipe (an interprocess communication channel)

51434P G.00 3-6
© 1999 Hewlett-Packard Company

Managing Files

3-4. SLIDE: cat — Display the Contents of a File

Student Notes

The cat command is used to concatenate and display text files seamlessly. It adds no format
to the output of the files, including no delimiter between the end of one file and the beginning
of the next. The syntax is

cat [file ...]

A typical use of the cat command is to look at the contents of a single file. For example,

cat funfile

writes the contents of the file funfile to the screen. However, if the file is too big for the
terminal’s screen, the text will go by too quickly to read. Therefore, we need a more intelligent
way to display files to the screen.

When the cat command is issued with no arguments, it will wait for input from the keyboard.
This works similarly to the mail and write commands. A Return , Ctrl + d must be issued to
conclude the input. Once input is concluded your input text will be displayed to the screen.

3-7 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

CAUTION: If the file contains control characters, such as a compiled program, and
you cat it to your terminal, your terminal may become disabled. Reset
your terminal by either of the following methods:

Method 1:

1. Try to log out—press Return and then issue the exit command.

2. Power cycle your terminal—turn it off, and then turn it on.

3. Log back in—you should be able to log in and continue normally.

Method 2:

1. Press the Break key.

2. Simultaneously press Shift + Ctrl + Reset .

3. Press Return .

4. Issue the command: tset -e -k .

5. Issue the command: tabs .

Otherwise, your system administrator (or instructor) may have to
terminate your terminal session.

51434P G.00 3-8
© 1999 Hewlett-Packard Company

Managing Files

3-5. SLIDE: more — Display the Contents of a File

Student Notes

The more command prints out the contents of the named files. It will only print one screen of
text at a time. To see the next screen of text, press the Space key. To see the next line, press
the Return key. To quit from the more command, use the q key.

The more command supports many other features. Refer to the manual page for an
explanation of other available capabilities.

3-9 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-6. SLIDE: tail — Display the End of a File

Student Notes

The tail command is useful for displaying the last n lines of a file. (Note: n defaults to 10 if it
is not supplied.) This is especially useful for long log files that are periodically being appended
to. With the tail command, you can go immediately to the last messages logged instead of
scrolling through the entire file with cat or more .

51434P G.00 3-10
© 1999 Hewlett-Packard Company

Managing Files

3-7. SLIDE: The Line Printer Spooler System

Student Notes

The UNIX operating system provides a utility called the line printer spooler (or lp spooler)
that is used to configure and control printing on your system. The lp spooler is a mechanism
that accepts print requests from all of the users on the system and then appropriately
configures the printer and prints the requests one at time. Think of the problems we would
have if we did not have a spooler. Every time a user wanted to print a file, he or she would
have to make sure that no one else was currently printing a file. Two users cannot print to the
same printer at the same time.

The lp spooler system has many features that allow for smooth running with minimum
administrator intervention. You submit your print requests to the lp spooler system, where
they will wait in a queue to be printed. You can check which files are queued and the status of
the system. You can also cancel a queued printing request if you decide it should not be printed.

3-11 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-8. SLIDE: The lp Command

Student Notes

The lp command allows the user to queue files for printing. A unique job identification
number (called a request ID) is given to each request submitted using lp .

lp will queue a file to be printed or it will read standard input.

The simplest use of lp is to give it a file name as an argument and it will queue the file to be
printed on the default printer.

The lp command has a number of options available that allow you to customize the routing
and printing of your jobs.

51434P G.00 3-12
© 1999 Hewlett-Packard Company

Managing Files

The syntax of the lp command is

lp [-d dest] [-n number] [-o option] [-t title] [-w][file ...]

Some options to lp are:

-n number Print number copies of the request (default is 1).

-d dest dest is the name of the printer on which the request will be printed.

-t title Print title on the banner page of the printout. The banner page is a header
page that identifies the owner of the printout.

-o option Specify printing options specific to your printer, such as font, pitch, density,
raw (for graphics dumps), and so on.

-w Write a message to the user’s terminal after the files have been printed.

See lp(1) for a complete listing of available options.

The first example on the slide shows the simplest form of lp . We are sending the file report
to the system default printer. lp returns the request ID and the number of files submitted to
the queue. Here, the file report has been sent to printer "dp" and the job is queued with
request ID dp-112 .

In the second example, we are sending memo1and memo2to be printed and we want two
copies (-n2).

In the third example, using the -d option, you can specify the printer to which your request
will be sent. The output will be titled "confidential."

3-13 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-9. SLIDE: The lpstat Command

Student Notes

The lpstat command reports the status of the various parts of the lp spooler system. lpstat ,
when it is used with no options, reports the requests that you currently have queued to be
printed.

The -t option prints all of the status information about all of the printers on the system.

51434P G.00 3-14
© 1999 Hewlett-Packard Company

Managing Files

The output of the lpstat -t command tells us several things:

$ lpstat
rw-55 john 4025 Jul 6 14:26:33 1994
$
$ lpstat -t
scheduler is running
system default destination: rw
device for rw: /dev/lp2235
rw accepting requests since Jul 1 10:56:20 1994
printer rw now printing rw-55. enabled since Jul 4 14:32:52 1994
rw-55 john 4025 Jul 6 14:26:33 1994 on rw
rw-56 root 966 Jul 6 14:27:58 1994
$

scheduler is running The scheduler is the program that sends your
print requests to the proper printer. Nothing will
print if the scheduler is not running.

system default destination: rw rw is the name of the default system printer. If you
use lp without the -d printer option, your
request will be sent to the printer named rw. Note
that your default system printer will probably have
a different name (such as lp).

device for rw: /dev/lp2235 This tells the spooler where the printer is connected
to the computer.

rw accepting requests This means that the spooler will let you queue files
to rw.

printer rw now printing rw-55 Request ID rw-55 currently is being printed.

enabled Requests can be printed on rw. If a printer is
disabled you can submit requests, but they will
not be printed until the printer is enabled again.

The rest of the lines are the requests to be printed. These fields list the request ID, followed by
the user making the request, the size of the request, and then the date the request was made.

3-15 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-10. SLIDE: The cancel Command

Student Notes

The cancel command is used to remove requests from the print queue. By canceling the
current job on the printer, the next request can be printed. You may want to cancel a request if
it is extremely long or if someone tried to print a binary file by mistake (such as
/usr/bin/cat). Remember, lp normally prints text files. Anything else will just confuse the
printer and waste piles of paper if you do not specify the appropriate options (such as -oraw
for graphics dumps).

To cancel a request, you must tell the spooler which request to cancel by giving the cancel
command an argument. Arguments to the cancel command can be of two types.

• a request ID (as given by lp or lpstat)

• a printer name

By giving cancel a request ID, that specific print request will be canceled. If you give cancel
a printer name, the current job being printed on that printer will stop and the next request in
the queue will start printing.

51434P G.00 3-16
© 1999 Hewlett-Packard Company

Managing Files

$ lpstat
rw-113 mike 6275 Jul 6 18:46 1994
rw-114 mike 3349 Jul 6 18:48 1994
rw-115 mike 3258 Jul 6 18:49 1994
$ cancel rw-115
request "rw-115" canceled
$ lpstat
rw-113 mike 6275 Jul 6 18:46 1994
rw-114 mike 3349 Jul 6 18:48 1994
$ cancel rw
request "rw-113" canceled
$ lpstat
rw-114 mike 3349 Jul 6 18:48 1994

This command can be executed by any user to cancel any request. You can even cancel another
user’s request; however, mail will be sent to the person whose job was canceled with the name
of the user who canceled it. The system administrator can restrict users to canceling only their
own requests.

3-17 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-11. SLIDE: cp — Copy Files

Student Notes

The cp command is used to make a duplicate copy of one or more files. The following are some
considerations when using the cp command:

• It requires at least two arguments—the source and the destination.
• Relative and/or absolute path names can be provided for any of the arguments.
• When copying a single file, the destination can be a path to a file or a directory. If the

destination is a file, and the file does not exist, it will be created. If the destination file does
exist, its contents will be replaced by the source file. If the destination is a directory, the file
will be copied to the directory and retain its original name.

• The -i (interactive) option will warn you if the destination file exists, and require you to
verify that the file should be copied over.

$ cp f1 f1.copy Creates a file under current directory called f1.copy
$ cp f1 memo Creates a file under memo called

f1
$ cp f1 memo/f1.copy Creates a file under memocalled f1.copy

51434P G.00 3-18
© 1999 Hewlett-Packard Company

Managing Files

• When copying multiple files, the destination must be a directory.

$ cp note remind memo

• A file cannot be copied onto itself.

$ cp f1 f1
cp: f1 and f1 are identical

• A directory can be copied using the -r (recursive) option.

CAUTION: By default, cp will copy over existing files—no questions asked!

$ cp f1 note
$ cat f1
This is a sample file to be copied.
$ cat note
This is a sample file to be copied.

3-19 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-12. SLIDE: mv — Move or Rename Files

Student Notes

The mv command is used to rename a file or move one or more files to another directory. The
following are some considerations when using the mv command:

• It requires at least two arguments—the source and the destination.
• Relative and/or absolute path names can be provided for any of the arguments.
• When renaming a single file, the destination can be a path to a file or a directory. If the

destination is a file under the current directory, the file will simply be renamed. If the
destination is a directory, the source will be moved to the requested directory. The file will
be created if it does not exist.

• If the destination file name already exists, its destination’s contents will be replaced by the
source file. If the destination is a directory, the file will retain its original name and be
moved to that directory.

• The -i (interactive) option will warn you if the destination file or directory exists, and
require you to verify that the file or directory should be overwritten.

$ mv f1 file1 Renames f1 to file1 under the current directory
$ mv file1 memo Moves file1 to the memodirectory

51434P G.00 3-20
© 1999 Hewlett-Packard Company

Managing Files

$ mv f2 memo/file2 Moves f2 to the memodir and renames it file2

• When moving multiple files, the destination must be a directory.

$ mv note remind memo

• When the source is a directory, it will be renamed to the destination name.

$ mv note letter

CAUTION: By default, mv will move or rename over existing files—no questions
asked!

$ mv file1 note
$ cat file1
cat: cannot open file1
$ cat note
This is a sample file to be copied.

3-21 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-13. SLIDE: ln — Link Files

Student Notes

Links provide a mechanism for multiple file names to reference the same data on the disk.
They are useful when many users want to share a file, but prefer to have the file entry under
their own directory. If user3 modifies f1 , user2 will see those changes the next time he or she
accesses f1.link .

CAUTION: The UNIX system does not prohibit more than one user to access and
modify a file at the same time. Each user will have a private image to
which to make modifications, but the last user to save his or her file to
disk will define the version that is stored on the disk. It is up to an
application to notify a user that a file is already open for modification, and
possibly prohibit additional users access to files that are already open.

When many files are linked together, the link count displayed with ls -l will be greater than
1. If any of the links are removed, the only effect is to reduce the link count. The file contents
are maintained until the link count is reduced to zero, at which time the disk space is released.

51434P G.00 3-22
© 1999 Hewlett-Packard Company

Managing Files

Example

$ ls -l f1
-rw-rw-r-- 1 user3 class 37 Jul 24 11:06 f1
$ ln f1 /home/user2/f1.link
$ ls -l f1
-rw-rw-r-- 2 user3 class 37 Jul 24 11:06 f1
$ ls -l /home/user2
-rw-rw-r-- 2 user3 class 37 Jul 24 11:06 f1.link
$ ls -i f1 /home/user2/f1.link
1789 /home/user2/f1.link 1789 f1

3-23 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-14. SLIDE: rm — Remove Files

Student Notes

The rm command is used to remove files. The files are irretrievable once they are removed.
The rm command must have at least one argument (a file name) and can accept many. If more
than a single file name is given, all of the specified file names will be removed.

The slide shows the most commonly used options.

-f forces the named files to be removed—no notice will be given to the user,
even if an error occurs.

-r recursively removes the contents of any directories named on the command
line.

-i interrogate or interactive mode, which requires that the user confirm that
the removal be completed. You respond with either y for yes or n for no.
Entering a Return is the same as answering no.

51434P G.00 3-24
© 1999 Hewlett-Packard Company

Managing Files

CAUTION: Always use the -r option with extreme care. Used incorrectly, this could
remove ALL of your files. Once a file is removed, it can be restored only
from a tape backup. If you must use the -r option, use it with the -i
option.

For example, rm -ir dirname

3-25 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

3-15. SLIDE: File/Directory Manipulation Commands —
Summary

Student Notes

51434P G.00 3-26
© 1999 Hewlett-Packard Company

Managing Files

3-16. LAB: File and Directory Manipulation

Directions

Complete the following exercises and answer the associated questions.

File Manipulation

1. Use the more command to display the file /usr/bin/ls . What do you notice? Display the
contents of /usr/bin/ls with the cat command. What happens?

2. Go to your HOME directory. Copy the file called names to a file called names.cp . List the
contents of both files to verify that their contents are the same.

3. Make another copy of the file names called names.new . Change the name of names.new to
names.orig .

4. How do you create two files (called names.2nd and names.3rd) that reference the
contents of the file names?

5. If you modify the contents of names, will the contents of names.2nd and names.3rd be
affected? Copy the file funfile to the file names and do a long listing of all of your names
files. Is names.orig affected? names.2nd ? names.3rd ?

3-27 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

6. Remove the file names. What happens to names.2nd and names.3rd ?

Directory Manipulation

1. Make a directory called fruit under your HOME directory. With one command, move the
following files, which are also under your HOME directory to the fruit directory:

lime
grape
orange

2. Move the following files, also found under your HOME directory, to the fruit directory.
Their destination names will be as specified below:

Source Destination

apple APPLE
peach Peach

3. Look at the tree directory structure in your HOME directory. It requires a little
organization.

Move the files collie and poodle , so that they are under the dog.breeds directory.
Move the file probe under the sports directory.
Move the file taurus under the directory sedan .
Create a new directory under tree called horses .
Copy the mustang file to the horses directory you just created.
Move the file cherry to the fruit directory you created in the previous exercise.

HINT: You could make these changes from any directory, but what directory do you think you
should be in?

51434P G.00 3-28
© 1999 Hewlett-Packard Company

Managing Files

4. Move the fruit directory from your HOME directory to the tree directory.

Printing Files

1. List the current status of the printers in the lp spooler system and find the name of the
default printer.

2. Send the file named funfile to the line printer. Make a note of the request ID that is
displayed on your terminal.

3. Verify that your requests are queued to be printed.

4. How can you tell what files other users are printing? Try it.

5. Use the cancel command to remove your requests from the line printer system queue.
Confirm that they were canceled.

3-29 51434P G.00
© 1999 Hewlett-Packard Company

Managing Files

51434P G.00 3-30
© 1999 Hewlett-Packard Company

File Permissions and Access

Module 4 — File Permissions and Access

Objectives

Upon completion of this module, you will be able to do the following:

• Describe and change the owner and group attributes of a file.

• Describe and change the permissions on a file.

• Describe and establish default permissions for new files.

• Describe how to change user and group identity.

4-1 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

4-1. SLIDE: File Permissions and Access

Student Notes

Every file is owned by a user on the system. The owner of a file has the ultimate control over
who has access to it. The owner has the power to allow or deny other users access to files that
he or she owns.

51434P G.00 4-2
© 1999 Hewlett-Packard Company

File Permissions and Access

4-2. SLIDE: Who Has Access to a File?

Student Notes

The UNIX system provides a three-tier access structure for a file:

user represents the owner of the file

group represents the group that may have access to the file

other represents all other users on the system

Every file will be owned by some user on the system. The owner has complete control over who
has what access to the file. The owner can allow or deny access to his or her files to other
users on the system. The owner decides what group will have access to his or her files. The
owner can also decide to give the file to some other user on the system. But once ownership is
transferred the original owner will no longer have control over the file.

Since files are owned by users and associated with groups, you can use the id command to
display your identification status and determine what access you have to files that are stored
on your system.

4-3 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

The files on the slide are owned by the user user3, and members of the group class may have
access to these files. In addition, user3 may allow all other users on the system access to these
files.

51434P G.00 4-4
© 1999 Hewlett-Packard Company

File Permissions and Access

4-3. SLIDE: Types of Access

Student Notes

There are three types of access available for each file and directory:

• read
• write
• execute

Different UNIX system commands will require certain permissions in order to access a
program or file. For example, to cat a file it requires read permission because the cat
command must be able to read the contents of the file to display it to the screen. Likewise a
directory requires read permission to list out its contents with the ls command.

Notice that access is dependent on whether you are accessing a file or a directory. For
example, write access on a file implies that the contents of the file can be changed. Denying
write access prohibits users from changing the contents of the file. It does not protect the file
from being deleted. write access on a directory controls whether the contents of a directory can
be modified. If a directory does not have write access, its contents can not be changed, and
therefore files could not be deleted, added or renamed.

4-5 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

NOTE: In order to run a file as a program, both read and execute permissions are
required.

51434P G.00 4-6
© 1999 Hewlett-Packard Company

File Permissions and Access

4-4. SLIDE: Permissions

Student Notes

Your access to a file is defined by your user identification, your group identification and the
permissions associated with the file. The permissions to a file are designated in the mode. The
mode of a file is a nine character field that defines the permissions for the owner of the file,
the group to which the file belongs, and all other users on the system.

4-7 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

Examples

Referring to the files listed on the slide, access would be as follows:

Filename Association Access
Attributes Authorized Activities

f1 user3 (owner) read, write examine and modify the contents

members of
group class

read examine the contents

all others read examine the contents

f2 user3 (owner) read, write,
execute

examine and modify the contents,
run as a program

members of
group class

read, execute examine the contents, run as a
program

all others read, execute examine the contents, run as a
program

memo user3 (owner) read, write,
execute

examine and modify contents of
directory memo, change to the
directory memo

members of
group class

read, execute examine the contents of directory
memo, change to the directory memo

all others read, execute examine the contents of directory
memo, change to the directory memo

51434P G.00 4-8
© 1999 Hewlett-Packard Company

File Permissions and Access

4-5. SLIDE: chmod — Change Permissions of a File

Student Notes

The chmod command is used to change the permissions of a file or directory. Permissions can
only be changed by the file’s owner (or root—the system administrator). Therefore, in the
UNIX system, access to a file is generally the responsibility of the owner of the file, as opposed
to the system manager.

To protect a file from removal or corruption, the directory the file resides in and the file must
not have write permission. The write permission to a file would allow a user to change (or
write over) the contents of the file, while write permission to a directory would allow a user to
remove the file. The chmod command supports an alpha method of defining the permissions
for a file.

4-9 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

You can specify the permission that you wish to modify:

r read permission
w write permission
x execute permission

and how you would like to modify that permission:

+ add permission
− subtract permission
= set permission equal

You can also specify which grouping of permissions you wish to modify:

u user (owner of the file)
g group (group the file is associated with)
o other (all others on the system)
a all (every user on the system)
none assigns permission to all fields

NOTE: To disable all of the permissions on a file, issue the following command:

chmod = filename

Examples

$ ls -l f1
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 f1
$ chmod g=rw,o= f1
$ ls -l f1
-rw-rw---- 1 user3 class 37 Jul 24 11:06 f1
$ ls -l f2
-rw-rw-rw- 1 user3 class 37 Jul 24 11:08 f2
$ chmod u+x,g=rx,o-rw f2
$ ls -l f2
-rwxr-x--- 1 user3 class 37 Jul 24 11:08 f2

You can use the mesg n command to disable other users from sending messages to your
terminal. Every terminal has a device file, which is responsible for the communication
between user and computer. In the example /dev/tty0p1 should be that device file.

$ ls -l /dev/tty0p1
crw--w--w- 1 bin bin 58 0x000003 Feb 15 11:34 /dev/tty0p3
$mesg n
$ ls -l /dev/tty0p1
crw------- 1 bin bin 58 0x000003 Feb 15 11:34 /dev/tty0p3

Even when you disable messaging, the system administrator can still send messages to your
terminal.

51434P G.00 4-10
© 1999 Hewlett-Packard Company

File Permissions and Access

The chmod command also supports a numeric (octal) representation for assigning file
permissions. This representation is obsolete, but it’s a commonly used form.

1. To change file permissions you have to convert each group of permissions into the
appropriate numeric representation. There will be access defined for the owner, the group,
and all others. Remember that each type of access granted carries the following values:

— read = 4
— write = 2
— execute = 1

2. Just add together the values associated with the access to be allowed.

3. Gather the three values together. This number will be your argument for the chmod
command.

For example, if the desired permissions are rw- for owner, r-- for group, and --- for other:

user group others
rw- r-- ---

convert to numeric values

4+2+0 4+0+0 0+0+0
6 4 0

Thus the chmod command would be:

chmod 640 filename

NOTE: To disable all permissions on a file, issue the following command:
chmod 000 file

4-11 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

4-6. SLIDE: umask — Permission Mask

Student Notes

The option [-S] prints the current file mode creation mask value using a symbolic format.
The [-S] option and the symbolic format are not available in the Bourne and C shells.

The option a-rwx is the short form of u-rwx,g-rwx,o-rwx . The usual default permissions on
a newly created file are rw-rw-rw- , which means that any user on the system can modify the
contents of the file. The default permissions on a newly created directory are rwxrwxrwx ,
which means that any user can change to this directory and delete anything from this
directory.

To protect the files that you will create during your session, you should use the umask
command. This will disable designated default permissions on any new file or directory that
you create. Write access to the group and all others are probably the most important
permissions to disable. The mask that you designate is active until you log out. umask will
have no affect on existing files.

51434P G.00 4-12
© 1999 Hewlett-Packard Company

File Permissions and Access

4-7. SLIDE: touch — Update Timestamp on File

Student Notes

The touch command allows you to create a new, empty file. If the designated file already
exists, touch will just update the time stamp on the file. It will have no effect on the contents
of the file.

The touch command has the following options:

-a time Change the access time to time.

-m time Change the modify time to time.

-t time Use time instead of the current time.

-c If the file does not already exist, do not create it.

4-13 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

Examples

$ touch test_file1
$ ls -l test_file1
-rw-rw-rw- 1 user3 class 0 Jul 24 11:08 test_file1
$ umask a-rwx,u=rw,g=r (or umask 137)
$ umask -S (or umask)
u=rw,g=r,o= (or 137)
$ touch test_file2
$ ls -l test_file2
-rw-r----- 1 user3 class 0 Jul 24 11:10 test_file1

51434P G.00 4-14
© 1999 Hewlett-Packard Company

File Permissions and Access

4-8. SLIDE: chown — Change File Ownership

Student Notes

Only the owner of a file has control over the attributes and access to a file. If you would like to
give ownership of a file to some other user on the system, you use the chown command. For
example, user3 might make a copy of his file f1 for user2. user2 should have complete control
of his personal copy, so user3 transfers ownership of /tmp/user2/f1 to user2. Optionally
chown changes the group ID of one or more files to group. The owner (group) can be either a
decimal user ID (group ID) or a login name found in the passwd (group) file.

NOTE: Once the ownership of a file has been changed, only the new owner or
root can modify the ownership and mode.

The owner is a user identifier recognized by your system. The file /etc/passwd contains the
user IDs for all of your system’s users.

4-15 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

Example

Looking at the example on the slide, after user3 has transferred ownership of /tmp/user2/f1
to user2 , he will still have read access, since the file allows read access to all users who are a
member of class.

51434P G.00 4-16
© 1999 Hewlett-Packard Company

File Permissions and Access

4-9. SLIDE: The chgrp Command

Student Notes

The group field in the long listing identifies what user group has access to this file. This can be
modified with the chgrp command.

The new_group is a group identifier recognized by your system. The file /etc/group contains
the group IDs for all of your system’s users.

The chgrp command will not work if the new group specified does not exist. Group existence
and membership is controlled by the system administrator.

NOTE: Only the owner of a file (or root) can change the group identifier
associated with a file.

4-17 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

Example

Looking at the example on the slide, after user3 has transferred group access of the file f1 to
the group class2, her access has not been affected since she still owns the file. After user3
gives the ownership of the file to user2, she will not be able to access it at all, since user3 is
currently associated with the group class.

51434P G.00 4-18
© 1999 Hewlett-Packard Company

File Permissions and Access

4-10. SLIDE: su — Switch User Id

Student Notes

The su command allows you to interactively change your user ID and group ID. su is an
abbreviation for switch user or set user ID. This allows you to start a subsession as the new
user ID and grants you access to all of the files that the designated user ID owns. Therefore,
for security purposes, you will be required to enter the account’s password to actually switch
your user status.

With no arguments, su switches you to the user root (the system administrator). The root
account is sometimes known as the super-user, since this login has access to anything and
everything on the system. For this reason, many people think that the command su is an
abbreviation for super-user. Of course, you must supply the root password.

NOTE: To get back to the user you were, do not use the su command again.
Instead, use the exit command to exit the new session started for you by
the su command.

4-19 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

Example

Look at the example on the slide. user3 does not have access to the program
/usr/local/bin/class_setup , since she is not a member of the group teacher. She can
access this program, though, if she enters the command su class_admin . As class_admin,
she can also modify the contents of the program class_setup . When she has finished
running the program, she resumes her original user status by logging out of the su session.

su - username

There are certain configuration files that set up your session for you. When you issue the
command su username , your session characteristics will remain the same as your original
login identification. If you would like your session to take on the characteristics associated
with the switched user ID, use the dash (-) option with the su command: su - username .

51434P G.00 4-20
© 1999 Hewlett-Packard Company

File Permissions and Access

4-11. SLIDE: File Permissions and Access — Summary

Student Notes

Things to remember about file permissions:

• All directories in the full pathname of a file must have execute permission in order for the
file to be accessible.

• To protect a file, take away write permission on that file and on the directory in which the
file resides.

• Only the owner of a file (or root) can change the mode (chmod), the ownership (chown), or
the group (chgrp) of a file.

4-21 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

4-12. LAB: File Permissions and Access

Directions

There are three sections of exercises to complete. Run the commands necessary to solve the
exercises and answer the associated questions. Time may not allow you to complete all of the
exercises.

File Permissions

1. Look under your HOME directory for a file called mod5.1 . Who has what access to this
file? Can you display the contents of mod5.1 ?

2. Modify the permissions on mod5.1 so that they are: -w------- . Can you display the
contents of mod5.1 ?

3. Modify the permissions on mod5.1 so that they are: rw------- . Can you display the
contents of mod5.1 ? Can your partner display the contents of your mod5.1 ?

4. Make a copy of mod5.1 and call it mod5.2 . Remove the write permissions from mod5.2 .
Can you delete this file? How do you protect this file from being deleted?

Directory Permissions

1. Under your HOME directory, create a directory called mod5.dir . Copy the file mod5.1 to
mod5.dir . List the contents of the new directory. What are the permissions on the mod5.dir ?
(Hint: ls -ld mod5.dir)

51434P G.00 4-22
© 1999 Hewlett-Packard Company

File Permissions and Access

2. Modify the permissions on mod5.dir to be rw------- . Can you change directory to
mod5.dir ? Can you display the contents of mod5.dir ? Can you access the contents of the file
mod5.1 under the mod5.dir ?

3. Modify the permissions on mod5.dir to be -wx------ . Can you display the contents of
mod5.dir ? Can you display the contents of the file mod5.1 under the mod5.dir ? Can you
change directory to mod5.dir ?

4.

Permissions for New Files

1. What are the permissions when you create a new file? Hint: Create a new file by using the
editor, and copy or touch an existing file. Examine the permissions on the new files. How
about a new directory? What is your current file creation mask?

2. How would you modify the default creation permissions to deny write access to others in
your group, and others on the system? Test this by creating another new file and another new
directory.

4-23 51434P G.00
© 1999 Hewlett-Packard Company

File Permissions and Access

51434P G.00 4-24
© 1999 Hewlett-Packard Company

Shell Basics

Module 5 — Shell Basics

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the job of the shell.

• Describe what happens when someone logs in.

• Describe user environment variables and their functions.

• Understand and change specific environment variables such as PATH and TERM.

• Customize the user environment to fit a particular application.

5-1 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-1. SLIDE: What Is the Shell?

Student Notes

A shell is an interactive program that serves as a command line interpreter. It is separate
from the operating system. This design provides users with the flexibility of selecting the
interface that is most appropriate for their needs. A shell’s job is to allow you to type in your
command, perform several functions, and pass the interpreted command to the operating
system (kernel) for execution.

This module presents interactive features that are provided by the POSIX shell. Interactively,
the POSIX shell completes other functions in addition to executing your command. Many of
these functions are completed before the command is executed.

51434P G.00 5-2
© 1999 Hewlett-Packard Company

Shell Basics

The following summarizes the shell functionality:

• It searches for a command and executes the associated program.

• It substitutes shell variable values for dereferenced variables.

• It performs command substitution.

• It completes file names from file name generation characters.

• It handles I/O redirection and pipelines.

• It provides an interpreted programming interface, including tests, branches and loops.

As you log in to a UNIX system, the shell will define certain characteristics for your terminal
session, and then issue your prompt. This prompt defaults to a $ symbol in the case of the
POSIX, Bourne and K shells. The default prompt for the C shell is the percent sign (%).

5-3 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-2. SLIDE: Commonly Used Shells

Student Notes

The POSIX shell is a POSIX-compliant command programming language and commands
interpreter residing in /usr/bin/sh . It can execute commands read from a terminal or a file.
This shell conforms to the current POSIX standards in effect at the time the HP-UX system
release was introduced, and is similar to the Korn shell in many ways. It contains a history
mechanism, supports job control, and provides various other useful features.

The Korn shell is a command programming language and commands interpreter residing in
/usr/bin/ksh . It can execute commands read from a terminal or a file. Like the POSIX shell,
it contains a history mechanism, supports job control, and provides various other useful
features. The Korn shell was developed by David Korn of AT&T Bell Labs.

The Bourne shell is a command programming language and commands interpreter residing in
/usr/old/bin/sh . It can execute commands read from a terminal or a file. This shell lacks
many features contained in the POSIX and Korn shells. The Bourne shell was developed by
Stephen R. Bourne and was the original shell available on the AT&T releases of UNIX.

51434P G.00 5-4
© 1999 Hewlett-Packard Company

Shell Basics

The C shell is a command language interpreter that incorporates a command history buffer,
C-language-like syntax, and job control facilities. It was developed by William Joy of the
University of California at Berkeley.

The rsh and rksh are restricted versions of the Bourne shell and Korn shells, respectively. A
restricted shell sets up a login name and execution environment whose capabilities are more
controlled (restricted) than normal user shells. A restricted shell acts very much like standard
shell with several exceptions. A user using a restricted shell cannot:

• change directory
• reset value of PATH environment variable
• use the / character in a path name
• redirect output.

The keyshell is an extension of the standard Korn shell. It uses hierarchical softkey menus
and context-sensitive help to aid users in building command lines. keysh was developed by
HP and AT&T.

Table 5-1. Comparison of Shell Features

Features Description POSIX Bourne Korn C

Command
history

A feature allowing commands
to be stored in a buffer, then
modified and reused.

Yes No Yes Yes

Line editing The ability to modify the
current or previous command
lines with a text editor.

Yes No Yes No

File name
completion

The ability to automatically
finish typing file names in
command lines.

Yes No Yes Yes

Alias command A feature allowing users to
rename commands,
automatically include
command options, or
abbreviate long command
lines.

Yes No Yes Yes

Restricted
shells

A security feature providing a
controlled environment with
limited capabilities.

Yes Yes Yes No

Job control Tools for tracking and
accessing processes that run
in the background.

Yes No Yes Yes

5-5 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-3. SLIDE: POSIX Shell Features

Student Notes

One of the shells provided with UNIX is the POSIX shell. This shell has many features that
the Korn shell has but that the Bourne shell does not have. Even if you do not use all of the
advanced features, you will probably find the POSIX shell a very convenient user interface.
Here are just a few of the features of the POSIX shell:

• Command history mechanism
• Command line recall and editing
• Job control
• File name completion
• Command aliasing
• Enhanced cd capabilities
• Advanced programming capabilities

51434P G.00 5-6
© 1999 Hewlett-Packard Company

Shell Basics

5-4. SLIDE: Aliasing

Student Notes

An alias is a new name for a command. Aliasing is a method by which you can abbreviate long
command lines, create new commands, or cause standard commands to perform differently by
replacing the original command with a new command called an alias. The alias can be a letter
or short word. For example, many people use the ps -ef command quite often. Wouldn’t it be
much easier if you could type psf instead? You create aliases using the alias command.

$ alias name=string

where name is the name you are using for the alias, and string is the command or character
string that name is aliased to. If the string contains spaces, you enclose the whole string in
quotes. The alias is convenient to save typing, interpret common typing errors, or generate
new commands.

An alias looks just like any other command when it is entered. It is transparent to the user if
he or she is executing a real UNIX system command or an alias that references a UNIX
system command.

5-7 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

The shell will expand the alias prior to command execution, and then execute the resulting
command line. When entered interactively, the alias is available until you log out.

Some users find this feature so flexible that they make their UNIX system interface recognize
commands they usually enter through another operating environment (alias dir=ls or
alias copy=’cp -i’ for example).

Aliases are also often used as a shorthand for full path names.

With no arguments, the alias command reports all aliases currently defined.

To list the value of a particular alias, use alias name.

Aliases can be turned off with the unalias command. The syntax is

unalias name

Examples

Several aliases can also be entered on a single command line as shown below:

$ alias go=’cd ’
$ alias there=/home/user3/tree/ford/sports
$ go there
$ pwd
/home/user3/tree/ford/sports

In order to reference more than one alias on a line, you must leave a space as the last character
in the alias definition; otherwise, the shell will not recognize the next word as an alias.

51434P G.00 5-8
© 1999 Hewlett-Packard Company

Shell Basics

5-5. SLIDE: File Name Completion

Student Notes

File name completion is convenient when you want to access a file that has a long file name.
You provide enough characters that uniquely identify the file name, then press ESC ESC and
the POSIX shell will fill in the remainder of the file name. If the string is not unique, the
POSIX shell cannot resolve the file name and you will have to provide some assistance. Your
terminal will beep when it runs into a file name conflict.

The shell will complete the file name as far as it can without a conflict. You can then list the
possible choices at this time by typing ESC =. After the POSIX shell has displayed the
available options, you can use vi commands to add subsequent characters that will uniquely
identify the desired file, and then enter ESC ESC to conclude the file name.

5-9 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

File name completion can be used anywhere in the path of a file name. For example,

$ cd tr ESC ESC do ESC ESC r ESC ESC

will cause the following command line to be displayed:

$ cd tree/dog.breeds/retriever

51434P G.00 5-10
© 1999 Hewlett-Packard Company

Shell Basics

5-6. SLIDE: Command Line Editing

Student Notes

There are times you would like to recall a command and reuse it, but it needs some minor
changes first. By pressing ESC and then k , you will recall the last command. If you know the
command number, you can type command number, then G, to bring up the desired command.
For example, assume the history command reported the following input:

120 env
121 ls
122 cd
123 cd /tmp
124 pwd
125 history

If you typed ESC k and then 122G, the following line would be recalled:

5-11 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

cd

An alternate way of locating commands in the command stack is to press ESC k , as before,
and then type / pattern. For example, after entering the command stack with ESC k , type /cd
to locate the last cd command. If you type another / you would recall the next to last cd
command, and so on. Once you have searched for a pattern, typing n will also search for the
next occurrence.

At this point, you could press Return to execute the command or use the editing commands
discussed on the next slide. If you decided not to execute the command, typing CTRL c cancels
the command.

51434P G.00 5-12
© 1999 Hewlett-Packard Company

Shell Basics

5-7. SLIDE: Command Line Editing (continued)

Student Notes

How many times have you been typing a long command line when you found out that you
made a mistake at the very beginning of the line? It happens all the time, and all you can do
is backspace and retype everything after the mistake.

The POSIX shell lets you correct your mistakes and change parts of a command line before
you execute it. Once again, this is done with the vi editing commands.

To change a command line, you must press Esc to enter the vi editing mode. This works on
command lines that you are typing and on the lines that you recalled using Esc and k .

Once you are in editing mode, the vi commands work. For example, x deletes a character, h
and l move you left and right across the line, cw changes a word, dw deletes a word, and so on.

The command stack and line edit features are accessed using vi commands. The advantage
this design provides is that once you are familiar with the vi commands you have the tools
necessary to utilize the command stack; you do not have to learn another interface and set of
commands! Use the following vi commands to edit the command line:

5-13 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

h, Backspace , l, Space , w, b, $ move the cursor
x, dw, p delete and paste text
r, R, cw change text
a, i enter input mode to add new text

To have access to the command stack through vi commands, you need to set the variable
EDITOR=/usr/bin/vi . (Other editor options include gmacs and emacs.)

Consider each command line as a mini-vi session. You are in input mode at the beginning of
each command line. To access previously entered commands, issue the vi command that
scrolls the cursor up. Before you can issue a vi command, though, you must toggle to the
command mode by pressing the ESC key. Now you can enter the vi command to scroll up— k .
As you continue to enter k ’s, you will step back through your previous commands. When the
command is displayed that you wish to run, just press the Return key, and your command will
be executed. This command is then appended to your command stack.

A major benefit of the POSIX shell is that it allows you to enter the current command line, as
well as previous commands. It is not necessary to backspace to the point where a change is
needed or to start over.

This feature is especially useful when entering long command lines that contain simple typing
mistakes, or modifying arguments. Before this feature, you would have had to re-enter the
complete line, or Backspace and retype the line.

With the POSIX shell line editing feature, you can display a previously entered line, and make
changes to the line using vi commands before executing it. The changes can be as simple as a
single character or as extensive as the entire argument list of the command line.

Example

$ cp /usr/lib/X11/app-defaults
Usage: cp f1 f2

cp [-r] f1 ... fn d1

The above was supposed to be cd , not cp . POSIX shell lets you fix the line without retyping it.
Just press Esc and then k and the command line will come back. Type l to move to the p in cp
and use the r command to replace the p with a d. Your command line will now look like this:

$ cd /usr/lib/X11/app-defaults

Now just press Return and the cd command will execute.

If you had problems editing the line and want to try again, just press Break to cancel editing,
and you will get your regular shell prompt back so you can try again.

Do not use the arrow keys when you are editing command lines in the POSIX shell. In
addition to the h and l keys, you can use Backspace and the Space bar.

Transposing characters is another common typing error. Suppose you entered the following
line, with the r and o transposed in ford:

51434P G.00 5-14
© 1999 Hewlett-Packard Company

Shell Basics

$ cd $HOME/tree/car.models/frod/sports
cd: directory not found

Use the following steps to make the repair, and re-execute the line:

ESC

k Re-enter as many times as necessary to display the line.

w Re-enter until the cursor is under the f in frod.

l Cursor should be under the r in frod.

x p Delete the r and paste after the o.

Return Execute the line.

5-15 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-8. SLIDE: The User Environment

Student Notes

Your environment describes many things about your session to the programs that you run. It
describes your session to the system. Your environment contains information concerning the
following:

• The path name to your home directory

• Where to send your electronic mail

• The time zone you are working in

• Who you logged in as

• Where your shell will search for commands

• Your terminal type and size

• Other things your applications may need

51434P G.00 5-16
© 1999 Hewlett-Packard Company

Shell Basics

For example, the commands vi and more need to know what kind of terminal you are using
so they can format the output correctly.

An analogy to your user environment is your office environment. In the office, characteristics
such as lighting, noise, and temperature are the same for all workers. The factors in your office
that are unique to you make up your specific environment. These factors include what tasks
you are performing, the physical layout of your desk, and how you relate to other people in the
office. Your work environment is unique to you just like your user environment is unique.

Many applications require you to customize your environment in some way. This is done by
modifying your .profile file.

When you log in, you can check your environment by running the env command. It will
display every characteristic that is set in your environment.

In the env listing, the words to the left of the = are the names of the different environment
variables that you have set. Everything to the right of the = is the value associated with each
variable. See env(1) for more details.

Each one of these environment variables is set for a reason. Here are a few common
environment variables and their meanings:

TERM, COLUMNS, and
LINES

Describe the terminal you are using

HOME Path name to your home directory

PATH List of places to find commands

LOGNAME User name you used to log in

ENV and HISTFILE Special POSIX shell variables

DISPLAY Special X Window variable

Some of these variables are set for you by the system, while others are set in /etc/profile
or .profile .

5-17 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-9. TEXT PAGE: Common Variable Assignments

Common Variable Assignments

Variable names in BOLD denote variables you would customize.

EDITOR=/usr/bin/vi use vi commands for line editing

ENV=$HOME/.kshrc execute $HOME/.kshrc at shell startup

FCEDIT=/usr/bin/vi start vi edit session on previous command lines

HOME=/home/user3 designates your login directory

~ (tilde) POSIX shell equivalent for your HOME directory

HISTFILE=$HOME/
.sh_history

defines file that stores all interactive commands entered

LOGNAME=user3 designates your login identifier or user name

MAIL=/var/mail/user3 designates your system mailbox

OLDPWD=/tmp designates previous directory location

PATH=/usr/bin:$HOME/bin designates directories to search for commands

PS1= designates your primary prompt

PS1= ’[!] $ ’ displays command line number with
prompt

PS1=’$PWD $ ’ displays present working directory
with prompt (NOTE: must be
enclosed in single quotes(’), not
double quotes ("))

PS1=’[!]$PWD
$ ’

displays command line number and
present working directory with
prompt

PWD=/home/user3/tree designates your present working directory

SHELL=/usr/bin/sh designates your command interpreter program

TERM=2392a designates the terminal type of your terminal
use the command:
eval ‘tset -s -Q -h‘
During startup, this will read the file /etc/ttytype to
map your terminal port with the appropriate terminal

51434P G.00 5-18
© 1999 Hewlett-Packard Company

Shell Basics

type. This is useful if you have different models of
terminals attached to your system.

TMOUT=300 If no command or Return is entered in this number of
seconds, the shell will terminate or time out.

TZ=EST5EDT Defines the time zone the system should use to display
appropriate time

The TERM Variable

The TERM variable must be properly defined so that the UNIX system knows the
characteristics of your terminal. Many commands need to know what kind of terminal you are
on so that they can properly display their output. For example, more and vi must know how
many lines and columns are on your display for proper screen control.

The TERM variable can be explicitly defined with a variable assignment, or assigned through
the tset command which depends on the terminal device you are connected to and the
corresponding value in the file /etc/ttytype .

The following table summarizes some of the different terminal models and their associated
TERM value. If your terminal model is not below, you can refer to the subdirectories under
/usr/lib/terminfo .

Terminal Model TERM value

HP 2392a 2392a

HP 70092 70092

HP 70094 70094

vt 100 vt100

Wyse 50 wy50

Medium resolution graphics display
(512 x 600 pixels)

300l or hp300l

High resolution graphics display
(1024 x 768 pixels)

300h or hp300h

HP 98550 display station
(1280 x 1024 pixels)

98550, hp98550, 98550a, or hp98550a

HP 98720 or HP 98721 SRX
(1280 x 1024 pixels)

98720, hp98720, 98720a, hp98720a, 98721,
hp98721, 98721a, or hp98721a

HP 98730 or HP 98731 Turbo SRX
(1280 x 1024 pixels)

98730, hp98730, 98730a, hp98730a, 98731,
hp98731, 98731a, or hp98731a

5-19 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-10. SLIDE: What Happens at Login?

Student Notes

When you sit down to do work on the system, you see the login: prompt on the screen. When
you type your user name, the system reads your name and prompts you for a password. After
you enter your password, the system checks your user name and password in the system
password file (/etc/passwd). If the user name and password you entered are valid, the system
will place you in your home directory and start the shell for you. We have seen this happen
each time we logged in. Our question is—What really happens when the shell is started?

1. getty

a. Displays the contents of /etc/issue
b. Issues the login prompt
c. Runs login

2. login

a. Validates user name and password
b. Places user in home directory

51434P G.00 5-20
© 1999 Hewlett-Packard Company

Shell Basics

c. Runs the user’s shell

3. shell

a. Executes /etc/profile (POSIX, Bourne, and Korn shells) or /etc/csh.login (C
shell)

b. Executes .profile or .login in the user’s home directory
c. Executes .kshrc in the user’s home directory (POSIX and Korn shells) if the user has

created this file and if he has declared the ENV variable set to .kshrc in the .profile file
d. Issues the shell prompt

Once the shell starts running, it will read commands from a system command file called
/etc/profile . Whenever someone logs in and starts a shell, this file will be read. There is
also a file called .profile in your home directory. After /etc/profile is read, the shell
reads your own .profile . These two shell programs are used to customize a user’s
environment.

/etc/profile sets up the basic environment used by everyone on the system and .profile
further tailors that environment to your specific needs. Since everyone uses /etc/profile ,
the system administrator will take care of it. It is your responsibility, however, to maintain
you own .profile to set up your user environment.

When these two programs are finished, the shell issues the first shell prompt.

A Note About CDE

If you are logging in with CDE, login profile scripts /etc/profile , $HOME/.profile , and
$HOME/.login are normally not used by CDE. You may, however, force $HOME/.profile (for
sh or ksh users) or $HOME/.login (for csh users) to be run by setting the following
environment variable in .dtprofile :

DTSOURCEPROFILE=true

Otherwise, only .dtprofile will be executed at login. .dtprofile contains commented lines
of setup variables you need to set the CDE environment.

5-21 51434P G.00
© 1999 Hewlett-Packard Company

Shell Basics

5-11. LAB: Exercises

Directions

Complete the following exercises and answer the associated questions.

1. Set up an alias called go to change your working directory to tree and do an ls -F . Now
type the string go on the command line. What happens? Type pwd and see where you are. Now
change back to your home directory. (Hint: Multiple commands can be entered on one line
when separated with a semicolon.)

2. Make sure you are in your home directory. What happens when you type more f Esc Esc ?
Using this command line, how can you make it display funfile ?

3. From your HOME directory copy the file frankenstein to the directory
tree/car.models/ford/sports . Use file name completion to enter frankenstein and any
other directory or file name in the directory path.

51434P G.00 5-22
© 1999 Hewlett-Packard Company

Shell Advanced Features

Module 6 — Shell Advanced Features

Objectives

Upon completion of this module, you will be able to do the following:

• Use shell substitution capabilities, including variable, command, and tilde substitution.

• Set and modify shell variables.

• Transfer local variables to the environment.

• Make variables available to subprocesses.

• Explain how a process is created.

6-1 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-1. SLIDE: Shell Substitution Capabilities

Student Notes

There are three types of substitution in the shell:

• Variable substitution

• Command substitution

• Tilde substitution

Substitution methods are used to speed up command-line typing and execution.

51434P G.00 6-2
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-2. SLIDE: Shell Variable Storage

Student Notes

Built into the shell are two areas of memory for use with shell variables: the local data area
and the environment. Memory will be allocated from the local data area when a new variable
is defined. The variables in this area are private to the current shell, and are often referred to
as local variables. Any subsequent subprocesses will not have access to these local variables.
However, variables that are moved into the environment can be accessed by subprocesses.

There are several special shell variables that are defined for you through your login process.
Many of these variables are stored in the environment; some, such as PS1 and PS2, are
usually stored in the local data area. The values of these variables can be changed to
customize characteristics of your terminal session.

The env command can be used to display all of the variables that are currently held in the
environment, for example,

$ env
MANPATH=/usr/share/man:/usr/contrib/man:/usr/local/man
PATH=/usr/bin:/usr/ccs/bin:/usr/contrib/bin:/usr/local/bin

6-3 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

LOGNAME=user3
ERASE=^H
SHELL=/usr/bin/sh
HOME=/home/user3
TERM=hpterm
PWD=/home/user3
TZ=PST8PDT
EDITOR=/usr/bin/vi

51434P G.00 6-4
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-3. SLIDE: Setting Shell Variables

Student Notes

When a user creates a new variable, such as color, it will be stored in the local data area.
When assigning a new value to an existing environment variable, such as PATH, the new
value will replace the old value in the environment.

6-5 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-4. SLIDE: Variable Substitution

Student Notes

Each variable that is defined will have an associated value. When a variable name is
immediately preceded by a dollar sign ($), the shell will replace the parameter with the value
of the variable. This procedure is known as variable substitution and is one of the tasks the
shell performs before executing the command entered on the command line. After the shell has
made all of the variable substitutions on the command line, it will execute the command.
Therefore, variables can also represent commands, command arguments, or a complete
command line. This provides a convenient mechanism to rename frequently issued long path
names or long command strings.

Examples

This slide demonstrates some uses of shell variables. Notice that variable substitution can
appear anywhere in the command line, and multiple variables can be referenced in one
command line. As seen on the slide, an existing value of a variable can even be used to update
the current value of the variable.

$ echo $PATH

51434P G.00 6-6
© 1999 Hewlett-Packard Company

Shell Advanced Features

/usr/bin:/usr/contrib/bin:/usr/local/bin
$ PATH=$PATH:$HOME:.

$ echo $PATH
/usr/bin:/usr/contrib/bin:/usr/local/bin:/home/user3:.
$ echo $HOME
/home/user3
$ file_name=$HOME/file1 file_name=/home/user3/file1
$ more $file_name more /home/user3/file1
<contents of /home/user3/file1>

NOTE: The echo $name command provides an effective method to display the
current value of a variable.

The Use of {}

Assume you have a variable called file and a variable called file1. They can be assigned with
the following statements:

$ file=this
$ file1=that

$ echo $fileand$file1 looks for variables fileand, file1
sh: fileand: parameter not set
$ echo ${file}and$file1

looks for variables file, file1

thisandthat

The curly braces can be used to delimit the variable name from the surrounding text.

6-7 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-4. SLIDE: Variable Substitution (Continued)

Student Notes

The use of an absolute path name for the value of a variable that references a file or directory
allows you to be anywhere in the file hierarchy and still access the desired file or directory.

51434P G.00 6-8
© 1999 Hewlett-Packard Company

Shell Advanced Features

Consider the examples on the slide:

$ dir_name=tree/car.models/ford

$ echo $dir_name echo tree/car.models/ford
tree/car.models/ford
$ ls -F $dir_name ls -F tree/car.models/ford
sedan/ sports/

$ my_ls="ls -aFC" use quotes so shell ignores space
$ $my_ls ls -aFC
./ file.1 tree/
../ file.2
$my_ls $dir_name ls -aFC tree/car.models/ford
./ ../ sedan/ sports/
$ cd /tmp
$ dir_name=/home/user2/tree/dog.breeds/retriever

$ $my_ls $dir_name ls -aFC /home/user2/tree/dog.breeds/retriever
./ ../ golden labrador mixed

6-9 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-5. SLIDE: Command Substitution

Student Notes

Command substitution is used to replace a command with its output within the same command
line. The standard syntax for command substitution, and the one encouraged by POSIX, is
$(command) .

Command substitution allows you to capture the output of a command and use it as an
argument to another command or assign it to a variable. As in variable substitution, the
command substitution is performed before the leading command on the command line. When
the command output contains carriage return/line feeds, they will be replaced with blank
spaces.

Command substitution is invoked by enclosing the command in parentheses preceded by a
dollar sign, similar to variable substitution.

Any valid shell script may be put in command substitution. The shell scans the line and
executes any command it sees after the opening parenthesis until a matching, closing
parenthesis is found.

51434P G.00 6-10
© 1999 Hewlett-Packard Company

Shell Advanced Features

An alternate form of command substitution uses grave quotes surrounding the command, as in

‘ command‘

It is equivalent to $(command) , and is the only form recognized by the Bourne Shell. The
‘command‘ form should be used in scripts that may be run by POSIX, Korn, and Bourne Shell.

Examples

Command substitution is very commonly used to assign the output of a command to a variable
for later reference or manipulation. Normally the pwd command sends its output to your
screen. When you execute the assignment

$ curdir=$(pwd) OR $ curdir=‘pwd‘

the output of the pwd command is assigned to the variable curdir .

Consider this example:

$ echo date
date
$ banner date
######
#
######
#
######
$ echo $(date) executes: echo Thu Jul 11 16:40:32 EDT 1994
Thu Jul 11 16:40:32 EDT 1994
$ banner $(date) executes: banner Thu Jul 11 16:40:32 EDT 1994

####### # # # # # # # # ## ##
#
#
#
###

Normally the date command sends its output to your screen. When the command banner
date is executed, the string date is banner ed. In the second example when date is used with
command substitution, the shell will first execute the date command, and replace the date
argument with the output of the date command. Therefore, it will display the ten first
characters of banner Thu Jul 11 16:40:32 EDT 1994 .

6-11 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-6. SLIDE: Tilde Substitution

Student Notes

If a word begins with a tilde (~), tilde expansion is performed on that word. Note that tilde
expansion is provided only for tildes at the beginning of a word, that is, /~home/user3 has no
tilde expansion performed on it. Tilde expansion is performed according to the following rules:

• A tilde by itself or in front of a / is replaced by the path name set in the HOME variable.

• A tilde followed by a + is replaced with the value of the PWD variable. PWD is set by cd to
the new, current, working directory.

• A tilde followed by a - is replaced with the value of the OLDPWD variable. OLDPWD is set
by cd to the previous working directory.

• If a tilde is followed by several characters and then a / , the shell checks to see if the
characters match a user’s name on the system. If they do, then the ~characters sequence
is replaced by that user’s login path.

Tildes can be put in aliases:

51434P G.00 6-12
© 1999 Hewlett-Packard Company

Shell Advanced Features

$ pwd
/home/user3
$ alias cdn=’cd ~/bin’
$ cdn
$ pwd
/home/user3/bin

6-13 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-7. SLIDE: Displaying Variable Values

Student Notes

Variable substitution, $variable, can be used to display the value of an individual variable,
regardless of whether it is in the local data area or the environment.

The env command can be used to display all of the variables that are currently held in the
environment.

The set command will display all of the currently defined variables, local and environment,
and their values.

The unset command can be used to remove the current value of the specified variable. The
value is effectively assigned to NULL.

Both set and unset are shell built-in commands. env is the UNIX command /usr/bin/env .

51434P G.00 6-14
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-8. SLIDE: Transferring Local Variables to the Environment

Student Notes

The diagram on the slide illustrates transferring the variables color and count into the
environment by executing the following commands:

$ color=lavender
$ export color
$ export count=3
$ export
export PATH=/usr/bin:/usr/ccs/bin:/usr/contrib/bin:/usr/local/bin
export color=lavender
export count=3

In order for a variable to be available to other processes, it must exist in the environment.
When a variable is defined, it is stored in the local data space and must be exported to the
environment.

The export variable command will transfer the specified variable from the local data space to
the environment data space. export variable=value will assign (possibly update) the value of

6-15 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

a variable, and place it in the environment. With no arguments, the export command is
similar to the env command in that it will display the names and values of all exported
variables. Note that
export is a shell built-in command.

51434P G.00 6-16
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-9. SLIDE: Passing Variables to an Application

Student Notes

Every application or command on the system will have an associated program file stored on
the disk. Many of the standard UNIX system commands are found under the directory
/usr/bin . When a command is requested to run, the associated program file must be located,

the code loaded into memory and then executed. The running program is known as a UNIX
system process.

When you log in to your UNIX system, the shell program will be loaded, and a shell process
executed. When you enter the name of an application (or command) to run at the shell prompt,
a child process is created and executed through:

1. A fork which duplicates your shell process, including the program code, the environment
data space, and the local data space.

2. An exec which replaces the code and local data space of the child process with the code
and local data space of the requested application.

3. The exec will conclude by executing the requested application process.

6-17 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

While the child process is executing, the shell (the parent) will sleep, waiting for the child to
finish. Once the child finishes execution, it terminates, releases the memory associated with
its process, and wakes up the parent who is now ready to accept another command request.
You know the child process has concluded when the shell prompt returns.

Local versus Environment Variables

Anytime a new variable is defined, it will be stored in the local data area associated with the
process. If a child process requires access to this variable, the variable must be transferred
into the environment using export . Once a variable is in the environment, it will be made
available to all subsequent child processes because the environment is propagated to each
child process.

On the slide, before the vi command is issued, the color variable is in the shell’s local data
area, and the TERMvariable is in the environment. When the vi command is issued, the shell
performs a fork and exec; the local data area of the child process is overwritten by the child’s
program code, but the environment is passed, intact, to the child process. Therefore the child
process vi does not have access to the color variable, but it does have access to the TERM
variable. The vi editor needs to know the type of terminal the user is using to properly format
its editing screen. It gets this information by reading the value in the TERMvariable which is
available in its environment.

Therefore we see that one way of passing data to (child) processes is through the environment.

51434P G.00 6-18
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-10. SLIDE: Monitoring Processes

Student Notes

Every process that is initiated on the system is assigned a unique identification number,
known as a process ID (PID). The ps command displays information about processes currently
running (or sleeping) on your system, including the PID of each process and the PID of each
process’ parent (PPID). Through the PID and PPID numbers, you can trace the lineage of any
process that is running on your system. The ps command will also report who owns each
process, which terminal each process is executing through, and additional useful information.

6-19 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

The ps command is commonly invoked with no options, which gives a short report about
processes associated only with your terminal session, as follows:

$ ps
PID TTY TIME COMMAND
4702 ttyp4 0:00 sh
4894 ttyp4 0:00 ps

As you can see above, the command reveals that only the shell, sh , and the ps command are
running. Observe the PID numbers of the two processes. When invoked with the -f option, as
seen on the slide, the ps command produces a full listing, which includes the PPID numbers,
plus additional information. We can see that the ps -f command runs as a child of the shell
sh because its PPID number is the same as the PID number of the shell.

Remember that a shell is a program just like any other UNIX command. If we issue the ksh
command at our current POSIX shell prompt, a fork and exec will take place, and a Korn
shell child process will be created and will start executing. When we then execute another
ps -f , we see that, as expected, ksh runs as a child of the original shell, sh , and the new ps

command runs as a child of the Korn shell.

The exec command is available as a shell built-in command. If instead of running ps -f in
the usual way, we instead exec ps -f , the program code for ps will overwrite the program
code for the current process (ksh). This is evident because the PID of the ps -f is the same
number as ksh used to be. When ps -f terminates, we will find ourselves back at our original
POSIX shell prompt.

51434P G.00 6-20
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-11. SLIDE: Child Processes and the Environment

Student Notes

The slide illustrates that child processes cannot alter their parent process’ environment.

$ ps -f
UID FSID PID PPID C STIME TTY TIME COMMAND

user3 default_system 4702 1 0 08:46:40 ttyp4 0:00 -sh
user3 default_system 4895 4702 1 09:58:20 ttyp4 0:00 ps -f

If an initial ps -f command were executed, it would reveal that only our login shell, sh (and
ps , of course) is running. As seen on the slide, we will assign the value of lavender to the
variable color and export it into the environment. Next we will execute a child process. The
ksh command is invoked, creating a child Korn shell process. The ps -f command which
follows confirms this. Of course the parent shell’s environment has been passed to the child
Korn shell, and we observe that the variable color has the value lavender. We will then change
the value of the variable color by assigning a value of red. The echo command confirms that
the value of the variable color has changed in the child shell’s environment. When we exit the

6-21 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

child shell and return to the parent shell, we see that the parent’s environment has not been
altered by the child process, and the variable color has retained the value lavender.

51434P G.00 6-22
© 1999 Hewlett-Packard Company

Shell Advanced Features

6-12. LAB: The Shell Environment

Directions

Complete the following exercises and answer the associated questions.

1. Using command substitution, assign today’s date to the variable today.

2. Set a shell variable named MYNAME equal to your first name. How do you see the
contents of that variable?

3. Now start a child shell by typing sh . Look at the contents of MYNAME now. What
happened? Exit the child shell (use Ctrl + c Return or exit). Does the parent still know about
the variable MYNAME?

4. What command can be typed in the parent shell to enable the child to see the contents of
MYNAME? How can you see all variables that the child shell will inherit?

5. Start another child shell. Look at the variable MYNAME. Now set the variable MYNAME
equal to your partner’s name. Is MYNAME now a local or environment variable? List the
environment variables. What is MYNAME set to?

6. Now remove the variable MYNAME from the child shell. Does MYNAME exist either
locally or within the environment of the child shell? Why or why not?

6-23 51434P G.00
© 1999 Hewlett-Packard Company

Shell Advanced Features

7. Kill the child shell and return to your LOGIN shell. Does MYNAME still exist? Why or
why not? What commands did you use to verify this?

8. Modify your shell prompt so that it displays: good_day$. What happens to your prompt
when you log out and log back in?

9. Modify your shell prompt so that it displays your user identification name. For example if
you are logged in as user3 the prompt will display: user3$. (Hint: Is there an environment
variable that stores your login identifier?)

51434P G.00 6-24
© 1999 Hewlett-Packard Company

Input and Output Redirection

Module 7 — Input and Output Redirection

Objectives

Upon completion of this module, you will be able to do the following:

• Change the destination for the output of UNIX system commands.

• Change the destination for the error messages generated by UNIX system commands.

• Change the source of the input to UNIX system commands.

• Define a filter.

• Use some elementary filters such as sort , grep , and wc.

7-1 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-1. SLIDE: Input and Output Redirection — Introduction

Student Notes

Another feature that the shell provides is the capability to redirect the input or output of a
command. Most commands send their output to your terminal; examples include date ,
banner , ls , who, etc. Other commands get input from your keyboard; examples include mail ,
write , cat .

In the UNIX system everything is a file, including your terminal and keyboard.
Output redirection allows you to send the output of a command to some file other than your
terminal. Likewise, input redirection allows you to get the input for a command from some
file other than the keyboard.

Output redirection is useful for capturing the output of a command for logging purposes or
even for further processing. Input redirection allows you to use an editor to create a file, and
then send that file into the command, instead of entering it interactively with no edit
capabilities (for example the mail command).

51434P G.00 7-2
© 1999 Hewlett-Packard Company

Input and Output Redirection

This chapter will present input and output redirection, and introduce you to some UNIX
system filters. Filters are special utilities that can be used to further process the contents of a
file.

7-3 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-2. SLIDE: stdin, stdout, and stderr

Student Notes

Every time a shell is started, three files are automatically opened for your use. These files are
called stdin, stdout , and stderr .

The stdin file is the file from which your shell reads its input. It is usually called standard
input. This file is opened with the C language file descriptor, 0, and is usually attached to
your keyboard. Therefore, when the shell needs input, it must be typed in at the keyboard.

Commands that get their input from standard input include mail , write , and cat . They are
characterized by entering the command and arguments and a Return , and then the command
waits for you to provide input that it will process. The input is concluded by entering Return
Ctrl + d .

The stdout file is the file to which your shell writes its normal output. It is usually called
standard output. This file is opened with the C language file descriptor, 1, and is usually
attached to your terminal. Therefore, when the shell produces output, it is displayed to your
screen.

51434P G.00 7-4
© 1999 Hewlett-Packard Company

Input and Output Redirection

Most UNIX system commands generate standard output. Examples include date, banner,
ls, cat and who.

The stderr file is the file to which your shell writes its error messages. It is usually called
standard error. This file is opened with the C language file descriptor, 2. Like the stdout
file, the stderr file is usually attached to the monitor part of your terminal. The stderr file
can be redirected independently of the stdout file.

Most UNIX system commands will generate an error message when the command has been
improperly invoked. To see an example of an error message enter: cp Return . The cp usage
message will be displayed to your screen but actually was transmitted through the standard
error stream.

The purpose of this module is to show you how to change the default assignments of stdin ,
stdout , and stderr , thus taking the input from a file other than the keyboard, and
producing output (and error messages) somewhere other than the terminal.

7-5 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-3. SLIDE: Input Redirection — <

Student Notes

For commands that take their input from standard input, we can redirect the input so that it
comes from a file instead of from the keyboard. The mail command is often used with input
redirection. We can use an editor to create a file containing some text that we want to mail,
and then we can redirect the input of mail so that it uses the text in the file. This is useful if
you have a very long mail message, or want to save the mail message for future reference.

Commands that receive input from standard input are characterized by entering the command
and then the Return , and the command will wait for the user to provide input from the
keyboard. The input is concluded with Return Ctrl + d .

Many commands that accept standard input also accept file names as arguments. The files
specified as arguments will be processed by the command. The cat command is a good
example. The cat command can display text that is entered directly from the keyboard,
display the contents of files provided as arguments, or the contents of files redirected through
standard input.

51434P G.00 7-6
© 1999 Hewlett-Packard Company

Input and Output Redirection

Input from stdin: Operate on cmd line
arg(s): Redirect input:

$ cat Return $ cat file $ cat < file

input text here display file contents display file contents

Ctrl + d to conclude.

Contents of input text

displayed here

NOTE: Input redirection causes no change to the contents of the input file.

7-7 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-4. SLIDE: Output Redirection — > and >>

Student Notes

Many commands generate output messages to your screen. Output redirection allows you to
capture the output and save it to a text file.

If a command line contains the output redirection symbol (>) followed by a file name, the
standard output from the command will go to the specified file instead of to the terminal. If
the file didn’t exist before the command was invoked, then the file is automatically created. If
the file did exist before the command was invoked, then the file will be overwritten; the
command’s output will completely replace the previous contents of the file.

If you want to append to a file instead of overwriting, you can use the output redirection
append symbol (>>). This will also create the file if it didn’t already exist. There must be no
white space between the two > characters.

51434P G.00 7-8
© 1999 Hewlett-Packard Company

Input and Output Redirection

CAUTION: The shell cannot open a file for input redirection and output redirection
at the same time. So the only restriction is that the input file and the
output file must be different. You will lose the original contents of the file,
and the output redirection will also fail.
Example: cat f1 f2 > f1 will cause the contents of file f1 to be lost.

7-9 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-5. SLIDE: Error Redirection — 2> and 2>>

Student Notes

If a command is typed incorrectly such that the shell cannot properly interpret it, an error
message will often be generated. Even though the error messages are displayed on your
screen, they actually are transmitted through a different file from the ordinary output
messages. The error messages are transmitted through the error stream, known as stderr .
stderr is associated with file descriptor 2.

Therefore, when specifying error output redirection, you must designate that you want to
capture the messages being transferred out of stream 2. To redirect stderr use (2>). There
must be no white space between the 2 and the > characters. Similar to output redirection, this
will create a file if necessary, or overwrite the file if it exists. You can append to an existing file
using the (2>>) symbol.

This mechanism is very useful from an administrative viewpoint. Quite often, you are only
interested in the situations when commands fail or experience problems. Since the error
messages are separated from the regular output messages, you can easily capture the error
messages, and maintain a log file which records the problems your program encountered.

51434P G.00 7-10
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-6. SLIDE: What Is a Filter?

Student Notes

You have seen on the previous pages how to redirect the input or output of a command. Some
commands accept input from standard input and generate output to standard output. These
commands are known as filters. Filters never modify the contents of the file that is being
processed. Filtered results are usually transmitted to the terminal.

Filters are very useful for processing the contents of a file, such as counting the number of
lines (wc), performing an alphabetical sort (sort), or searching for lines that contain a pattern
(grep).

In addition, filters can be used to further process the output of any command. Since filters can
operate on files and the output of commands can be redirected to a file, the two operations can
be combined to perform powerful and flexible processing of the output of any command. Since
most filters send their results to standard output, the filtered results can be further processed
by capturing the filtered output to a file and executing another filter on the filtered file.

7-11 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-7. SLIDE: wc — Word Count

Student Notes

The wc command counts the number of lines, words, and characters submitted on standard
input or in a file. The command has options -l , -w , and -c . The -l option will display the
number of lines, the -w option will display the number of words, and the -c option will display
the number of characters. Regardless of the order of the options, the order of the output will
always be lines, words, and characters.

Since wc accepts input from standard input and writes its output to standard output, wc is a
filter. Executing wc on a file does not affect the contents of the file because all of the results
are sent to the screen.

51434P G.00 7-12
© 1999 Hewlett-Packard Company

Input and Output Redirection

Other Examples

$ wc Return count input provided through standard input
ab cde
fghijkl

mno pqr stuvwxyz

Ctrl + d

3 6 32
$ wc < funfile standard input replaced by file funfile
105 718 3967 no file name shown
$ wc -w funfile

718 funfile

wc will accept input from standard input as illustrated in the first example above. Since the wc
command accepts input from standard input, you can redirect a file into the wc command that
replaces the standard input stream. The syntax of the wc command also supports file names
as arguments, as shown on the slide, with the name of the file written out on the result.

7-13 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-8. SLIDE: sort — Alphabetical or Numerical Sort

Student Notes

The sort command is powerful and flexible. It can be used to sort the lines of a file(s) in
numerical or alphabetical order. A specific field on a line can also be selected upon which to
base the sort. sort is also a filter, so it will accept input from standard input, but it will also
sort the contents of files which are specified as command line arguments.

There are several options available to designate what kind of sort to be performed:

Sort Option Sort Type

none lexicographical (ASCII)

-d dictionary (disregards all characters that are not letters, numbers, or blanks)

-n numerical

-u unique (suppress all duplicate lines)

51434P G.00 7-14
© 1999 Hewlett-Packard Company

Input and Output Redirection

The default delimiter between fields is a blank character — either a space or a tab. You can
also specify a delimiter with the -t X option, where X represents the delimiter character.
Since the colon (:) holds no special meaning to the shell, it is a common selection as a
delimiter between fields in a file.

After you have determined what the delimiter between fields will be, you can inform the sort
command which field you would like to base your sort on by using the -k n option, where n
represents the field number the sort should sort upon. The sort command assumes that the
field numbering starts with one.

The sort command supports several options to perform more complex sort operations. Please
refer to sort(1) in the HP-UX Reference Manual for a full discussion of its capabilities.

Other Examples

$ sort Return sort input provided through standard input
mmmmm
xxxx
aaaa
Ctrl + d

aaaa
mmmmm
xxxx
$ sort < funfile standard input replaced by file funfile

sort will accept input from standard input, as illustrated in the first example above.
Therefore, you can also get the input from a file using input redirection.

NOTE: The shell cannot open a file for input redirection and output redirection
at the same time. However the sort option -o output_file can be
used to produce the output inside the argument given instead of the
standard output. Then this file may be the same name as the input file.

Example: sort -o whoson -d whoson will perform a dictionary sort
inside the file whoson .

7-15 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-9. SLIDE: grep — Pattern Matching

Student Notes

The grep command is very useful. It takes a (usually quoted) pattern as its first argument, and
it takes any number of file names as its remaining arguments. It is possible to make the grep
command searching for several patterns once by using the -e option before each pattern or the
-f option followed by a patterns list file. It searches the named files for lines which contain
the specified pattern. The grep command then displays the lines which contain the pattern.

There are four popular options to grep : -n , -v , -i and -c .

-c only a count of matching lines is printed

-i tells grep to ignore the case of the letters in the pattern

-n prepends line numbers to each line displayed

-v displays the lines which do not contain the pattern

51434P G.00 7-16
© 1999 Hewlett-Packard Company

Input and Output Redirection

As with all filters, if no file is specified, grep reads from standard input and sends its output
to standard output.

The grep command is capable of more complex searches. You can give a pattern of the text
you want to search for. Such a pattern is called a regular expression. Here is a list of some
special characters for the regular expressions (for further details see regexp(5)).

^ match beginning of the line

$ match end of the line

. match any single character

* the preceding pattern is to be repeated zero or more times

[] character class, specify a set of characters

[-] the hyphen characters (-) specifies a range of characters

[^] inverts the selection process

To avoid problems with the interpretation of the special characters through the shell, it is best
to enclose the regular expression in quotes.

7-17 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-10. SLIDE: Input and Output Redirection — Summary

Student Notes

51434P G.00 7-18
© 1999 Hewlett-Packard Company

Input and Output Redirection

7-11. LAB: Input and Output Redirection

Directions

Complete the following exercises and answer the associated questions.

1. Create two very short files called f1 and f2 using cat and output redirection.

2. Use the cat command to view their contents. Use the cat command to create a new file
called f.join that contains the contents of both f1 and f2 . Do you see any output on the
screen?

3. Use the cat command to display the contents of the file f1 , f2 and f.new .
NOTE: f.new should NOT exist.
What do you see on your screen? Is it obvious which messages went through standard output
and which messages went through standard error?

4. Again, use the cat command to display the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time capture any error messages that are generated and
send them to the file called f.error . What do you see on your screen? Was a new file created?
Check its contents.

5. Again, use the cat command to capture the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time, ON ONE COMMAND LINE, capture the standard
output messages to a file called f.good AND the error messages to a file called f.bad . What
do you see on your screen? Were any new files created? Check their contents.

7-19 51434P G.00
© 1999 Hewlett-Packard Company

Input and Output Redirection

6. Type the cp command with no arguments. What happens? Now try redirecting the output
from this command to the file cp.error . What happens? What must you do to redirect that
error message to a file? Does the cp command generate any standard output messages?

7. Sort the file /etc/passwd on the third field. What happens? Now do a numeric sort on
the third field. Any difference?

8. Display all of the lines in the file /etc/passwd that contain the string user. Save this
output to a file called grepped . Use a filter to determine how many lines in /etc/passwd
contain the string user.

9. Using redirection and filters, how many users are logged in on the system?

51434P G.00 7-20
© 1999 Hewlett-Packard Company

Pipes

Module 8 — Pipes

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the use of pipes.

• Construct a pipeline to take the output from one command and make it the input for another.

• Use the tee , cut , tr , more , and pr filters.

8-1 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-1. SLIDE: Pipelines — Introduction

Student Notes

A useful feature that the shell provides is the capability to link commands together through
pipelines. The UNIX system operating environment demonstrates its flexibility with the
capability of filtering the contents of files. With pipelines, you will be able to filter the output
of a command.

This chapter will introduce pipelines and then present some filters (cut , tr , tee , and pr) for
further processing of your files or command output.

51434P G.00 8-2
© 1999 Hewlett-Packard Company

Pipes

8-2. SLIDE: The | Symbol

Student Notes

The | symbol (read as the pipe symbol) is used for linking two commands together. The
standard output (stdout) of the command to the left of the | symbol will be used as the
standard input (stdin) for the command to the right. A command that appears in the middle
of a pipeline, therefore, must be able to accept standard input and produce output to standard
output.

Filters such as wc, sort , and grep accept standard input and generate standard output, so
they can appear in the middle of a pipe. By chaining commands and filters together, you can
perform very complex processes.

8-3 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

The following summarizes the requirements for commands in each position in the pipeline:

• Any command to the left of a | symbol must produce output to stdout .

• Any command to the right of a | symbol must read its input from stdin .

• Any command between two | symbols must accept standard input and produce output to
standard output. (It must be a filter.)

The more Command

The more command is used to display the contents of a file one screen at a time. The more
command is capable of reading standard input as well. Therefore it can appear on the right of
a pipe and be used to control the output of any command that generates output to standard
output. This is very useful when a command generates extensively long output to your screen
that you would like to view one screen at a time.

51434P G.00 8-4
© 1999 Hewlett-Packard Company

Pipes

8-3. SLIDE: Pipelines versus Input and Output Redirection

Student Notes

Input and output redirection will always be between a command and a file. Output redirection
will capture the standard output of a command and send it to a file. Output redirection is
commonly used for logging purposes or long-term storage of the output of a command. Input
redirection redirects the input to come from a file instead of from the keyboard. Input
redirection is rarely executed explicitly because most commands that accept standard input
also accept file names as command line arguments (exceptions include mail and write). But
the capability for input redirection is a requirement for a command that can appear on the
right side of a pipe symbol.

Pipelines always will be used to join together two commands. If you intend the output of a
command to be further processed by a command that accepts standard input, you should build
a pipeline. Input and output redirection is used to direct between a process and a file.
Pipelines are used to direct between processes.

8-5 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-4. SLIDE: Some Filters

Student Notes

Filters like sort or grep provide a flexible mechanism to perform processing on the output of
many commands. The remainder of this chapter will provide you with pipeline practice by
implementing three new filters. As with all filters, these commands accept standard input, so
they can appear on the right side of a pipeline, and they generate standard output, so they can
also appear on the left side of a pipeline (or in the middle of a pipeline).

The cut command allows you to cut out columns or fields of text from standard input or a file,
and send the result to stdout .

The tee command allows you to send the output of a command to a file and to stdout .

The pr command is used to format output. It is usually invoked to prepare to send a file to the
printer.

As with all filters, these commands will not modify the original file. The processed results will
be sent to standard output.

51434P G.00 8-6
© 1999 Hewlett-Packard Company

Pipes

8-5. SLIDE: The cut Command

Student Notes

The cut command is used to extract certain columns or fields from standard input or a file.
The specified columns or fields will be sent to standard output. The -c option is for cutting
columns, and the -f is for cutting fields. The cut command can accept its input from standard
input or from a file. Since it accepts standard input, it can appear on the right side of a pipe.

A list is a number sequence used to tell cut which fields or columns are desired. The field
specification is similar to the sort command. There are several permissible formats specifying
the list of fields or columns:

A- B Fields or columns A through B inclusive

A- Field or column A through the end of the line

- B Beginning of line through field or column B

A, B Fields or columns A and B

8-7 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

Any combination of the above is also permissible. For example:

cut -f1,3,5-7 /etc/passwd

would cut fields one, three, and five through seven from each line of /etc/passwd .

The default delimiter between fields is specified as the Tab character. If you require some
other delimiter, you can use the -d char option where char is the character that separates the
fields in your input. (This is similar to the sort command’s -t X option.) The colon is a
common delimiter, as it has no special meaning for the shell.

Also, the -s option, when cutting fields, will discard any lines that do not have the delimiter.
Usually, these lines are passed through with no changes.

Examples

$ cut -c1-3 Return

12345
123
abcdefgh
abc
Ctrl + d

$ date | cut -c1-3

51434P G.00 8-8
© 1999 Hewlett-Packard Company

Pipes

8-6. SLIDE: The tr Command

Student Notes

The tr command is useful to translate characters. It accepts standard input as well as file
names; therefore, it can be used in a pipeline.

The tr command can be used to convert many consecutive blank spaces to a single blank
space, as in the first example on the slide. You may have noticed that many UNIX system
commands will insert a variable number of spaces between their fields. Therefore, tr can be a
convenient predecessor to the cut command in a pipeline, when you would like to use a single
space as the delimiter between fields.

The tr command also can be used to substitute literal strings or convert text from lowercase
to uppercase and vice versa, as illustrated in the second example on the slide.

8-9 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-7. SLIDE: The tee Command

Student Notes

Generally, when you are executing a complex pipeline, the output of the intermediate
commands is submitted to the next command in the pipe and you will not be able to view the
intermediate output. The tee command is used to tap a pipeline. Tee reads from standard
input and writes its output to standard output and to the specified file. If the -a option is used,
then tee appends its output to the file instead of overwriting it.

The tee command is used predominantly under two circumstances:

• To collect intermediate output in a pipeline:
When you put a tee into the middle of a pipeline, you can capture the intermediate
processing, yet pass the output to the next command in the pipeline.

51434P G.00 8-10
© 1999 Hewlett-Packard Company

Pipes

• To send final output of a command to the screen and to a file:
This is a useful logging mechanism. You may want to run a command interactively and see
its output, but also save that output to a file. Remember when you just redirect the output
of a command to a file, no output is sent to the screen. So this implementation can be used
at the end of a pipeline, or at the end of any command that generates output.

8-11 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-8. SLIDE: The pr Command

Student Notes

The pr command stands for print to stdout; it is used to format the standard input stream or
the contents of specified files. It sends its output to the screen, not to the printer. The pr
command is typically executed, though, to format files in preparation for sending them to the
printer.

The pr command is useful for printing long files because it will insert a header on the top of
each new page that includes the file name (or header specified with the -h option), and a page
number.

The pr command supports many options. The following is a summary of some of the more
common ones:

-k Produces k-column output; prints down the column

-a Produces multicolumn output; used with -k ; prints across

-t Removes the trailer and header

51434P G.00 8-12
© 1999 Hewlett-Packard Company

Pipes

-d Doublespaces the output

-wN Sets the width of a line to N characters

-l N Sets the length of a page to N lines

-n CK Produces K-digit line numbering, separated from the line by the character C; C
defaults to Tab

-o N Offset the output N columns from the left margin

-p Pauses and waits for Return before each page

-h Uses the following string as the header text

8-13 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-9. SLIDE: Printing from a Pipeline

Student Notes

The lp command is used to queue a job for the printer. You submit a job by specifying a file
name as an argument to lp . The lp command also accepts standard input, so you can pipe to
the lp command as well. This allows the output of any command that generates standard
output to be printed.

Generally, the pr command is used to format the output of a command prior to submitting it
to the lp command for printing.

Because most pipelines will send their filtered output to stdout, it is easy to submit the output
of most filter operations to the printer. If you need to save the output of the pipeline and send
it to the printer, insert a tee prior to the lp command in the pipeline.

51434P G.00 8-14
© 1999 Hewlett-Packard Company

Pipes

8-10. SLIDE: Pipelines — Summary

Student Notes

8-15 51434P G.00
© 1999 Hewlett-Packard Company

Pipes

8-11. LAB: Pipelines

Directions

Complete the following exercises and answer the associated questions.

1. Construct a pipeline that counts the number of lines in /etc/passwd that contain the
pattern home. Now count the lines that do not contain the pattern.

2. Modify your pipeline from the above exercise so that you save all of the entries from
/etc/passwd that contain the pattern home to a file called all.users before passing the
output to be counted.

3. Create an alias called whoson that will display an alphabetical listing of the users
currently logged into your system.

4. Construct a pipeline that lists only the user name, size, and file name of each file in your
HOME directory into a file called listing.out . At the same time, display on your screen
only the total number of files.

5. Create a pipeline that will only capture the user name, user number, and HOME directory
of every user account on your system. First, output the list in alphabetical order by user name.
Second, use the same pipeline but now output the list in numerical order by user ID number.
Hint: the information can be found in /etc/passwd .

51434P G.00 8-16
© 1999 Hewlett-Packard Company

Using Network Services

Module 9 — Using Network Services

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the different network services in HP-UX.

• Explain the function of a Local Area Network (LAN).

• Find the host name of the local system and other systems in the LAN.

• Use the ARPA/Berkeley Services to perform remote logins, remote file transfers, and remote
command execution.

9-1 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-1. SLIDE: What Is a Local Area Network?

Student Notes

A Local Area Network (LAN) is a method of connecting two or more computer systems over
a small area. Most installations that have more than one computer will install a LAN to allow
the users to work on several different computers without physically picking up all of their
work and moving to the computer they want to work on.

The LAN services discussed in this module are the programs that allow us to use the LAN to
perform many tasks between computers. Some of these tasks are the following:

• Copy files from one computer to another. Without a LAN, you would have to make a tape
copy of your files, walk it over to the other computer, and reload the tape.

• Log in to another computer from a terminal on the local computer. Normally you would have
to actually go to the other computer to log in.

• Execute commands on another computer and see the results locally. Again, you would have
to move to the other computer if you did not have a LAN.

51434P G.00 9-2
© 1999 Hewlett-Packard Company

Using Network Services

• Access files on a remote computer. This means we will use the files on another computer’s
disk without copying the files to the local disk.

9-3 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-2. SLIDE: LAN Services

Student Notes

In this module we will look at two different groups of services to perform the basic LAN
functions we have discussed. These services are the following:

• ARPA Services

• Berkeley Services

The ARPA Services were first defined by the Defense Advanced Research Projects Agency
(DARPA) in the late 1960s. These services became a standard for communicating to many
different brands of computers across a single LAN. The ARPA Services that we will discuss
are telnet and ftp .

DARPA hired the University of California at Berkeley and Bolt, Baranek and Newman (BBN
of Massachusetts) to develop these services. In the mid 1970s Berkeley started working with
the new UNIX operating system. They eventually developed a more robust set of services to be
used between computers running the UNIX operating system. These are now called the

51434P G.00 9-4
© 1999 Hewlett-Packard Company

Using Network Services

Berkeley Services. We will introduce the Berkeley services rcp , rlogin , and remsh in this
module.

9-5 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-3. SLIDE: The hostname Command

Student Notes

Your computer has a host name. This is the name that identifies your system on the LAN. To
find your system’s host name, use the hostname command.

$ hostname
fred

If you want to communicate with another computer on the LAN, you must know its host
name. You can do this simply by asking the administrator of the other computer what the host
name is. You should also check that you have a user account on the machines that you want to
work with.

NOTE: In order to use any of the LAN services, you must be a valid user on the
remote computer.

You can also find host names in the /etc/hosts file. However, if you are part of a large LAN
installation, this file may contain several hundred entries.

51434P G.00 9-6
© 1999 Hewlett-Packard Company

Using Network Services

9-4. SLIDE: The telnet Command

Student Notes

telnet is the remote login facility of the ARPA Services.

If you type the command

$ telnet hostname

you will see the login prompt for the computer called hostname on your screen. At this point,
you can enter the user name and password that you use on that machine and you will be
logged in.

Once you are logged in, your terminal looks as if it were a terminal on the remote computer.
You can run shell commands or programs and even use the remote computer’s line printer. All
of the work you do is being executed on the remote computer. Your local computer is just
passing the information to and from your terminal through the LAN.

To close a telnet connection, simply log off the remote computer using Ctrl + d Return or exit .

9-7 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-5. SLIDE: The ftp Command

Student Notes

To copy a file to or from a remote computer using the ARPA Services, use the ftp command.
ftp stands for file transfer protocol. As with telnet , you must specify the host name of the
remote machine:

$ ftp hostname

ftp will prompt you for your user name and password on the remote system. It requires that
you have a password set on the remote computer. Once you give it the correct login
information, you will be connected to hostname.

51434P G.00 9-8
© 1999 Hewlett-Packard Company

Using Network Services

At this point you get the ftp> prompt. At this prompt you can use the numerous ftp
commands to do your work. Here are a few of the common ftp commands for performing
remote file transfers:

get rfile lfile This copies the file rfile on the remote computer to the file lfile on your
local computer. You can also use full path names as file names.

put lfile rfile This will copy the local file lfile to the remote file named rfile.

ls List the files on the remote computer. This works just like the ls command
we have been using.

? List all of the ftp commands.

help command Display a brief (very brief) help message for command.

quit Disconnect from the remote computer and leave ftp .

If, for example, you want to copy your local file called funfile to the /tmp directory on
another computer whose host name is fred, your session would look something like the
following. (The underlined text is what you type.)

$ f t p f r ed
Connected to fred.
220 fred FTP server (Version 1.7.109.2 Tue Jul 28 23:46:52 GMT 1992)
ready.

Name (fred:gerry): Return

Password (fred:gerry): E nt er your passwor d and pr ess
Return

331 Password required for gerry.
230 User gerry logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> p ut f unf i l e / t mp/ f unf i l e
200 PORT command successful.
150 Opening BINARY mode data connection for /tmp/funfile.
226 Transfer complete.
3967 bytes sent in 0.19 seconds (20.57 Kbytes/sec)

ftp> l s / t mp
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls /tmp.
-rw-rw-rw- 1 root sys 347 Jun 14 1993 exercises
-rw-rw-rw- 1 root sys 35 Oct 23 1993 cronfile
-rw-r----- 1 root sys 41 Jul 6 17:19 fio
-rwxrw-rw- 1 root sys 153 Oct 23 1993 initlaserjet
226 Transfer complete.
ftp> b ye
221 Goodbye.

The first thing you will notice about ftp is that it is very verbose. It has a response for every
command you type. (You can tell that it was not originally a UNIX system facility!)

9-9 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-6. SLIDE: The rlogin Command

Student Notes

The rlogin command performs functions similar to the telnet command. If you type

$ rlogin hostname

you will be logged in automatically to the system named hostname. rlogin assumes that you
are logging in to the remote computer with the same name you used to log in to the local
system. As a result, it does not have to prompt you for your user name.

If your system administrator has a file called /etc/hosts.equiv configured, rlogin will not
even prompt you for a password. This makes it very quick and easy to use. A file called
.rhosts can be created in your HOME directory which would also let you log in remotely to
that computer without using a password. See hosts.equiv(4) for more information on the
format of .rhosts .

As with telnet , to disconnect from the remote computer, simply log off.

51434P G.00 9-10
© 1999 Hewlett-Packard Company

Using Network Services

9-7. SLIDE: The rcp Command

Student Notes

rcp stands for remote cp . That is because it works just as the cp command does. It works
between two computers running the Berkeley Services. The general format of the command is

$ rcp host1:source host2:dest

in which the arguments mean copy the file source from host1 to the file called dest on host2.
source and dest could be full path names, of course.

9-11 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

If you are copying to or from a local file, you can leave off the local host name and the colon
(:). Some examples will help make rcp clearer:

• Copy the file funfile on the local machine (called bambam) to /tmp/funfile on the
system called fred :

$ rcp funfile fred:/tmp/funfile

• Copy /tmp/funfile on fred to the /tmp directory on barney :

$ rcp fred:/tmp/funfile barney:/tmp

All of the rules that apply to the cp command also apply to the rcp command.

NOTE: The file /etc/hosts.equiv or .rhosts must be configured correctly for
rcp to work.

51434P G.00 9-12
© 1999 Hewlett-Packard Company

Using Network Services

9-8. SLIDE: The remsh Command

Student Notes

remsh allows you to run a program on a remote computer and see the results on your
terminal. The general form of the command looks like the following:

$ remsh hostname command

For example, if you wanted to see what is running on the system fred , you could execute

$ remsh fred ps -ef

9-13 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

List the files in fred ’s /tmp directory:

$ remsh fred ls /tmp
fredfile
funfile
reconfig.log
update.log

Or, if you wanted to view the /etc/hosts file on fred :

$ remsh fred cat /etc/hosts | more

Notice that cat /etc/hosts is the only command being executed on fred . The output is
coming to our terminal and that output is being piped to more .

You can also use remsh to print files on a printer connected to another computer:

$ cat myfile | remsh fred lp

NOTE: The file /etc/hosts.equiv or .rhosts must be configured correctly for
remsh to work.

51434P G.00 9-14
© 1999 Hewlett-Packard Company

Using Network Services

9-9. SLIDE: Berkeley — The rwho Command

Student Notes

The rwho command operates similarly to the who command but will look for users on all of the
systems in your LAN that are running the rwho daemon.

9-15 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

9-10. SLIDE: Berkeley — The ruptime Command

Student Notes

The ruptime command will display the status of the systems in the LAN, whether they are
up or down, how many users are currently running on each system, and machine loading
information.

Looking at the entry for fred on the slide:

• fred in presently up.
• fred has been up for 1 day, 5 hours and 15 minutes.
• fred has 4 users logged in.
• Over the last 1-minute interval, an average of 1.47 jobs have been in the run queue.
• Over the last 5-minute interval, an average of 1.16 jobs have been in the run queue.
• Over the last 15-minute interval, an average of 0.80 jobs have been in the run queue.

51434P G.00 9-16
© 1999 Hewlett-Packard Company

Using Network Services

9-11. LAB: Exercises

Directions

Ask your instructor which exercises you can do in the classroom. Also find out the host names
of the computers with which you can communicate.

1. Use the hostname command to determine the name of your local system. What systems
can you communicate with?

2. Use telnet to log in to another computer. Use the hostname command to verify that you
are connected to the correct computer. Log off the remote computer when you have finished.

3. Transfer one of your files to your HOME directory on a remote computer using ftp , and
then use rcp to copy another file to the remote machine. Notice the differences.

4. Use remsh to list the contents of the remote directory to verify that the copy worked.

9-17 51434P G.00
© 1999 Hewlett-Packard Company

Using Network Services

51434P G.00 9-18
© 1999 Hewlett-Packard Company

Process Control

Module 10 — Process Control

Objectives

Upon completion of this module, you will be able to do the following:

• Use the ps command.

• Start a process running in the background.

• Monitor the running processes with the ps command.

• Start a background process which is immune to the hangup (log off) signal.

• Bring a process to the foreground from the background.

• Suspend a process.

• Stop processes from running by sending them signals.

10-1 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-1. SLIDE: The ps Command

Student Notes

Every process that is initiated on the system is assigned a unique identification number,
known as a process ID (PID). The ps command displays information about processes currently
running (or sleeping) on your system, including the PID of each process and the PID of each
process’s parent (PPID). Through the PID and PPID numbers, you can trace the lineage of
any process that is running on your system. The ps command will also report who owns each
process and which terminal each process is executing through.

The ps command is commonly invoked with no options, which gives a short report about
processes associated only with your terminal session. The -e option reports about every
process running on the system, not just your own. The -f and -l options report full and long
listings which include additional detail on the processes.

In this slide we show two invocations of ps . The first just reports information about processes
associated with our terminal. As we would expect, the processes associated with our terminal
consist of a shell (our login shell) and the ps command that is currently running.

51434P G.00 10-2
© 1999 Hewlett-Packard Company

Process Control

The second example shows a portion of the output of a ps giving a full (-f option) listing of
every
(-e option) process on the system.

NOTE: Be aware that the ps command is CPU intensive, and you may notice a
slower response while it is executing.

10-3 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-2. SLIDE: Background Processing

Student Notes

The command line

command line > cmd.out &

• Schedules command line to run as a job in the background.

• Prompt returns as soon as job is initiated.

• Redirect output of scheduled command, so command output does not interfere with
interactive commands.

• Logging out will terminate processes running in the background. The user will get a
warning the first time exit is attempted: "There are running jobs". exit or Ctrl + d must be
typed again to effectively terminate the session.

Some commands take a long time to complete, such as searching for a single file throughout
the entire disk or using one of the text processing utilities to format and print a manual

51434P G.00 10-4
© 1999 Hewlett-Packard Company

Process Control

transcript. The UNIX operating system allows you to start a time consuming program and run
it in the background where the UNIX system will take care of continuing the execution of your
program. Unlike other commands you have executed up to this point, the shell does not wait
for the completion of commands requested to run in the background. You will get your prompt
back as soon as the command has been scheduled, allowing you to continue with other
activities.

To request a command to run in the background, terminate the command line with an
ampersand (&). It is common to redirect the output of the background command, so that
output generated by background processes does not interfere with your interactive terminal
session. If the output is not redirected, any output that normally goes to standard output from
the command running in the background will be sent to your terminal.

Since the shell will have control over standard input, commands that are running in the
background are not able to accept input from standard input. Therefore, any commands
running in the background that require standard input must get their input from a file using
input redirection.

When a command is put into the background, the shell reports the job number and process ID
number of the background command, if the monitor option is set (set -o monitor). The
job number identifies the number of the requested job relative to your terminal session, and
the process ID identifies the system-wide unique process identifier that is assigned by the
UNIX system to every process that is executed. The monitor option will also cause a message
to be displayed when the backgrounded process is completed.

[1]+ Done grep user * > grep.out &

Since a command that is running in the background is disconnected from the keyboard, you
cannot stop a background command with the interrupt key, Ctrl + c . Background commands
can be terminated with the kill command or by logging out.

NOTE: A background process should have all of its input and output explicitly
redirected.

NOTE: A background job may consist of multiple commands. Simply put the
commands in parentheses (cmd1,cmd2,cmd3) and the operating system
will treat them as one job.

10-5 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-3. SLIDE: Putting Jobs in Background/Foreground

Student Notes

In the POSIX shell, processes can be placed in the foreground or the background. If you are
currently running a lengthy process in the foreground, you can issue the susp character, which
is usually set to Ctrl + z . The suspend character is commonly designated at login through
.profile , with the entry, stty susp ^Z . This will temporarily stop your foreground process
and provide a shell prompt. You can then use the bg %num or the bg %string to transfer your
job to the background. num is the job number returned from the jobs command, and string is
the beginning of the command line of the job.

Likewise, if you have a process running in the background that you would like to bring to the
foreground, you can use the fg command. The foreground command will then control your
terminal until it is completed or suspended.

51434P G.00 10-6
© 1999 Hewlett-Packard Company

Process Control

10-4. SLIDE: The nohup Command

Student Notes

The UNIX operating system provides the nohup command to make commands immune to
hanging up and logging off. The nohup command is one of a group of commands in the UNIX
system known as prefix commands, which precede another command. It is most often used
in conjunction with commands that you want to run in the background. Remember that
logging out usually terminates background jobs. When a background command is nohup ’ed,
you can log out and the UNIX system will complete the execution of your process even though
the program’s parent shell is no longer running. Notice that when the parent shell of the
nohup command is terminated, the command will be adopted by process 1 (init). You can
later log in and view the status or results of the nohup command.

When using nohup , the user will normally redirect the output to a file. If the user does not
specify an output file, nohup will automatically redirect the output to a file called nohup.out .
Note that nohup.out will accumulate both stdout and stderr .

10-7 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-5. SLIDE: The nice Command

Student Notes

The UNIX operating system is a time-sharing system, and process priorities are the basis for
determining how often a program will have access to the system’s resources. Jobs with lower
priorities will have less frequent access to the system than jobs with higher priorities. For
example, your terminal session has a relatively high priority to guarantee a prompt,
interactive response.

The nice command is another prefix command that allows you to execute a program at a
lower priority. It is useful when issuing commands whose completion is not required
immediately, such as formatting the entire collection of manual pages.

51434P G.00 10-8
© 1999 Hewlett-Packard Company

Process Control

The syntax is

nice [- increment] command line

where increment is an integer value between one and nineteen. The default increment is 10. A
process with a higher nice value will have a lower relative system priority. The nice value is
not an absolute priority modifier.

You can view process priorities with the ps -l command. The priorities are displayed under
the column headed PRI. Jobs that have a higher priority will have a lower priority value. The
nice value is displayed under the column headed NI.

Most systems are started up with a default nice value of 20 for foreground processes, and 24
for background processes. The maximum value is 39, so the maximum increments are 19 and
15. Greater increments will not cause the value to rise above 39. Negative increments can only
be used by the root user.

10-9 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-6. SLIDE: The kill Command

Student Notes

The kill command can be used to terminate any command including nohup and background
commands. More specifically, kill sends a signal to a process. The default action for a process
is to die when most signals are received. The issuer must be the owner of the target
commands; kill cannot be used to kill another user’s commands unless the kill is issued by
the super-user.

In the UNIX system, it is not possible to actually kill a process. The most the UNIX system will
do is request that a process terminate itself. By default, kill sends the TERMsignal (software
termination signal) to the specified processes. This normally kills processes that do not catch or
ignore the signal. Other signals, listed in the table below, can be specified using the -s option.
The closest thing to a sure kill that a UNIX system provides is the KILL signal (kill signal).

To kill a process, you can specify the process ID or the job number. When specifying the job
number, it must be prefixed with the %metacharacter. If the process specified is 0, then kill
terminates all processes associated with the current shell, including the current shell.

Signal name Signal meaning

51434P G.00 10-10
© 1999 Hewlett-Packard Company

Process Control

EXIT Null signal
HUP Hang up signal
INT Interrupt
QUIT Quit
ILL Illegal instruction (not reset when caught)
TRAP Trace trap (not reset when caught)
ABRT Process abort signal
EMT EMT instruction
FPE Floating point exception
KILL Kill (cannot be caught of ignored)
BUS Bus error
SEGV Segmentation violation
SYS Bad argument to system call
PIPE Write on a pipe with no one to read it
ALRM Alarm clock
TERM Software termination signal from kill
USR1 User-defined signal 1
USR2 User-defined signal 2
CHLD Child process terminated or stopped
PWR Power state indication
VTALRM Virtual timer alarm
PROF Profiling timer alarm
IO Asynchronous I/O signal
WINCH Window size change signal
STOP Stop signal (cannot be caught or ignored)
TSTP Interactive stop signal
CONT Continue if stopped
TTIN Read from control terminal attempted by a member of a background process

group
TTOU Write to control terminal attempted by a member of a background process

group
URG Urgent condition on I/O channel
LOST Remote lock lost (NFS)

NOTE: The command kill -l will write all values of signal_name supported by
the implementation. No signals are sent with this option. When -l option
is specified, the symbolic name of each signal is written to the standard
output:

$ kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM TERM USR1
USR2 CHLD PWR VTALRM PROF IO WINCH STOP TSTP CONT TTIN TTOU URG LOST

10-11 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

10-7. LAB: Process Control

Directions

Complete the following exercises and answer the associated questions.

1. Under your HOME directory you will find a program called infinite . Execute this
program in the foreground and notice what it does. Enter a Ctrl + c to terminate the program.

$ infinite
hello
hello
hello
Ctrl + c
$

2. Run infinite in the background and redirect its output to a file called infin.out

$ infinite > infin.out &

Execute the ps -f command. Take note of the PID and PPID of the infinite program. Now
log out, log in again, and execute the ps -ef | grep user_id, where user_id is your login
identifier. Where is the infinite process? Remove infin.out before the next exercise.

3. The nohup command protects a process from terminating upon the death of its parent
process. Re-run the infinite command in the background, but protect it from logging out by
issuing it with nohup .

$ nohup infinite > infin.out &

Now log out and log in again. Execute the ps -ef | grep user_id again. Is infinite still
running? Who is its parent now?

4. Use the kill command to terminate your infinite program.

51434P G.00 10-12
© 1999 Hewlett-Packard Company

Process Control

5. Run the infinite program in the foreground and redirect its output to infin.out. Suspend
the program by issuing Ctrl + z . You will see a message on the screen telling you that the
process has been stopped. Send infinite to the background, and note the message.
Terminate the
infinite program with the kill command.

10-13 51434P G.00
© 1999 Hewlett-Packard Company

Process Control

51434P G.00 10-14
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

Module 11 — Introduction to Shell Programming

Objectives

Upon completion of this module, you will be able to do the following:

• Write basic shell programs.

• Pass arguments to shell programs through environment variables.

• Pass arguments to shell programs through the positional parameters.

• Use the special shell variables, * , and #.

• Use the shift and read commands.

11-1 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-1. SLIDE: Shell Programming Overview

Student Notes

The shell is a command interpreter. It interprets the commands that you enter at the shell
prompt. However, you can have a group of shell commands that you wish to enter many times.
The shell provides the capability to store these commands in a file and execute this file just
like any other program provided with your UNIX system. This command file is known as a
shell program or a shell script. When running the program, it will execute just as if the
commands were entered interactively at the shell prompt.

In order for the shell to access your shell program for execution, the shell must be able to read
the program file and execute each line. Therefore, the shell program’s permissions must be set
to read and execute. So that the shell can find your program, you can enter the complete path
of the program, or the program must reside in one of the directories designated in your PATH
variable. Many users will create a bin directory under their HOME directory to store scripts
that they have developed and include $HOME/bin in their PATH variable.

Rather complex shell scripts can be developed because the shell supports variables, command
line arguments, interactive input, tests, branches, and loops.

51434P G.00 11-2
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-2. SLIDE: Example Shell Program

Student Notes

To create and run a shell program, consider the following:

$ vi myprog A file containing shell commands
this is the program myprog

date
ls -F
$ chmod +x myprog File mode includes execution
$ myprog Enter file name to execute program
Thu Jul 11 11:10 EDT 1994

f1 f2 memo/ myprog*

First the shell program myprog is created using a text editor. Before the program can be run,
the program file must be given execute permission. Then the program name can be typed at
the shell prompt. As seen on the slide, when myprog is executed, a child shell process is
created. This child shell reads its input from the shell program file myprog instead of from the
command line. Each command in the shell program is executed, in turn, by the child shell.

11-3 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

Once all of the commands have been executed, the child shell terminates and returns control
to the original parent shell.

Comments in a Shell Program

It is recommended that you provide comments in your shell program that identify and clarify
the contents of the program. Comments are preceded by a # symbol. The shell will not attempt
to execute anything that follows the #, which can appear anywhere in the command line.

NOTE: You should never call a shell program test because test is a built-in
shell command.

51434P G.00 11-4
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-3. SLIDE: Passing Data to a Shell Program

Student Notes

One way to pass data to a shell program is through the environment. In the example on the
slide, the local variable color is assigned the value lavender. Then the shell program color1 is
created; its permissions are changed to include execute permission; it is then executed.
color1 attempts to echo the value of the variable color. However, since color is a local
variable that is private to the parent shell, the child shell running color1 does not recognize
the variable, and can therefore not print its value. When color is exported into the
environment, it is then accessible to the shell program commands running in the child shell.

11-5 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

Also, since a child process cannot change the environment of its parent process, reassigning
the value of an environment variable in a child shell will not affect the value of that variable
in the parent’s environment. Consider the following shell script, color2 , which is found in
your HOME directory:

echo The original value of the variable color is $color
echo This program will set the value of color to amber
color=amber
echo The value of color is now $color
echo When your program concludes, display the value of the color variable.

Observe what happens when we set the value of color, export it, and then execute color2 :

$ export color=lavender
$ echo $color
lavender
$ color2
The original value of the variable color is lavender
This program will set the value of color to amber
The value of color is now amber
When your program concludes, display the value of the color variable.
$ echo $color
lavender

51434P G.00 11-6
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-4. SLIDE: Arguments to Shell Programs

Student Notes

Most UNIX system commands accept command-line arguments, which often inform the
command about files or directories upon which the command should operate (cp f1 f2),
specify options that extend the capabilities of the command (ls -l), or just supply text strings
(banner hi there).

Command-line argument support is also available for shell programs. They are a convenient
mechanism to pass information into your utility. When you develop your program to accept
command-line arguments, you can pass file or directory names that you want your utility to
manipulate, just as you do with the UNIX system commands. You can also define command
line options that will allow command-line access to extend capabilities of your shell program.

The arguments on the command line are referenced within your shell program through special
variables that are defined relative to an argument’s position in the command line. Such
arguments are called positional parameters because the assignment of each special variable
depends on an argument’s position in the command line. The names of these variables
correspond to their numeric position on the command line, thus the special variable names are
the numbers 0,1,2 , and so on, up through the last parameter passed. The values of these

11-7 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

variables are accessed in the same way as any other variable’s value is accessed — by
prefixing the name with the $ symbol. Therefore, to access the command line arguments in
your shell program, you would reference $0,$1,$2 , and so on. After $9 , the curly brace
notation must be used: ${10},${24} , and so on, otherwise the shell would think $10 was $1
with a 0 (zero) appended to it. $0 will always hold the program or command name.

The only disadvantage to developing a program that accepts command-line arguments is that
the users must know the proper syntax and what the command-line arguments represent. For
example, how do you know that the cp command can copy one file to another file or several
files to a directory? What happens when you type the command in and provide three file names
as arguments: cp f1 f2 f3 ? You have a UNIX system reference manual that provides you
with the proper syntax, and the UNIX system will supply a usage message if you have not
typed the command in properly (try entering cp Return). You will need to supply similar usage
aids to any other users that you will expect to utilize the programs that you develop.

51434P G.00 11-8
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-4. SLIDE: Arguments to Shell Programs (Continued)

Student Notes

This example demonstrates a program that has designated the first command-line argument
to be the name of a file, which will be made executable and then moved to the bin directory
under your current directory.

Remember the UNIX system convention to store programs under a directory called bin . You
may want to create a bin directory under your HOME directory where your shell programs
can be stored. Remember to append your bin directory to the PATH variable so that the shell
can find your programs.

11-9 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-5. SLIDE: Some Special Shell Variables — # and *

Student Notes

The shell programs we’ve seen so far have not been very flexible. color3 expected exactly two
arguments, and my_install expected only one argument. Often when you create a shell
program that accepts command-line arguments, you would like to allow the user to type in a
variable number of arguments. You would like the program to execute successfully if the user
types in 1 argument or 20 arguments.

The special shell variables # and * will provide you with a lot of flexibility when dealing with a
variable argument list. You will always know how many arguments have been entered through
$# , and you can always access the entire argument list through $* , regardless of the number of
arguments. Notice that the command ($0) is never included in the argument list variable $* .

Each command-line argument will still maintain its individual identity as well. So you can
reference them collectively through $* or individually through $1, $2, $3 , and so on.

51434P G.00 11-10
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-5. SLIDE: Some Special Shell Variables — # and * (Continued)

Student Notes

The installation program is now more flexible. If you have several scripts that need to be
installed, you only have to execute the program once and supply all of the names on the
command line.

It is important to note that if you plan to pass the entire argument string to a command, it
must be able to accept multiple arguments.

11-11 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

Consider the following script, in which the user provides a directory name as a command line
argument. The program will change to the designated directory, display its current position,
and then list the contents:

$ cat list_dir
cd $*
echo You are in the $(pwd) directory
echo The contents of this directory are:
ls -F
$ list_dir dir1 dir2 dir3
sh: cd: bad argument count

Since the cd command cannot change to more than one directory, the program will incur an
error.

51434P G.00 11-12
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-6. SLIDE: The shift Command

Student Notes

The shift command will reassign the command-line arguments to the positional parameters,
allowing you to increment through the command-line arguments. After a shift n, all
parameters in * are moved to the left n positions and # is decremented by n. The default for n
is 1. The shift command does not affect the positional parameter 0.

Once you have completed a shift, the arguments that have been shifted off of the command
line are lost. If you will need to reference them later in your program, you will need to save
them before you execute the shift .

The shift command is useful for

• accessing positional parameters in groups, such as a series of x and y coordinates

• discarding command options from a command line, assuming that the options precede the
arguments

11-13 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

Example

The following shows the output that would be generated if the shell program illustrated in the
slide were executed:

$ color5 red green yellow blue orange black

There are 6 command line arguments
They are red green yellow blue orange black
Shifting two arguments
There are 4 command line arguments
They are yellow blue orange black
Shifting two arguments
Original arguments are: red green yellow blue orange black
Final arguments are: orange black
$

51434P G.00 11-14
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-7. SLIDE: The read Command

Student Notes

Command-line arguments allow a user to pass information into a program when the program
is invoked, and the user must know the correct syntax before the command is executed. There
are situations, though, in which you would rather have the user execute just the program and
then prompt him or her to provide input during the program execution. The read command is
used to gather information typed at the terminal during the program execution.

You will usually want to provide a prompt to the user with the echo command so that he or
she knows that the program is waiting for some input, and inform the user about what type of
input is expected. Therefore, each read statement should be preceded by an echo statement.

The read command will specify a list of variable names, whose values will be assigned to the
words (delimited by white space) that the user supplies at the prompt. If there are more
variables specified by the read command than there are words of input, the leftover variables
are assigned to NULL. If the user provides more words than there are variables, all leftover
data is assigned to the last variable in the list.

Once assigned, you can access these variables just as you can access any other shell variables.

11-15 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

NOTE: Do not confuse positional parameters with variables read. Positional
parameters are specified on the command line when you invoke a
program. The read command assigns variable values through input
provided during program execution in response to a programmed prompt.

echo and Escape Characters

There are several special escape characters that the echo command interprets that provide
line control. Each escape character must be preceded by a backslash (\) and enclosed in quotes
("). These escape characters are interpreted by echo , not by the shell.

Character Prints

\a Alert character (equivalent to Ctrl + g).

\b Backspace.

\c Suppresses the terminating newline.

\f Formfeed.

\n Newline.

\r Carriage return.

\t Tab character.

\\ Backslash.

\ nnn The character whose ASCII value is nnn, where nnn is a one- to
three-digit octal number that starts with a zero.

51434P G.00 11-16
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-7. SLIDE: The read Command (Continued)

Student Notes

This version of the install routine will prompt the user for the file names to chmod and move
to the $HOME/bin directory. This program gives the user a little more direction regarding
what input is expected compared to install2 in which the user must supply the file names
on the command line. There is no special syntax the user must know to invoke this program.
The program lets the user know exactly what it expects. All entered file names will be
assigned to the variable filenames.

11-17 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

11-8. LAB: Introduction to Shell Programming

Directions

Complete the following exercises and answer the associated questions.

1. Create a program my_vi that will accept a command-line argument which designates a
file to edit. my_vi should make a backup copy of the specified file and then start a vi session
on the file. Use an extension like .bak when creating the backup file. At this point, only use
file names of ten characters or less.

2. Write a shell program called info that will prompt the user for the following:

• name

• street address

• city, state, and zip code

The program should then store the replies in variables and display what the user entered with
an informative format.

3. Write a shell program called home that prompts for any user’s login_id and displays that
user’s HOME directory. Recall that the HOME directory is the sixth field in the /etc/passwd
file. You should display the login_id’s from the /etc/passwd file in four columns so that the
user knows what the available login IDs are.

4. Write a shell program called alpha that will display the first and last command line
arguments. Hint: use the cut command.

51434P G.00 11-18
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

5. Create a shell program called copy that will provide a user interface to the cp command.
Your program should prompt the user for the names of the files that he or she wants copied,
and then prompt the user for the destination of the copy. The destination should be a directory
when copying multiple files, and the destination can be a file when copying only one file. Ring
the bell when the program is completed.

11-19 51434P G.00
© 1999 Hewlett-Packard Company

Introduction to Shell Programming

51434P G.00 11-20
© 1999 Hewlett-Packard Company

Shell Programming — Branches

Module 12 — Shell Programming — Branches

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the use of return codes for conditional branching.

• Use the test command to analyze the return code of a command.

• Use the if and case constructs for branching in a shell program.

12-1 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-1. SLIDE: Return Codes

Student Notes

All UNIX operating system commands will generate a return code upon completion of the
command. This return code is commonly used to determine whether a command completed
normally (returning 0) or encountered some error (returning non-zero). The non-zero return
code often reflects the error that was generated. For example, syntax errors will commonly set
the return code to 1. The command true will always return 0 and the command false will
always return 1.

Most programming decisions will be controlled by analyzing the value of return codes. The
shell defines a special variable ? that will hold the value of the previous return code.

51434P G.00 12-2
© 1999 Hewlett-Packard Company

Shell Programming — Branches

You can always display the return code of the previous command with

echo $?

When executing conditional tests (that is, less than, greater than, equality), the return code
will denote whether the condition was true (return 0) or false (returning non-zero).
Conditional tests will be presented on the next several slides.

12-3 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-2. SLIDE: The test Command

Student Notes

The test command is used to evaluate expressions and generate a return code. It takes
arguments that form logical expressions and evaluates the expressions. The test command
writes nothing to standard output. You must display the value of the return code to determine
the result of the test command. The return code will be set to 0 if the expression evaluates to
true, and the return code will be set to 1 if the expression evaluates to false.

The test command is initially presented alone so that you can display the return codes. But it
is most commonly used with the if and while constructs to provide conditional flow control.

The test command can also be invoked as [expression] . This is intended to assist readability,
especially when implementing numerical or string tests.

NOTE: There must be white space around [and] .

51434P G.00 12-4
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-3. SLIDE: The test Command — Numeric Tests

Student Notes

The test command can be used to evaluate the numerical relationship between two integers.
It is commonly invoked with the [...] syntax. The return code of the test command will
denote whether the condition was true (returning 0) or false (returning 1).

The numeric operators include

-lt Is less than
-le Is less than or equal to
-gt Is greater than
-ge Is greater than or equal to
-eq Is equal to
-ne Is not equal to

When testing the value of a shell variable, you should protect against the possibility that the
variable may contain nothing. For example, look at the following test statement:

12-5 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

$ [$ XX -eq 3]
sh: test: argument expected

If XX has not been previously assigned a value, XX will be NULL. When the shell performs
the variable substitution, the command that the shell will attempt to execute will be

[-eq 3]

which is not a complete test statement and is guaranteed to cause a syntax error. A simple
way around this is to quote the variable being tested.

["$ XX" -eq 3]

When the shell performs the variable substitution, the command that the shell will attempt to
execute will be

["" -eq 3]

This will ensure that the variable will contain at least a NULL value and will provide a
satisfactory argument for the test command.

NOTE: As a general rule, you should surround all $variable expressions with
double quotation marks to avoid improper variable substitution by the
shell.

51434P G.00 12-6
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-4. SLIDE: The test Command — String Tests

Student Notes

The test command can also be used to compare the equality or inequality of two strings.
The [...] syntax is commonly used for string comparisons. You have already seen that
there must be white space surrounding the [] , and there must also be white space provided
around the equivalence operator.

The string operators include the following:

string1 = string2 True if string1 and string2 are identical.

string1 != string2 True if string1 and string2 are not identical.

-z string True if the length of string is zero.

-n string True if the length of string is non-zero.

string True if the length of string is non-zero.

12-7 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

Quotation marks will also protect the string evaluation if the value of the variable contains
blanks. For example,

$ X="Yes we will"

$ [$X = yes] causes a syntax error

Interpreted by the shell as: [Yes we will = yes]

$ ["$X" = yes] proper syntax

Interpreted by the shell as: ["Yes we will" = yes]
This will be evaluated correctly since the quotation marks surround the string.

Numerical versus String Comparison

The shell will treat all arguments as numbers when performing numerical tests, and all
arguments as strings when performing string tests. This is best illustrated by the following
example:

$ X=03
$ Y=3

$ ["$X" -eq "$Y"] compares numeral 03 with numeral 3
$ echo $?

0 true—they are equivalent numerically
$ ["$X" = "$Y"] compares the string "03" with the string "3"
$ echo $?
1 false—they are not equivalent strings

51434P G.00 12-8
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-5. SLIDE: The test Command — File Tests

Student Notes

A useful testing feature provided by the shell is the capability to test file characteristics such
as file type and permissions. For example:

test -f filename

will return true (0) if the file exists and is a regular file (not directory or device).

test -s filename

will return true (0) if the file exists and has a size greater than 0.

12-9 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

There are many other file tests available. A partial list includes:

-r file True if the file exists and is readable.

-w file True if the file exists and is writeable.

-x file True if the file exists and is executable.

-d directory True if directory exists and is a directory.

The tests on the slide could also be entered:

$ [-f funfile]

$ [-d funfile]

Refer to your HP-UX Reference Manual for additional options.

51434P G.00 12-10
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-6. SLIDE: The test Command — Other Operators

Student Notes

Multiple conditions can be tested for by using the Boolean operators.

12-11 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

Table 12-1.

Expr 1 Operator Expr 2 Outcome

true -o true true (0)

true -o false true (0)

false -o true true (0)

false -o false false (1)

true -a true true (0)

true -a false false (1)

false -a true false (1)

false -a false false (1)

Examples

$ ["$ANS" = y -o "$ANS" = Y]
$ ["$NUM" -gt 10 -a "$NUM" -lt 20]
$ test -s file -a -r file -a -x file

The NOT operator (!) is used in conjunction with the other operators and is most commonly
used for file testing. There must be a space between the not operator and any other operators
or arguments. For example,

test ! -d file

can be used instead of

test -f file -o -c file -o -b file ...

Parentheses can be used to group operators, but parentheses have another special meaning to
the shell which is interpreted first. Therefore, the parentheses must be escaped to delay their
interpretation.

The following example is verifying that there are 2 command line arguments, AND that the
first command line argument is a -m, AND that the last command line arguments is a
directory OR a file whose size is greater than zero:

[\($# = 2 \) -a \("$1" = "-m" \) -a \(-d "$2" -o -s "$2" \)]

51434P G.00 12-12
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-7. SLIDE: The exit Command

Student Notes

The exit command will terminate the execution of a shell program and set the return code. It
is normally set to zero to denote normal termination and to a non-zero value to denote an
error condition. If no argument is provided, the return code is set to the return code of the last
command executed prior to the exit command.

12-13 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-8. SLIDE: The if Construct

Student Notes

The if construct provides for program flow control based on the return code of a command. If
the return code of a designated command is 0, a specified command list will be executed. If the
return code of the designated command is non-zero, the command list will be disregarded.

The slide shows the general format of the if construct including a flow chart and a simple
example. Each command list is commonly one or more UNIX system shell commands
separated by Return or semicolons. The decision for the if statement will be based on the last
command executed in the list A, prior to the then .

51434P G.00 12-14
© 1999 Hewlett-Packard Company

Shell Programming — Branches

A summary of the execution of the if construct is as follows:

1. Command list A is executed.

2. If the return code of the last command in command list A is a 0 (TRUE), execute command
list B, then continue with the first statement following the fi .

3. If the return code of the last command in command list A is not 0 (FALSE), jump to fi
and continue with the first statement following the fi .

Figure 12-1. The if Construct Flowchart

The test command is commonly used to control the flow of control, but any command can be
used, since all UNIX system commands generate a return code, as demonstrated by the
following example:

if
grep kingkong /etc/passwd > /dev/null

then
echo found kingkong

fi

The if construct also provides for program control when errors are encountered as in the
following example:

if
[$# -ne 3]

then
echo Incorrect syntax
echo Usage: cmd arg1 arg2 arg3
exit 99

fi

12-15 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-9. SLIDE: The if-else Construct

Student Notes

The if-else construct allows you to execute one set of commands if the return code of the
controlling command is 0 (true) or another set of commands if the return code of the
controlling command is non-zero (false).

The execution of the if construct in this case would be

1. Command list A is executed.

2. If the return code of the last command in command list A is a 0 (TRUE), execute command
list B, then continue with the first statement following the fi .

3. If the return code of the last command in command list A is not 0 (FALSE), execute
command list C, then continue with the first statement following the fi .

51434P G.00 12-16
© 1999 Hewlett-Packard Company

Shell Programming — Branches

Figure 12-2. The if-else Construct Flowchart

Note that list C can contain any UNIX system command including if . For example, extend
the example on the slide to determine if the value of the variable X is less than 10, greater
than 10 or equal to 10. This decision could be determined with

if
[$X -lt 10]

then
echo X is less than 10

else
if

[$X -gt 10]
then

echo X is greater than 10
else

echo X is equal to 10
fi

fi

Notice how the indenting style enhances the readability of the code section. It is readily
apparent which if goes with which fi . Notice also that every if requires fi .

12-17 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-10. SLIDE: The case Construct

Student Notes

The if-else construct can be used to support multidirectional branching, but it becomes
cumbersome when more than two or three branches are required. The case construct provides
a convenient syntax for multi-way branching. The branch selected is based on the sequential
comparison of a word and supplied patterns. These comparisons are strictly string-based.
When a match is found, the corresponding list of commands will be executed. Each list of
commands is terminated by a double semicolon (;;). After finishing the related list of
commands, program control will continue at the esac .

The word typically refers to the value of a shell variable.

The patterns are formed with the same format as generating filenames, even though we are
not matching filenames.

51434P G.00 12-18
© 1999 Hewlett-Packard Company

Shell Programming — Branches

The following special characters are allowed:

* Matches any string of characters including the null string.

? Matches any single character.

[...] Matches any one of the characters enclosed in the brackets. A pair of
characters separated by a minus will match any character between the pair
(lexically).

There is also the addition of the | character which means OR.

Please note that the right parenthesis and the semicolons are mandatory.

The case construct is commonly used to support menu interfaces or interfaces that will make
some decision based on several user input options.

Figure 12-3. The case Construct Flowchart

12-19 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-11. SLIDE: The case Construct — Pattern Examples

Student Notes

This slide shows an example of the case construct, with patterns that are less strict than the
previous slide. Using patterns you can support user responses that are not case sensitive, or
search for a response that contains a certain string pattern or another.

It is common to conclude all case patterns with a *) in order to generate a message to the
user to inform him or her that he or she did not provide an acceptable response.

51434P G.00 12-20
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-12. SLIDE: Shell Programming — Branches — Summary

Student Notes

12-21 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

12-13. LAB: Shell Programming — Branches

Directions

Complete the following exercises and answer the associated questions.

1. In a shell program, create an if statement that will echo yes if the argument passed is
equal to abc and no if it is not.

2. Create a short shell program that will prompt the user to enter a number. Store the user’s
input in a variable called Y. Use an if construct which will echo Y is positive if Y is
greater than zero and Y is not positive if it is not. Also display the value of Y to the user.
(Hint: the read command will retrieve the user’s input.)

3. Write a shell program which checks the number of command line arguments and echoes an
error message if there are not exactly three arguments or echoes the arguments themselves if
there are three. (Hint: The number of command line arguments is available through the special
shell variable $# . What special shell variable stores all of the command line arguments?)

4. Write a shell program that prompts the user for input and takes one of three possible
actions:

• If the input is A, the program should echo "good morning".

• If the input is B or b, the program should echo "good afternoon".

• If the input is C or quit, the program should terminate.

• If any other input is provided, issue an error message and exit the program setting the
return code to 99.

51434P G.00 12-22
© 1999 Hewlett-Packard Company

Shell Programming — Branches

5. Create a shell program that will prompt for a user-ID name. Verify that the user ID
entered corresponds to an account on your system. If a legal user-id is provided, display the
pathname of the user’s home directory. If a user-id is entered that is not recognized, display an
error message.

6. Use the date command to determine if it is morning (before 12:00 noon), afternoon
(between 12:00 and 6:00 p.m.) or evening (after 6:00 p.m.). Depending on the time, create a
shell program called greeting that will echo out the appropriate message: good morning,
good afternoon or good evening. (Hint: The date command uses a 24-hour clock.)

7. Create a shell program that will ask the user if he or she would like to see the contents of
the current directory. Inform the user that you are looking for a yes or no answer. Issue an
error message if the user does not enter yes or no . If the user enters yes display the contents
of the current directory. If the user enters no , ask what directory he or she would like to see
the contents of. Get the user’s input and display the contents of that directory. Remember to
verify that the requested directory exists prior to displaying its contents.

12-23 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Branches

51434P G.00 12-24
© 1999 Hewlett-Packard Company

Shell Programming — Loops

Module 13 — Shell Programming — Loops

Objectives

Upon completion of this module, you will be able to do the following:

• Use the while construct to repeat a section of code while some condition remains true.

• Use the until construct to repeat a section of code until some condition is true.

• Use the iterative for construct to walk through a string of white space delimited items.

13-1 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-1. SLIDE: Loops — an Introduction

Student Notes

The looping constructs allow you to repeat a list of commands, and as in the branching
constructs, the decision to continue or cease looping will be based on the return code of a key
command. The test command is frequently used to control the continuance of a loop.

Unlike branches, which start with a keyword and end with the keyword in reverse (if/fi and
case/esac), loops will start with a keyword and some condition, and the body of the loop will
be surrounded by do/done .

51434P G.00 13-2
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-2. SLIDE: Arithmetic Evaluation Using let

Student Notes

Loops are commonly controlled by incrementing a numerical variable. The let command
enables shell scripts to use arithmetic expressions. This command allows long integer
arithmetic. The syntax is shown on the slide, where expression represents an arithmetic
expression of shell variables and operators to be evaluated by the shell. Using (()) around
the expression replaces using the let . The operators recognized by the shell are listed below,
in decreasing order of precedence.

Operator Description

- Unary minus

! Logical negation

* / % Multiplication, division, remainder

+ - Addition, subtraction

13-3 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

<= >= < > Relational comparison

== != Equals, does not equal

= Assignment

Parentheses can be used to change the order of evaluation of an expression, as in

let "x=x/(y+1)"

Note the double quotes are necessary to escape the special meaning of the parentheses. Also, if
you wish to use spaces to separate operands and operators within the expression, double
quotes must be used with let , or the (()) syntax must be used:

let "x = x + (y / 2)" OR ((x = x + (y / 2)))

When using the logical and relational operators, (!, <=, >=, <, >, ==, !=), the shell
return code variable, ? will reflect the true or false value of the result (0 for true, 1 for false).
Again, the double quotes must be used to prevent the shell from interpreting the less than and
greater than signs as I/O redirection.

51434P G.00 13-4
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-3. SLIDE: The while Construct

Student Notes

The while construct is a looping mechanism provided by the shell that will continue looping
through the body of commands (list B) while a condition is true. The condition will be
determined by the return code of the last command in list A. Often a test or let command is
used to control the continuance of the loop, but any command can be used that generates a
return code.

The example on the slide could have been written using a test command instead of the let
command, as follows:

$ X=1
$ while [$X -le 10]
> do
> echo hello X is $X
> let X=X+1
> done

The execution is as follows:

13-5 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

1. Commands in list A are executed.

2. If the return code of the last command in list A is 0 (true), execute list B.

3. Return to step 1.

4. If the return code of the last command in list A is not 0 (false), skip to the first command
following the done keyword.

Figure 13-4. The while Construct Flowchart

51434P G.00 13-6
© 1999 Hewlett-Packard Company

Shell Programming — Loops

WARNING: Be careful of infinite while loops. These are loops whose
controlling command always returns true.

$ cat while_infinite
while

true
do

echo hello
done

$ while_infinite
hello
hello

.

.

.
Ctrl + c

13-7 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-4. SLIDE: The while Construct — Examples

Student Notes

The slide shows two additional examples of the while construct. Example A is prompting the
user for input, and determining whether the loop should be continued based on the user’s
response. Example B is looping through each of the arguments on the command line. If an
argument is a directory, the contents of the directory will be displayed. If the argument is not
a directory, it will simply be skipped over. Note the use of the shift command to allow access
to each of the arguments one by one. When combined with the while command, this makes
the loop very flexible. It does not matter if there is one argument or 100 arguments, the loop
will continue until all of the arguments have been accessed.

Note that a while loop may need to be set up if you want to execute the loop at least once.
Example A will execute the body of the loop at least once because ans has been set equal to
yes . In Example B, if the program has been executed with no command line arguments ($#
equals 0), then the loop will not execute at all.

51434P G.00 13-8
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-5. SLIDE: The until Construct

Student Notes

The until construct is another looping mechanism provided by the shell that will continue
looping through the body of commands (list B) until a condition is true. Similar to the while
loop, the condition will be determined by the return code of the last command in list A.

The execution is as follows:

1. Command list A is executed.

2. If the return code of the last command in list A is not 0 (false), execute list B.

3. Return to step 1.

4. If the return code of the last command in list A is 0 (TRUE), skip to the first command
following the done keyword.

13-9 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

Figure 13-5. The until Construct Flowchart

CAUTION: Be careful of infinite until loops. These are loops whose controlling
command always returns false.

$ X=1
$ until
> [$X -eq 0]
> do
> echo hello
> done
hello
hello

.

.

.
Ctrl + c

51434P G.00 13-10
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-6. SLIDE: The until Construct — Examples

Student Notes

The slide shows the same examples that were presented for the while construct, but now they
are implemented with the until construct. Notice that the logic associated with the test
conditions must be reversed to match the logic of the until construct.

Notice also that the sensitivity of the user input has changed slightly. Using the while
construct, the loop will continue only if the user inputs the string yes . It is very strict in its
condition for continuing the loop. Using the until construct the loop will continue as long as
the user enters anything other than no . It is not as strict in its condition for continuing the
loop. You may want to consider these issues when deciding which construct is most applicable
to your interface.

Predefining the ans variable is not necessary either because it would be initialized to NULL.
Since NULL is not equivalent to no the test would return false, and the loop would be
executed. You just want to make sure that $ans is enclosed in quotes in the test expression to
provide a legal test syntax.

13-11 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-7. SLIDE: The for Construct

Student Notes

On the slide, the keywords are for , in , do , and done . var represents the name of a shell
variable that will be assigned through the execution of the for loop. list is a sequence of strings
separated by blanks or tabs that var will be assigned to during each iteration of the loop.

The construct works as follows:

1. The shell variable var is set equal to the first string in list.

2. Command list A is executed.

3. The shell variable var is set equal to the next string in list.

4. Command list A is executed.

5. Continue until all items from list have been processed.

51434P G.00 13-12
© 1999 Hewlett-Packard Company

Shell Programming — Loops

Figure 13-6. The for Construct Flowchart

13-13 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-8. SLIDE: The for Construct — Examples

Student Notes

The for construct is a very flexible looping construct. It is able to loop through any list that
can be generated. Lists can easily be created through command substitution, as seen in the
first example. With the availability of pipes and filters, a list can be generated from almost
anything.

If you require access to the same list many times, you might want to save it in a file. You can
then use the cat command to generate the list for your for loop, as in the following example:

$ cat students
user1
user2
user3
user4

$ cat for_students_file_copy
for NAME in $(cat students)
do

51434P G.00 13-14
© 1999 Hewlett-Packard Company

Shell Programming — Loops

cp test.file /home/$NAME
chown $NAME /home/$NAME/test.file
chmod g-w,o-w /home/$NAME/test.file
echo done $NAME

done
$

Accessing Command Line Arguments

You can generate the list from command line arguments with

for i in $* or for i
do do

cp $i $HOME/backups cp $i $HOME/backups
done done

13-15 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-9. SLIDE: The break , continue and exit Commands

Student Notes

There may be situations where you need to discontinue a loop prior to the loop’s normal
terminating condition. The break and continue provide unconditional flow control. They are
commonly used when an error condition is encountered to terminate the current iteration of
the loop. The exit command is used when a situation cannot be recovered from, and the
entire program must be terminated.

The break command will cause the loop to terminate and control to be passed to the command
immediately following the done keyword. You will completely break out of the designated
loops, and continue with the following commands.

The continue command is slightly different. When encountered, the continue command will
skip the remaining commands in the body of the loop and transfer control to the top of the
loop. Thus the continue command allows you to just terminate one iteration of the loop but
continue execution at the top of the loop just interrupted.

51434P G.00 13-16
© 1999 Hewlett-Packard Company

Shell Programming — Loops

In the while and until loops, the process will continue at the beginning of the initialization
list. In the for loop the process will set the variable to the next item in the list, and then
continue.

The exit command will stop the execution of a shell program and set the return value for the
shell program to the argument, if specified. If no argument is supplied, the return value of the
shell program is set to the return value of the command that executed immediately prior to
the exit . The return command will behave just as the exit within a shell function.

NOTE: The flow of control of a loop should normally be terminated through the
condition at the top of the loop (while , until) or by exhausting the list
(for). These should be used only when an irregular or error condition
occurs in the loop.

Example

while
cmd1

do
cmdA
cmdB
while

cmdC
do

cmdE
break 2
cmdF

done
cmdJ
cmdK

done
cmdX

1. What command will be executed following the break 2?

2. What if the break 2 is replaced simply with a break ?

3. What about a continue 2?

4. What about a simple continue ?

13-17 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-10. SLIDE: break and continue — Example

Student Notes

This example shows an effective use of the break and continue commands. The command
executed as the test condition of the while loop is the true command which will always
generate a true result; this means that this loop is an infinite loop which will loop forever
unless some command inside the loop terminates it (which the break command does). If the
file entered is not a regular file, an error message is printed and the continue command
causes the user to be prompted for the file name again. If the file is a regular file, it is
removed, and the break command is used to break out of the infinite loop.

51434P G.00 13-18
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-11. SLIDE: Shell Programming — Loops — Summary

Student Notes

13-19 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

13-12. LAB: Shell Programming — Loops

Directions

Complete the following exercises and answer the associated questions.

1. Create a program called double_it that will prompt the user for a number and then
display two times the number.

2. Create a program called sum_them that will prompt the user to input 10 numbers. The
program will add all of the numbers that the user has entered, and display the final sum.
(Hint: accumulate the sum each time a new number is entered.)
Optional: Modify sum_them so that the number of numbers that the user would like to add
together is provided through a command line argument. For example sum_them 6 would
prompt the user for six numbers and add them together.

3. In a shell program create a for loop that will:

• create the directories Adir , Bdir , Cdir , Ddir , Edir
• copy funfile to each directory
• list the contents of each directory to verify the copy
• echo a message when each iteration of the loop is complete

4. Create a shell program called my_menu that will display a simple menu that has three
options.

a. The first option will run double_it (Exercise 1).
b. The second option will run sum_them (Exercise 2).
c. Quit.

The menu should be redisplayed after each selection is completed, until the user enters 3.

51434P G.00 13-20
© 1999 Hewlett-Packard Company

Shell Programming — Loops

5. Write a shell program called ison that will run in the background and check every 60
seconds whether a particular user has logged into the system. The user name should be
passed into ison as a command line argument. When the user logs in, print a message on
your terminal informing you of the login, and report what terminal the user logged into. (Hint:
Use the sleep command.)

If you are on a standalone system in a network, you might want to try the rwho command.

13-21 51434P G.00
© 1999 Hewlett-Packard Company

Shell Programming — Loops

51434P G.00 13-22
© 1999 Hewlett-Packard Company

Appendix A — Commands Quick Reference Guide

Objectives

• To provide a list of frequently used commands along with an explanation of proper use.

A-1 51434P G.00
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

A-1. Commands Quick Reference Guide

General Commands

exit terminate terminal session and log out

man cmd display manual page for cmd

laserROM initiate an HP LaserROM documentation reference session

absolute path complete designation of a file’s or directory’s location in the
UNIX hierarchy. ALWAYS starts with /

relative path designation of a file’s or directory’s location from your current
position in the UNIX hierarchy

. current directory

.. parent directory

pwd display current directory location in hierarchy

cd dir change to designated directory

cd change to HOME directory

mkdir dir create directory

rmdir dir remove directory

ls file or dir list the file or contents of directory

ls -a list all of the files, including hidden files

ls -F list files with format flag
/ — denotes directory
* — denotes executable
— denotes regular file
| — denotes FIFO file

ls -l display files in long format including permissions, ownership
and size
rwx rwx rwx
user group others
r — read access (mode value = 4)
w — write access (mode value = 2)
x — execute access (mode value = 1)

ll shorthand for ls -l

51434P G.00 A-2
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

lsf shorthand for ls -F

lsr shorthand for ls -R

lsx shorthand for ls -x

cat [file] display contents of file

more [file] display contents of file one screen at a time
space — next screen
Return — next line
q — quit more

tail - n file display the last n lines of a file

pr file format file for printing

lp file queue file to be printed

pr file | lp format and print file

lpstat -t display status of the printer(s) and print system

cancel jobnumber cancel print job

touch file create empty file or update timestamp on existing file

cp [-i] f1 f2 copy f1 to f2

cp [-i] f1 f2 ... dir copy file(s) to another directory

ln [-i] f1 f2 link f1 to f2
f1 and f2 access same data space on disk

ln -s dir1 dir2 symbolically link dir1 to dir2

mv [-i] f1 f2 rename f1 to f2

mv [-i] f1 f2 ... dir move file(s) to another directory

mv [-i] dir1 dir2 rename dir1 to dir2

rm f1 f2 ... remove files

rm -i f2 f2 ... remove files interactively

rm -r dir remove directory and EVERYTHING below directory

who display users logged in to your system

who am i display your user id and terminal location

whoami display your user id

A-3 51434P G.00
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

news display system news (updates file $HOME/.news_time)

write username start interactive communication with username

mesg y allow your terminal to receive messages

mesg n disables receipt of messages by your terminal

mail username send mail message to username

mail read mail messages
? — mail help
d — delete previous message
s file — save message to file
q — quit mail

mailx username send mail message to username

mailx read mail messages

elm HP utility to send and read mail messages

echo string display string

banner string display string in large letters

date display the system time and date

id display current user id and group status

chmod mode file change permissions for file to mode
chmod +x file
chmod 777 file

umask mode remove mode from default permissions

chown username file change ownership of file to username
refer to /etc/passwd

chgrp groupname file change group access of file to groupname
refer to /etc/group

su username switch user id to username

newgrp groupname switch group id to groupname

passwd change the password for your account

vi filename Start a vi edit session on a file

51434P G.00 A-4
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

Filename Generation

* Match zero or more characters

? Match any single character

[amqp] Match specific characters, in this case a, m, q, p

[a-z] Match a range of characters, in this case a through z

[!a-z] Do NOT match a character in the range

File Input/Output Redirection: cmd <—> file

> stdout (1)
/

/
stdin (0) <-------- cmd

\
\

2 >stderr (2)

cmd < file get input for cmd from a file

cmd > file send stdout of cmd to a file

cmd 2> file.err send stderr of cmd to a file

cmd > file 2> file.err send stdout and stderr to files

cmd >&2 send stdout to stderr
Useful when generating error messages with echo
echo error message text >&2

Piping: cmd <—> cmd

cmd | cmd(FILTER) | cmd
\ / \ / \

\ / \ / \
stdout ----> stdin stdout ----> stdin stdout

cmd1 | cmd2 Take output of cmd1 and send it in to cmd2

A-5 51434P G.00
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

Shell Variables

name=lisa assign a value to the variable name

export name transport the variable name to the environment

set display all variables defined

env display just the environment variables

echo enter a name prompt for user input

read name read the user input and assign to variable name

echo $name display the value ($) of the variable name

grep $name /etc/
passwd

search for value of name in /etc/passwd

cmd arg1 arg2 arg3 arg4 ... arg9 command line arguments
$0 $1 $2 $3 $4 ... $9 variables for command line args

shift n shift through command line arguments

echo $# display number of command line arguments

echo $* display all command line arguments

exit # terminate program and set return value to #

echo $? display return value of last command

Quoting

\ escapes special meaning of next character

’ string’ escapes special meaning of all characters between quotes

" string" escapes special meaning of all characters between quotes
except $, \ , and ‘ (grave accent)

Command Substitution

cmd1 ‘cmd2‘ Executes a command within a command line

banner $(date)
dirs=$(ls -F | grep /)
X=$(expr $X + 1)

51434P G.00 A-6
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

for name in $(who | cut -f1 -d" ")

Filters

cut -c list [file] cut and display specified columns

cut -f list -d char [file] cut and display specified fields
-d char — char represents the delimiting character between
fields

Example:
who | cut -c12-18
cut -f1,6 -d: /etc/passwd

grep [-inv] pattern [file] search for pattern in files
-i — ignore case of letters in pattern
-n — display line number where pattern found
-v — display lines that DO NOT contain pattern

Example:
grep user /etc/passwd
who | grep user3

more [file] display file one screen at a time

Example:
ps -ef | more
sort funfile | more

pr [- #] [-o #] [-h " title
info"] [file]

format output to screen
-# — provide # columns of output
-o# — offset output # columns from left margin
-h " text" — replaces default header with text

Example:
pr funfile | lp

sort [-ndt X] [+field] [file] -n — numeric sort
-d — dictionary sort
-t X — use X as the delimiter between fields
+field — field to base sort on (field numbers start with 0)

Example:
sort names
sort -nt: +2 /etc/passwd

tee [-a] file send output to stdout and file
-a — append output to file

Example:
ls | tee ls.out

A-7 51434P G.00
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

wc [-cwl] [file] count characters, words or lines in a file
-c — count characters
-w — count words
-l — count lines

Multi-tasking

cmd > cmd.out & Run cmd in background
stdin is disconnected for jobs running in background

nohup cmd > cmd.out & Protect background cmd from log out

nice cmd Run cmd at a lower priority

jobs Display jobs running under current session

ps -ef Display all processes running on the system

echo$$ displays process id number of current shell process

Ctrl + z Suspend a foreground job

bg %# Put job number # in background

fg %# Put job number # in foreground

kill PID Terminate job with process identifier PID

kill -s SIGNAME PID Send signal SIGNAME to PID

trap cmd # Trap signal # and execute cmd, when signal occurs

stty -a Display terminal settings and key mappings

Ctrl + c Send interrupt to foreground process (signal 2)

Ctrl + \ Send quit to foreground process (signal 3)

Branching

if
cmd(s)

if RETURN VALUE of LAST cmd is true do cmds following then
if RETURN VALUE of LAST cmd is false do cmds following else

then
cmdtrue(s)

else
cmdfalse(s)

fi
case $vara in compare value of vara to patterns

pat1) cmdsa
execute commands that follow matching pattern

51434P G.00 A-8
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

;;
pat2) cmdsb

;;
*) cmds default

;;
esac

Looping

while
cmd(s)

while RETURN VALUE of LAST cmd is true do cmds following do

do
cmdtrue(s)

done
until

cmd(s)
until RETURN VALUE of LAST cmd is true do cmds following do

do
cmdfalse(s)

done
for vara in a b c d e assign vara to each item in list, do cmds
do

cmd(s)
done

Common POSIX Shell Environment Variables

The number of arguments supplied to a shell script.

* All of the arguments supplied to a shell script.

? The return code of the last executed command.

$ The PID of the last invoked shell.

COLUMNS Defines the width of the edit window for shell edit modes.

EDITOR Defines the edit mode to be used for command stack.
Associated with set -o vi .

ENV A script executed when a new Korn shell is invoked. Usually
set to .kshrc .

FCEDIT Defines the editor that will be invoked from command stack.

IFS Internal Field Separators, usually a space, tab and newline,
which separate commands and input for read .

HISTFILE The path of the file used to store the command history. The
default is .sh_history .

A-9 51434P G.00
© 1999 Hewlett-Packard Company

Commands Quick Reference Guide

HISTSIZE The number of saved commands accessible by the shell. The
default is 128.

HOME Your login directory. The default for the cd command.

LINES Defines the column length of the edit window for printing lists.

PATH The directories to search to find executable programs.

PS1 The primary prompt. The default is $.

PS2 The secondary prompt. The default is >.

PWD The present working directory, set by the last cd command.

OLDPWD The previous working directory, set before the last cd
command. Accessed with cd - .

SHELL The path of the program for the current shell.

TERM The model of the terminal being used.

TMOUT If this variable has a value greater than 0, the shell will
terminate if this amount of time elapses before a command or
Return is entered.

TZ Defines the time zone to be used for displaying the time and
date.

VISUAL Defines the edit mode to be used for command stack.
Associated with set -o vi .

51434P G.00 A-10
© 1999 Hewlett-Packard Company

Solutions

1-6. LAB: General Orientation

1. Log in to the system using the user name and password that the instructor assigned to
you. Did you have any trouble?

Answer:

You may have had a problem if you made a mistake while typing in your user name or
password and tried correcting it with the Backspace key. Remember, the # key is used to
erase while logging in.

2. Which of the following commands are syntactically correct? Try typing them in to see what
the output or resulting error message would be.

$ echo
$ echo hello
$ echohello
$ echo HELLO WORLD
$ banner
$ banner hello
$ BANNER hello

Answer:

$ echo correct
$ echo hello correct
$ echohello incorrect
$ echo HELLO WORLD correct

The echo command will work with zero or more arguments. As the arguments are just
seen as strings of characters, and echoed back to the screen, it does not matter whether
they are uppercase or lowercase.

The shell needs white space (spaces or tabs) to separate commands from arguments. The
third command line doesn’t work because the shell is trying to execute a command called
echohello instead of executing the echo command and passing the argument hello to it.

$ banner incorrect
$ banner HELLO correct
$ BANNER hello incorrect

The banner command requires at least one argument, unlike the echo command.
Therefore, the second entry is legal, because banner does not care if the string(s) to be
echoed are uppercase or lowercase. In the third instance the shell will look for a command
called BANNER, which is not a legal shell command. Remember, the shell is case sensitive,
and therefore banner banner is not the same as BANNER.

Solutions-1 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

3. Using variations of the who command or the whoami command, determine each of the
following with separate command lines. What commands did you use?

Who is on the system?

What terminal device are you logged in on?

Who does the system think you are?

Answer:

$ who
$ who am i
$ whoami

4. Execute the date command with the proper arguments so that its output is in a mm-dd-yy
format. Hint: look at the examples provided in the reference manual entry for date(1) .

Answer:

$ date +%m-%d-%y

5. Using the HP-UX Reference Manual, find the ls command. What is its function? What is
the minimum number of arguments that it requires?

Answer:

The ls command is used to display file names. It requires no arguments. Notice it has
many options available. Each option will extend the capability of the ls command, and
each option is identified as a single letter.

2-14. LAB: The File System

1. From your HOME directory, find out the entire tree structure rooted at the subdirectory
called tree using the ls command. Draw a picture of it, marking directories by circling them.
Use a separate sheet of paper if you need more space.

Answer:

The exercise consists of a lot of ls (lsf) commands. Or, as an alternative, you could have
used the -R (recursive) option. The directory map should look like

tree/
|

| | | | | | |

cherry car.models/ collie probe dog.breeds/ poodle taurus
| |

-------------- -------------------

51434P G.00 Solutions-2
© 1999 Hewlett-Packard Company

Solutions

| | | | |
chrysler/ gm/ ford/ retriever/ shepherd/

| |
---------- -----------------------------
| | | | |

sedan/ sports/ golden labrador mixed
|

mustang

2. What is the full path name of the file labrador in the tree drawing from the previous
exercise? What is its relative path name from your HOME directory?

Answer:

Full path name /home/ YOUR_USER_NAME/tree/dog.breeds/retriever/
labrador

Relative path name tree/dog.breeds/retriever/labrador

3. From your HOME directory, change into the retriever directory. Using a relative path
name, change into the shepherd directory. Again using a relative path name, change into the
car.models directory. Finally, return to your HOME directory. What commands did you use?
How did you know if you arrived at each of your destinations?

Answer:

$ cd
$ cd tree/dog.breeds/retriever
$ cd ../shepherd
$ cd ../../car.models
$ cd

To verify each destination

$ pwd

3-16. LAB: File and Directory Manipulation

1. Use the more command to display the file /usr/bin/ls . What do you notice? Display the
contents of /usr/bin/ls with the cat command. What happens?

Answer:

$ more /usr/bin/ls

****** /usr/bin/ls: Not a text file ******

more knows that /usr/bin/ls is a compiled program, not a normal text file, so its
contents cannot be displayed to the screen in a readable format.

Solutions-3 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

$ cat /usr/bin/ls

This command produces what appears to be garbage. In fact, this is what happens when
you use the cat command to display a binary (compiled) program. Your terminal settings
may have been changed by this. To reset your HP terminal:

• Hit the Break key.

• Simultaneously press Shift + Ctrl + Reset .

• Press Return to get the shell prompt.

• At the prompt, type the commands:

$ tset -e -k -e: sets erase to ^H, -k: sets kill to ^X
$ tabs

2. Go to your HOME directory. Copy the file called names to a file called names.cp . List the
contents of both files to verify that their contents are the same.

Answer:

$ cp names names.cp
$ cat names names.cp

3. Make another copy of the file names called names.new . Change the name of names.new to
names.orig .

Answer:

$ cp names names.new
$ mv names.new names.orig

4. How do you create two files (called names.2nd and names.3rd) that reference the
contents of the file names?

Answer:

$ ln names names.2nd
$ ln names names.3rd or $ln names.2nd names.3rd

5. If you modify the contents of names, will the contents of names.2nd and names.3rd be
affected? Copy the file funfile to the file names and do a long listing of all of your names
files. Is names.orig affected? names.2nd ? names.3rd ?

Answer:

The files names, names.2nd , and names.3rd are all referencing the same data on the
disk. If one is modified, all three will be modified. From the long listing, you see that their
link count has gone up to three, since there are now three names referencing the same
data. names.orig is still an individual entity, as seen by its link count still being one.

$ cp funfile names
$ ls -l names.orig names names.2nd names.3rd

51434P G.00 Solutions-4
© 1999 Hewlett-Packard Company

Solutions

-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 3 user3 class 125 Jul 24 11:08 names
-rw-r--r-- 3 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 3 user3 class 125 Jul 24 11:12 names.3rd

If you do an ls -i of the names files, their inode numbers will be displayed. The inode
stores each file’s characteristics, such as permissions, number of links, and ownership.
Files that are linked together share the same inode.

$ ls -i names.orig names names.2nd names.3rd
102 names.orig
322 names
322 names.2nd
322 names.3rd

6. Remove the file names. What happens to names.2nd and names.3rd ?

Answer:

$ rm names

The files names.2nd and names.3rd are unaffected except that their link count will be
reduced by one, which can be seen with the ls -l command:

$ ls -l names.orig names names.2nd names.3rd
names not found
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 2 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 2 user3 class 125 Jul 24 11:12 names.3rd

1. Make a directory called fruit under your HOME directory. With one command, move the
following files, which are also under your HOME directory to the fruit directory:

lime
grape
orange

Answer:

$ cd
$ mkdir fruit
$ mv lime grape orange fruit

2. Move the following files, also found under your HOME directory, to the fruit directory.
Their destination names will be as specified below:

Source Destination

apple APPLE

Solutions-5 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

peach Peach

Answer:

$ cd
$ mv apple fruit/APPLE
$ mv peach fruit/Peach
$

3. Look at the tree directory structure in your HOME directory. It requires a little
organization.

Move the files collie and poodle , so that they are under the dog.breeds directory.
Move the file probe under the sports directory.
Move the file taurus under the directory sedan .
Create a new directory under tree called horses .
Copy the mustang file to the horses directory you just created.
Move the file cherry to the fruit directory you created in the previous exercise.

HINT: You could make these changes from any directory, but what directory do you think you
should be in?

Answer:

$ cd
$ cd tree
$ pwd
/home/YOUR_USER_NAME/tree
$ mv collie poodle dog.breeds
$ mv probe car.models/ford/sports
$ mv taurus car.models/ford/sedan
$ mkdir horses
$ cp car.models/ford/sports/mustang horses
$ mv cherry ../fruit

4. Move the fruit directory from your HOME directory to the tree directory.

Answer:

$ cd
$ mv fruit tree

A directory called fruit is created under tree .

1. List the current status of the printers in the lp spooler system and find the name of the
default printer.

51434P G.00 Solutions-6
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ lpstat -t
scheduler is running
system default destination: rw
device for rw: /dev/rw
rw accepting requests since Jul 1 10:56:20 1994
printer rw is idle. enabled since Jul 4 14:32:52 1994
fence priority : 0

2. Send the file named funfile to the line printer. Make a note of the request ID that is
displayed on your terminal.

Answer:

$ lp funfile
request id is rw-58 (1 file)

3. Verify that your requests are queued to be printed.

Answer:

$ lpstat
rw-58 ralph 3967 Jul 4 16:57:25 1994
rw-59 ralph 1331 Jul 6 13:01:19 1994

4. How can you tell what files other users are printing? Try it.

Answer:

You can tell by using lpstat -t .

5. Use the cancel command to remove your requests from the line printer system queue.
Confirm that they were canceled.

Answer:

$ cancel rw-58 rw-59
request "rw-58" canceled
request "rw-59" canceled
$ lpstat
$

4-12. LAB: File Permissions and Access

1. Look under your HOME directory for a file called mod5.1 . Who has what access to this
file? Can you display the contents of mod5.1 ?

Solutions-7 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ ls -l
-rw-r--r-- 1 YOUR_LOGNAME class 20 Jan 24 13:13 mod5.1

YOUR_LOGNAME has read and write access.
Members of group class have read access.
All other users have read.

$ cat mod5.1

This is successful since you have read permission.

2. Modify the permissions on mod5.1 so that they are: -w------- . Can you display the
contents of mod5.1 ?

Answer:

$ chmod a-rwx,u=w mod5.1
$ cat mod5.1

You no longer have read access to the file mod5.1 , so the cat will fail.

3. Modify the permissions on mod5.1 so that they are: rw------- . Can you display the
contents of mod5.1 ? Can your partner display the contents of your mod5.1 ?

Answer:

$ chmod u=rw mod5.1

You can display the contents of mod5.1 .
Your partner cannot display the contents of mod5.1 .

4. Make a copy of mod5.1 and call it mod5.2 . Remove the write permissions from mod5.2 .
Can you delete this file? How do you protect this file from being deleted?

Answer:

$ cp mod5.1 mod5.2
$ chmod -w mod5.2
$ rm mod5.2
mod5.2: 444 mode ? (y/n)

mod5.2 is removed!
You would have to remove the write permissions from your HOME directory as well.
If you remove write permissions from your HOME directory and then try to remove the

file, you will get a message "permission denied".

51434P G.00 Solutions-8
© 1999 Hewlett-Packard Company

Solutions

1. Under your HOME directory, create a directory called mod5.dir . Copy the file mod5.1 to
mod5.dir . List the contents of the new directory. What are the permissions on the mod5.dir ?
(Hint: ls -ld mod5.dir)

Answer:

$ cd
$ mkdir mod5.dir
$ cp mod5.1 mod5.dir
$ ls mod5.dir
mod5.1
$ ls -ld mod5.dir
drwxrwxrwx 3 YOUR_LOGNAME class 1024 Jul 24 13:13 mod5.dir
$

2. Modify the permissions on mod5.dir to be rw------- . Can you change directory to
mod5.dir ? Can you display the contents of mod5.dir ? Can you access the contents of the file
mod5.1 under the mod5.dir ?

Answer:

$ chmod a-rwx,u+rw mod5.dir
$ cd mod5.dir
sh: mod5.dir: Permission denied.
$ ls mod5.dir
mod5.1
$ ls -l mod5.dir/
mod5.dir/mod5.1 not found
total 0
$ cat mod5.dir/mod5.1
cat: cannot open mod5.dir/mod5.1: Permission denied
$

3. Modify the permissions on mod5.dir to be -wx------ . Can you display the contents of
mod5.dir ? Can you display the contents of the file mod5.1 under the mod5.dir ? Can you
change directory to mod5.dir ?

Answer:

$ chmod u+wx mod5.dir
$ ls mod5.dir

mod5.dir unreadable
$ cat mod5.dir/mod5.1

This is the contents of mod5.1
$ cd mod5.dir cd is successful
$ pwd
/home/user3/mod5.dir
$ ls
. unreadable

Solutions-9 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

1. What are the permissions when you create a new file? Hint: Create a new file by using the
editor, and copy or touch an existing file. Examine the permissions on the new files. How
about a new directory? What is your current file creation mask?

Answer:

$ touch new_file
$ ls -l new_file
-rw-rw-rw- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file
$ mkdir new_dir
$ ls -ld new_dir
drw-r---r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir
$ umask
000

2. How would you modify the default creation permissions to deny write access to others in
your group, and others on the system? Test this by creating another new file and another new
directory.

Answer:

$ umask a-rwx,u=rw,g=r,o=r
$ touch new_file2
$ ls -l new_file2
-rw-r--r-- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file2
$ mkdir new_dir2
$ ls -ld new_dir2
drw-r--r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir2

5-11. LAB: Exercises

1. Set up an alias called go to change your working directory to tree and do an ls -F . Now
type the string go on the command line. What happens? Type pwd and see where you are. Now
change back to your home directory. (Hint: Multiple commands can be entered on one line
when separated with a semicolon.)

Answer:

$ alias go="cd /home/user3/tree; ls -F"
$ go
car.models/ dog.breeds/ fruit/ horses/
$ pwd
/home/user5/tree
$ cd

2. Make sure you are in your home directory. What happens when you type more f Esc Esc ?
Using this command line, how can you make it display funfile ?

51434P G.00 Solutions-10
© 1999 Hewlett-Packard Company

Solutions

Answer:

Typing the command line given puts more f on the command line, and the shell beeps
because there is more than one file starting with f . If you type an u and then Esc Esc
again, the file name funfile will be completed for you.

3. From your HOME directory copy the file frankenstein to the directory
tree/car.models/ford/sports . Use file name completion to enter frankenstein and

any other directory or file name in the directory path.

Answer:

$ cp fr ESC ESC tree/ca ESC ESC ford/sports
$ cp frankenstein tree/car.models/ford/sports

6-12. LAB: The Shell Environment

1. Using command substitution, assign today’s date to the variable today.

Answer:

$ date
Fri Apr 2 11:57:21 EST 1993
$ today=$(date)
echo $today
Fri Apr 2 11:57:21 EST 1993

2. Set a shell variable named MYNAME equal to your first name. How do you see the
contents of that variable?

Answer:

$ MYNAME=user3
$ echo $MYNAME
user3

3. Now start a child shell by typing sh . Look at the contents of MYNAME now. What
happened? Exit the child shell (use Ctrl + c Return or exit). Does the parent still know about
the variable MYNAME?

Answer:

The MYNAME variable was set in the parent shell’s local data area. When the child shell
was spawned, it inherited only the parent’s environment variables.

When the child shell is dead, the parent wakes up and remembers all that it knew. You can
test this by typing

Solutions-11 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

$ echo $MYNAME

4. What command can be typed in the parent shell to enable the child to see the contents of
MYNAME? How can you see all variables that the child shell will inherit?

Answer:

$ export MYNAME

$ env

5. Start another child shell. Look at the variable MYNAME. Now set the variable MYNAME
equal to your partner’s name. Is MYNAME now a local or environment variable? List the
environment variables. What is MYNAME set to?

Answer:

$ MYNAME=user2

$ env

MYNAME is still an environment variable in the child shell.

6. Now remove the variable MYNAME from the child shell. Does MYNAME exist either
locally or within the environment of the child shell? Why or why not?

Answer:

$ unset MYNAME

MYNAME will no longer exist in the child shell because the unset command removes it.

7. Kill the child shell and return to your LOGIN shell. Does MYNAME still exist? Why or
why not? What commands did you use to verify this?

Answer:

$ Ctrl + c

Return

The removal of the variable in the child shell does not have an effect on the variable in the
parent shell. Therefore, MYNAME still exists in the environment of the parent shell. To
verify this, you can display the environment variables in the parent shell.

$ env

8. Modify your shell prompt so that it displays: good_day$. What happens to your prompt
when you log out and log back in?

51434P G.00 Solutions-12
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ PS1=good_day$
good_day$

When you log out and log back in the prompt reverts to the default.

9. Modify your shell prompt so that it displays your user identification name. For example if
you are logged in as user3 the prompt will display: user3$. (Hint: Is there an environment
variable that stores your login identifier?)

Answer:

$ PS1=$LOGNAME or $ PS1=$(whoami)
user3 user3

7-11. LAB: Input and Output Redirection

1. Create two very short files called f1 and f2 using cat and output redirection.

Answer:

$ cat > f1
This is the file f1
Ctrl + d

$ cat > f2
This is the file f2
Ctrl + d

2. Use the cat command to view their contents. Use the cat command to create a new file
called f.join that contains the contents of both f1 and f2 . Do you see any output on the
screen?

Answer:

$ cat f1 f2

This is the file f1
This is the file f2
$ cat f1 f2 > f.join output of both files is sent to f.join

You will not see any output on the screen. All of the standard output has been sent to the
file f.join .

3. Use the cat command to display the contents of the file f1 , f2 and f.new .
NOTE: f.new should NOT exist.
What do you see on your screen? Is it obvious which messages went through standard output

and which messages went through standard error?

Solutions-13 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ cat f1 f2 f.new
This is the file f1
This is the file f2
cat: Cannot open f.new

It is not obvious that two output streams are being used, since all of the messages are sent
to your display.

4. Again, use the cat command to display the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time capture any error messages that are generated

and send them to the file called f.error . What do you see on your screen? Was a new file
created? Check its contents.

Answer:

$ cat f1 f2 f.new 2> f.error
This is the file f1
This is the file f2
$ cat f.error
cat: Cannot open f.new

5. Again, use the cat command to capture the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time, ON ONE COMMAND LINE, capture the

standard output messages to a file called f.good AND the error messages to a file called
f.bad . What do you see on your screen? Were any new files created? Check their contents.

Answer:

$ cat f1 f2 f.new > f.good 2> f.bad
$ cat f.good
This is the file f1
This is the file f2
$ cat f.bad
cat: Cannot open f.new

The files f.good and the file f.bad are created. You do not see any output to your screen
because all output streams have been redirected to one file or the other.

6. Type the cp command with no arguments. What happens? Now try redirecting the output
from this command to the file cp.error . What happens? What must you do to redirect that
error message to a file? Does the cp command generate any standard output messages?

Answer:

$ cp
Usage: cp f1 f2
cp [-r] f1 ... fn d1
$ cp 2> cp.error

The cp command does not generate any standard output messages. It is normally silent
when it succeeds.

51434P G.00 Solutions-14
© 1999 Hewlett-Packard Company

Solutions

7. Sort the file /etc/passwd on the third field. What happens? Now do a numeric sort on the
third field. Any difference?

Answer:

$ sort -t: -k 3 /etc/passwd lexicographic sort

(Note that the numbers in the third field are not quite sorted. This is because an ASCII
sort is being done on a numeric field.)

$ sort -nt: -k 3 /etc/passwd numeric sort

(The results of this command are much better since the numbers in the third field are now
arranged numerically.)

8. Display all of the lines in the file /etc/passwd that contain the string user. Save this
output to a file called grepped . Use a filter to determine how many lines in /etc/passwd
contain the string user.

Answer:

$ grep user /etc/passwd > grepped
$ wc -l grepped
16 grepped

(Note that on the system you are using, this number may vary.)

9. Using redirection and filters, how many users are logged in on the system?

Answer:

$ who > whoson
$ wc -l whoson

8-11. LAB: Pipelines

1. Construct a pipeline that counts the number of lines in /etc/passwd that contain the
pattern home. Now count the lines that do not contain the pattern.

Answer:

$ grep home /etc/passwd | wc -l Number of lines containing home
$ grep -v home /etc/passwd | wc -l Number of lines not containing home

2. Modify your pipeline from the above exercise so that you save all of the entries from
/etc/passwd that contain the pattern home to a file called all.users before passing the

output to be counted.

Solutions-15 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ grep home /etc/passwd | tee all.users | wc -l

3. Create an alias called whoson that will display an alphabetical listing of the users
currently logged into your system.

Answer:

$ alias whoson="who | sort"

4. Construct a pipeline that lists only the user name, size, and file name of each file in your
HOME directory into a file called listing.out . At the same time, display on your screen
only the total number of files.

Answer:

$ ll | cut -c16-24,34-44,58- | tee listing.out | wc -l

5. Create a pipeline that will only capture the user name, user number, and HOME directory
of every user account on your system. First, output the list in alphabetical order by user name.
Second, use the same pipeline but now output the list in numerical order by user ID number.
Hint: the information can be found in /etc/passwd .

Answer:

$ cut -f1,3,6 -d: /etc/passwd | sort Alphabetical sort
$ cut -f1,3,6 -d: /etc/passwd | sort -n -t: -k 2 Numerical sort

9-11. LAB: Exercises

1. Use the hostname command to determine the name of your local system. What systems
can you communicate with?

Answer:

The hostname command reports the local host name. By looking at the /etc/hosts file,
you can see all of the computers your local computer can talk to.

2. Use telnet to log in to another computer. Use the hostname command to verify that you
are connected to the correct computer. Log off the remote computer when you have finished.

Answer:

$ telnet fred
Trying...
Connected to fred
Escape character is ’^]’.

HP-UX fred 10.00 B 9000/715

51434P G.00 Solutions-16
© 1999 Hewlett-Packard Company

Solutions

login: enter your name
Password: enter your password
.
.
.
$ hostname
fred
$ exit

3. Transfer one of your files to your HOME directory on a remote computer using ftp , and
then use rcp to copy another file to the remote machine. Notice the differences.

Answer:

In ftp , you would use the put command, similar to the example given in the student notes.

4. Use remsh to list the contents of the remote directory to verify that the copy worked.

Answer:

$ remsh system ls

The ls command will list your HOME directory on system.

10-7. LAB: Process Control

1. Under your HOME directory you will find a program called infinite . Execute this
program in the foreground and notice what it does. Enter a Ctrl + c to terminate the program.

$ infinite
hello
hello
hello
Ctrl + c
$

2. Run infinite in the background and redirect its output to a file called infin.out

$ infinite > infin.out &

Execute the ps -f command. Take note of the PID and PPID of the infinite program. Now
log out, log in again, and execute the ps -ef | grep user_id, where user_id is your login
identifier. Where is the infinite process? Remove infin.out before the next exercise.

Answer:

The PID (process ID number) of the shell (-sh) will be the PPID (parent process ID
number) of the infinite command. When you log out, terminating the parent process, all
child processes (including infinite) are killed.

Solutions-17 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

3. The nohup command protects a process from terminating upon the death of its parent
process. Re-run the infinite command in the background, but protect it from logging out by
issuing it with nohup .

$ nohup infinite > infin.out &

Now log out and log in again. Execute the ps -ef | grep user_id again. Is infinite still
running? Who is its parent now?

Answer:

When the parent process (your shell) dies, the child process (infinite) becomes an
orphan process. Orphan processes are adopted by PID 1 (init). When you log back in,
you will see infinite still running.

4. Use the kill command to terminate your infinite program.

Answer:

$ kill PID PID is returned from the ps command

5. Run the infinite program in the foreground and redirect its output to infin.out. Suspend
the program by issuing Ctrl + z . You will see a message on the screen telling you that the
process has been stopped. Send infinite to the background, and note the message.
Terminate the
infinite program with the kill command.

Answer:

$ infinite > infin.out
Ctrl + z

[1] + Stopped infinite > infin.out
$ bg %1
[1] infinite > infin.out &
$ kill %1
[1] + Terminated infinite > infin.out

11-8. LAB: Introduction to Shell Programming

1. Create a program my_vi that will accept a command-line argument which designates a file
to edit. my_vi should make a backup copy of the specified file and then start a vi session on
the file. Use an extension like .bak when creating the backup file. At this point, only use file
names of ten characters or less.

Answer:

#!/usr/bin/sh
my_vi: Create a backup file prior to starting a vi session
usage: my_vi filename
#

51434P G.00 Solutions-18
© 1999 Hewlett-Packard Company

Solutions

echo Copying $1 to ${1}.bak
cp $1 ${1}.bak
vi $1
echo Edit of $1 is complete
echo You may recover your original file from ${1}.bak

2. Write a shell program called info that will prompt the user for the following:

• name

• street address

• city, state, and zip code

The program should then store the replies in variables and display what the user entered with
an informative format.

Answer:

#!/usr/bin/sh
info: Prompt user for mailing address
#
echo "Input your name: \c"
read name
echo "Input your street address: \c"
read address
echo "Input your City, State, and Zip Code: \c"
read where
echo;echo
echo "Your name is $name"
echo "You live at $address"
echo " $where"

3. Write a shell program called home that prompts for any user’s login_id and displays that
user’s HOME directory. Recall that the HOME directory is the sixth field in the /etc/passwd
file. You should display the login_id’s from the /etc/passwd file in four columns so that the
user knows what the available login IDs are.

Answer:

#!/usr/bin/sh
home: Return the value of a user"s HOME directory
usage: home
echo Select a user identifier from the following list:
cut -f1 -d: /etc/passwd | pr -4 -t
echo "Input user identifier: \c"
read user
home=$(grep $user /etc/passwd | cut -f6 -d:)
echo;echo "user:$user HOME directory: $home"

4. Write a shell program called alpha that will display the first and last command line
arguments. Hint: use the cut command.

Solutions-19 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

Answer:

#!/usr/bin/sh
alpha: Displays the first and last command line arguments
#
last=$(echo $* | cut -f$# -d" ")
echo "The first command line argument is $1."
echo "The last command line argument is $last."

5. Create a shell program called copy that will provide a user interface to the cp command.
Your program should prompt the user for the names of the files that he or she wants copied,
and then prompt the user for the destination of the copy. The destination should be a directory
when copying multiple files, and the destination can be a file when copying only one file. Ring
the bell when the program is completed.

Answer:

#!/usr/bin/sh
file_copy: User interface for copying files
usage: copy
#
echo Please enter the names of the file(s) you want to copy:
echo "-> \c"
read filenames
echo Please enter the destination.
banner NOTE!
echo If you entered more than one file, the destination must be a
directory.
echo "Enter destination here -> \c"
read dest
echo Copying files now ...
cp $filenames $dest
echo Done copying files "\a"

12-13. LAB: Shell Programming — Branches

1. In a shell program, create an if statement that will echo yes if the argument passed is
equal to abc and no if it is not.

Answer:

if
["$1" = "abc"]

then
echo yes

else
echo no

fi

51434P G.00 Solutions-20
© 1999 Hewlett-Packard Company

Solutions

2. Create a short shell program that will prompt the user to enter a number. Store the user’s
input in a variable called Y. Use an if construct which will echo Y is positive if Y is
greater than zero and Y is not positive if it is not. Also display the value of Y to the user.
(Hint: the read command will retrieve the user’s input.)

Answer:

echo "please enter a number: \c"
read Y
if

["$Y" -gt 0]
then

echo Y is positive
echo The value of Y is $Y

else
echo Y is not positive
echo The value of Y is $Y

fi

3. Write a shell program which checks the number of command line arguments and echoes an
error message if there are not exactly three arguments or echoes the arguments themselves if
there are three. (Hint: The number of command line arguments is available through the special
shell variable $# . What special shell variable stores all of the command line arguments?)

Answer:

if
["$#" -ne 3]

then
echo "there are not exactly three command line arguments" >&2

else
echo $*

fi

4. Write a shell program that prompts the user for input and takes one of three possible
actions:

• If the input is A, the program should echo "good morning".

• If the input is B or b, the program should echo "good afternoon".

• If the input is C or quit, the program should terminate.

• If any other input is provided, issue an error message and exit the program setting the
return code to 99.

Answer:

echo "Please input A, B, b, or C: \c"
read input
case $input in

A) echo good morning
;;

Solutions-21 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

[Bb]) echo good afternoon
;;

C|quit) exit
;;

*) echo You entered an illegal option.
exit 99
;;

esac

5. Create a shell program that will prompt for a user-ID name. Verify that the user ID
entered corresponds to an account on your system. If a legal user-id is provided, display the
pathname of the user’s home directory. If a user-id is entered that is not recognized, display an
error message.

Answer:

echo "Input a user login name -> \c"
read user
if

grep $user /etc/passwd &> /dev/null
then

home=$(grep $user /etc/passwd | cut -f6 -d:)
echo The HOME directory for $user is $home

else
echo;echo "$user is not here!!!"

fi

6. Use the date command to determine if it is morning (before 12:00 noon), afternoon
(between 12:00 and 6:00 p.m.) or evening (after 6:00 p.m.). Depending on the time, create a
shell program called greeting that will echo out the appropriate message: good morning,
good afternoon or good evening. (Hint: The date command uses a 24-hour clock.)

Answer:

time=$(date | cut -c12-20)
hour=$(echo $time | cut -f1 -d:)

if [$hour -lt 12]
then

echo good morning
else

if [$hour -ge 12 -a $hour -lt 18]
then

echo good afternoon
else

echo good evening
fi

fi

7. Create a shell program that will ask the user if he or she would like to see the contents of
the current directory. Inform the user that you are looking for a yes or no answer. Issue an
error message if the user does not enter yes or no . If the user enters yes display the contents
of the current directory. If the user enters no , ask what directory he or she would like to see

51434P G.00 Solutions-22
© 1999 Hewlett-Packard Company

Solutions

the contents of. Get the user’s input and display the contents of that directory. Remember to
verify that the requested directory exists prior to displaying its contents.

Answer:

echo Would you like to see the contents of your current directory?
echo Please enter yes or no.
echo "----> \c"
read ans1
case $ans1 in

yes) ls
;;

no) echo What directory would you like to see?
read ans2
if test -d $ans2
then

ls $ans2
else

echo directory $ans2 does not exist
fi
;;

*) echo You have not entered a proper response.
echo Please try again.
;;

esac

13-12. LAB: Shell Programming — Loops

1. Create a program called double_it that will prompt the user for a number and then
display two times the number.

Answer:

#!/usr/bin/sh
double_it: Prompt the user for a number and then display 2 times
its value.
#
echo "Input an integer value: \c"
read num
echo "Two times the number you entered is \c"
let num=num*2
echo $num

2. Create a program called sum_them that will prompt the user to input 10 numbers. The
program will add all of the numbers that the user has entered, and display the final sum.
(Hint: accumulate the sum each time a new number is entered.)
Optional: Modify sum_them so that the number of numbers that the user would like to add

together is provided through a command line argument. For example sum_them 6 would
prompt the user for six numbers and add them together.

Solutions-23 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

Answer:

#!/usr/bin/sh
sum_them: Prompt the user for 10 numbers and add them together
#
sum=0
count=1
echo You will be prompted to enter 10 numbers.
echo Their sum will be displayed after all 10 numbers have been entered.
while

[$count -le 10]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the 10 numbers you entered is: $sum

Optional solution supporting a command line argument identifying the number of numbers
to enter:

#!/usr/bin/sh
sum_them2: The user will provide the number of numbers to
add together as a command line argument
#
if

[$# -ne 1]
then

echo Usage: $0 number >&2
exit 99

fi

count=1
echo You will be prompted to enter $1 numbers.
echo Their sum will be displayed after all $1 numbers have been entered.
while

[$count -le $1]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the $1 numbers you entered is: $sum

3. In a shell program create a for loop that will:

• create the directories Adir , Bdir , Cdir , Ddir , Edir
• copy funfile to each directory
• list the contents of each directory to verify the copy
• echo a message when each iteration of the loop is complete

51434P G.00 Solutions-24
© 1999 Hewlett-Packard Company

Solutions

Answer:

for name in Adir Bdir Cdir Ddir Edir
do

mkdir $name
cp $HOME/funfile $name
ls $name
echo done with $name

done

an alternative method could be:

for name in A B C D E
do

mkdir ${name}dir
cp $HOME/funfile ${name}dir
ls ${name}dir
echo done with $name

done

4. Create a shell program called my_menu that will display a simple menu that has three
options.

a. The first option will run double_it (Exercise 1).
b. The second option will run sum_them (Exercise 2).
c. Quit.

The menu should be redisplayed after each selection is completed, until the user enters 3.

Answer:

#!/usr/bin/sh
my_menu: A menu interface

Usage: my_menu

#
until

[$ans -eq 3]

clear
echo
echo
echo
echo 1) Double a number.
echo 2) Add together 10 numbers.

echo 3) Quit
echo
echo "Enter your selection number ->\c"

read ans
do

case $ans in

1) double_it
;;

2) sum_them

Solutions-25 51434P G.00
© 1999 Hewlett-Packard Company

Solutions

;;
3|quit|q|Q) exit

;;
*) echo You have not entered a legal option.

echo Please try again.

;;
esac
sleep 3

screen clears before displaying menu

done

5. Write a shell program called ison that will run in the background and check every 60
seconds whether a particular user has logged into the system. The user name should be
passed into ison as a command line argument. When the user logs in, print a message on
your terminal informing you of the login, and report what terminal the user logged into. (Hint:
Use the sleep command.)

If you are on a standalone system in a network, you might want to try the rwho command.

Answer:

#!/usr/bin/sh
ison: Check for a user to log into the system
Usage: ison username
#
if ["$#" -ne 1]
then

echo "usage: $0 user_id" >&2
exit 99

fi

until who | grep $1 > /dev/null
do

sleep 60
done

When you reach this point, the user has logged in

echo $1 has logged on
who | grep $1

51434P G.00 Solutions-26
© 1999 Hewlett-Packard Company

