
 

Computer Science Department 

 

 

Linux OS Laboratory Manual ( V 1.2 ) 

COMP311 

 

Nael I. Qaraeen 

 

 

 

Approved By: 

Computer Science department  

May 2015



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

1 

 

   Table of Contents 

Lab. # Title Page # 

1 Introduction to Linux environment 2 

2 Text editing (vi editor) 7 

3 File Systems (I)   (Structure and File Types) 11 

4 File Systems (II) (File Metadata) 16 

5 Shell Usage and Configuration (I) 22 

6 Shell Usage and Configuration (II) 28 

7 Job and Process Management 34 

8 Text Processing Tools and Regular 

Expressions 

41 

9 Shell Scripts (I) –Introduction 47 

10 Shell Scripts (II)- Programming 

(Selection Constructs) 

53 

11 Shell Scripts (III)- Programming  

( Looping Constructs) 

60 

12 Security and Networking Concepts 66 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

2 

 

Lab1. Introduction to Linux environment 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Log into and use a Linux system 

- Learn the Linux command basic structure  

- Use basic Linux commands to get familiar with the Linux environment 

- Get help information on Linux commands 

- Identify some important Linux Files 

 

Logging in to Linux 

 
Login directly to your Linux system by using your username (login name) and password 

(provided to you by the instructor).  If you are using a client machine (machine running 

another Operating System such as Windows) then you need to use a remote access 

command such as telnet to login to the Linux server as follows: 

 Open the start menu from Windows 

 Type the following command in the search field: 

 

  telnet   IP address of server  ( e.g. telnet   172.16.2.90 ) 

 

This should provide you with a terminal where you can enter your login name and 

password to access the Linux system. 

At the terminal prompt ( e.g.  [username@localhost ~]$ ) you can type your commands to 

interact with the system. 

 

Linux Commands General Format 

 
A Linux command may contain one or more of the following three categories specified in 

the following order: 

 

Command   Option(s)  Argument(s) 

 

a- Command name ( such as ls, cp, or finger ) 

 

Type the command:  

ls   

Describe the result? 

________________________________________________________ 

 

b- Command options which indicate optional preferences on how you want the 

command to run.  Those are usually specified using a – followed by a letter to 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

3 

 

specify the option(s)  ( e.g.  ls –al where the ls command has two options a (all) 

and l (long format)). 

 

Type the command:   

ls –a 

 Describe the result now?  

___________________________________________________________. 

 

Why did the files get listed in this case and not the previous case (hint: 

notice that all files names newly listed start with a dot (.))? 

___________________________________________________________. 

 

Type the command:   

ls  -al   

Describe the result? 

___________________________________________________________. 

 

c- Command Arguments which specify the parameters that you want your command 

to use while executing   ( e.g.  ls –al /etc  where /etc is an argument to the ls 

command specifying that you want to list the files in the /etc directory). 

 

Type the command:   

ls –al  /etc    

Describe the result? 

___________________________________________________________. 

 

To be able to display the result one line ( or one page at a time ), you need to filter 

that result using filtering commands like more or less. 

 

Type the command:   

ls  -al   /etc   |  more. 

Press the space bar to get one page at a time. 

Press Enter to get one line at a time. 

Press letter ‘q’ to quit  

 

An option ( as the name specifies ) is not needed to run a command, but arguments may 

sometimes be necessary to run certain commands (e.g.  cp, rm, …) 

 

  Type the command:  

cp   

What happened? 

______________________________________________________. 

 

 Now type it with a source and destination file names  (i.e. cp srcfile destfile).  

What happened?   (Note: you can simply create a srcfile by running the following 

command before the cp command is run:   touch srcfile ).  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

4 

 

________________________________________________________________. 
 

Getting Familiar with Linux Environment 
Try the following commands to familiarize yourself with Linux: 

1- who  (displays information about who is logged in to the system at this time) 

2- finger username ( you may select any user name from the who command output) 

What is displayed?  How do you think the system knows all that information? 

 

_______________________________________________________________ 

 

_______________________________________________________________ 

 

3- finger 
4- w ( displays what (w) the users are doing on the system) 

   

  To be able to communicate with another user try the command: 

5- write  username 

  Type your message 

  Type ctrl-d to stop and exit 

 Such commands as write and talk may be distracting for users on the receiving 

end.  Linux gives the user the ability to allow or deny such commands from disrupting 

his/her work.  To do this a user uses the mesg command as follows: 

 

 mesg  n   ( prevents others from sending messages using commands like write) 

 mesg  y   ( allows other users to send messages) 

mesg       (displays whether messages are allowed (y-yes) or denied (n-no)) 

 

Help on Commands 

 
There are several methods to get help on a Linux system.  One of the most useful is the 

man (manual) pages. 

To get detailed information about a command type:   

 

man command name  ( e.g. man ls) 

 

This will provide you with information on the syntax of the command and a short 

description.  It will also present the different options that may be used with that 

command.  The man command uses the less command (similar to the more command) 

for displaying information.  This means you can use the space-bar (one page at a time), 

Enter (one line at a time), and q (quit) to browse the given information. 

 

The man pages are divided into sections.  Each section gives information about the 

command in a different context as shown below: 

Try the command:    

man  passwd 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

5 

 

Gives information about passwd as a command ( section 1 of the man pages) used  to 

change your password.  Read through it and use it to set a new password to your 

account. 

 Did it work?________________________. 

 

Try the command:   

man 5  passwd   ( 5 is section 5 of the man pages) 

This will give you information about passwd as a file on the system. 

When you browse through the man pages of any command make sure you check out the 

see also section which provides you with the names of related commands to the one your 

exploring.  The names of the commands are usually specified as:   

command name(section number)  (e.g.   passwd(5) – meaning passwd in section 5 

of the man pages). 

 

Using the man pages do the following: 

 

1- Find what the command du is used for with the options   -h  and  -s; 

 

du command: ______________________________________________. 

 

 -h:__________________. 

 

 -s: __________________. 

 

2- What is the clear command used for?  Try it. 

 

__________________________________________________________. 

 

3-  List any two new commands that you haven’t seen before and find out what 

they do.  Hint: check the directories /usr/bin and /usr/sbin. 

 

Command 1: _____________. 

Function of command: 

________________________________________________________________. 

 

Command 2: _____________. 

Function of command: 

________________________________________________________________. 

 

 

 

 

Important Linux Files 

 
There are two important Linux files that contain information regarding user and group 

data.  The first is /etc/passwd and the second is /etc/group. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

6 

 

/etc/passwd file: 

 

Type the command:  

more /etc/passwd   
( hit the space bar until you see a line that starts with your user name ) 

The line will be similar to something like: 

u1112233:x:520:66:Ahmad_Hamdan:/home/students/comp311/u1112233:/bin/bash 

 

use the man pages ( section 5 for passwd to see what the fields in this line represent). 

u1112233:_____________________________________________________. 

 

x: ___________________________________________________________ . 

 

520:__________________________________________________________. 

 

66:___________________________________________________________. 

 

Ahmad_Hamdan:_______________________________________________. 

 

/home/students/comp311/u1112233:________________________________. 

 

/bin/bash:______________________________________________________. 

 

Where do you think the finger command gets the information it displays about users? 

___________________________________________________________________. 

 

/etc/group file: 

 

 Type the command:  

 more   /etc/group 

You will find lines similar to the following: 

students:x:66:ahmad,u123456 

 

Use the man pages ( section 5 for group to see what the fields in this line represent) 

students:____________________________________________________________. 

 

x:__________________________________________________________________. 

 

66:_________________________________________________________________. 

 

Ahmad,u123456:_____________________________________________________. 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

7 

 

Lab2. Text editing (vi editor) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Become familiar with the visual (vi) editor modes 

- Use the vi editor to manipulate simple files 

- Write and use simple vi macros 

 
Linux Editors 

 
There are several text editors on Linux but one of the most commonly used is the vi 

(visual) editor which was recently upgraded to vim ( vi modified).  Using the vi editor 

may seem strange at the beginning, but once you get used to it you will rarely use any of 

the other editors.  This editor is a default on most (if not all) Linux and UNIX based 

systems.  It provides the user with very powerful editing capabilities using very simple 

tools ( a keyboard and a simple terminal ). 

 

Vi Modes 

 
To get started with vi, you need to understand that when using this editor you are usually 

in one of two modes: 

1- Insert (input) mode: which is used to type characters in a file. 

2- Command mode: which is used to run commands (edit) file content 

When you first start a vi editing session, you are in the command mode by default.  To 

switch to insert mode you use one of the following letters: 

i- Insert before current character 

I- Insert at the beginning of current line 

a-      Append after current character. 

A-      Append at the end of current line 

o-   Open new line below current line. 

O- Open new line above current line. 

 

To switch back to the command mode you can use the ESC (Escape) key. 

 

Editing A Simple File 

 
Let us go ahead and start editing a simple file. 

 

Type the command:   

 vi   myfirst 

Now press the letter i to change to insert mode and type the following (on three separate 

lines): 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

8 

 

Your full name 

Your  student id number 

Your major 

 

To finish your vi session, you need to switch back to command mode (Press ESC). 

Type a colon (:).  This will move your curser to the bottom left side of your page. This is 

called the ex mode (which is an extension to the command mode). To quit your file type 

one of the following: 

 q!  - to quit without saving recent changes 

 w  -  to save recent changes and not quit 

            wq  - to save recent changes and quit session 

Save and quit the file and then open it again using the command:  vi myfirst 

 

To move around in a vi session you can use the following letters (in command mode): 

 h  - move left      j-  move down    k  -  move up     l (el) -  move right 

 

To delete any mistakes you make in a file use one of the following (in command mode): 

 x – delete current character   

 #x – delete # of characters ( e.g.  4x – deletes 4 characters starting with current) 

dw -  delete current word 

#dw – delete # of words  ( e.g.  3dw  - deletes 3 words starting with current word) 

d$ (or dd) – delete current line 

#dd- delete  # of lines  ( e.g.  5dd – deletes 5 lines starting with current line) 

 

Try deleting your last name, the last number of your student id and your major line 

from the file myfirst. 

 

The content deleted in the above commands is actually saved in the vi buffer ( like the cut 

command ).  To be able to restore that content back you may use the commands: 

 p – paste left or below 

 P -  paste right or above 

If you want to copy/paste instead of cut/paste then use a y (yank) instead of a d(delete) as 

follows: 

 yw – yank word 

 #yw – yank # words 

 y$ (or yy) – yank line 

 # yy – yank # lines 

 

To modify your file content use one of the following (in command mode): 

 r- replace current character ( e.g.   re  changes the current character to e) 

 cw -  change word  ( e.g.  cwnew  changes current word to new) 

            #cw – used to change # words with new words. 

 c$ -  change line 

 #c$-  change # of lines with new lines. 

 

If you decide to undo any of the changes you made to your file, use one of the following: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

9 

 

 u – undo last change 

 U – undo all changes in current line 

 :e! – undo all changes since last save 

 

To search a file forward for a certain pattern, you use the / (slash) followed by the 

pattern.  For example to search for the word hello in a file you type:   /hello.  To get the 

next position of the pattern type n (next). 

To search a file backwards use a ? instead of a /. 

 

Vi Macros 

 
You can create and use macros in vi. 

To create a macro in command mode use the map command in the ex mode as follows: 

 

:map  S  1GddGp:wq 

 

which will create a command mode macro called S which when pressed will go to the 

first line (1G) cut the line (dd) move to the end of file (G) and paste the line after (p) and 

then will save file (:w) and quit (q). 

 

To create a macro in input mode you use the map! command rather than map.  To include 

control characters such as ESC or ENTER in your macro, you do the following: 

Press the ctrl key then v key then the char you want.  i.e. to include the ESC key in my 

macro I press Ctrl then v then ESC and it will be saved as the control char  ^] . 

To undo a macro, you use the unmap command followed by the macro’s name (e.g. : 

unmap S). 

 

Macros will disappear after you exit your vi session.  To make your macros permanent, 

you need to include them in a file called .exrc or .vimrc under your home directory. 

 

Create the following macros and put them in file .exrc under your home directory: 

 

Macro 1: called H which is an input mode macro that copies the last three lines of the 

file to the beginning of the file. 

 

Macro 2: called  S which is a command mode macro that replaces the current word 

with the word new. 

 

Save the .exrc file and then do the following: 

 

Create a new file called testmacros and fill it up with any five lines. 

 

open the file testmacros and apply your macros ( H and S) to it.  Did they 

work?_________. 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

10 

 

More vi Practice 
 

In the brackets, write the command(s) that you would use to do each of the following: 

1.  Type  vi  linux 

2. Change to input mode ( _________ ) 

3. Type the following text 

 

 Linux was first created by Linus Torvalds 

 from Finland. 

 He based it on the UNIX OS  

 which was first created by Ken Thompson. 

 Linux is open source.  

 There are different Linux distributions, 

 such as RedHat 

 and Ubuntu. 

 Linux is a very stable and popular Operating System. 

 Using Linux is fun. 

  

 

 Go back to command mode ( ________ ).   

4. Go to the beginning of the first line in the file linux ( _____ ) 

5. Go to the beginning of the last line ( _____ ). 

6. Go to the ninth line ( _______ ) 

7.  Use the letters h, j, k, l, and w to move the cursor to the beginning of the word    

“Red”  and then delete three chars. ( _______ ) 

8.  Insert the word “Black”  ( ___________ ) 

9. Search for word open and move there (________________). 

10. Delete the word “open” by using a single command ( ___________ ) 

11  Undo this last deletion ( ___________ ) 

12 Using the search facility move your cursor to the sentence “Linux is a very stable 

…”.  

( __________ ). 

13.  Using one command, change the word “is” to “was”  ( __________ ) 

14. Move back to the first line of the file ( _____________ ) 

15.  Copy four  lines into the buffer ( _____________ ) 

16.  Move to the end of the file ( ______ )  and put the copied lines there ( ____ ) 

17. Write a command mode macro called B that will save the file and quit.  

(  ________________________ ) 

18. Write (save) the file and quit using the macro in 17. 

  

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

11 

 

Lab3. File Systems (I)   (Structure and File Types) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Understand the structure of the Linux file system 

- Build tree structures using absolute and relative paths 

- Recognize and create the different main Linux file types 

 

Linux File Systems 

 
A File System is a data structure that contains data about files and how they are 

organized.  It is a logical name that represents a physical device such as a partition on 

disk. 

 

The File Systems on Linux usually have directory names such as /home or /usr/local.  

Linux must at least have one file system which is the root file system (/). 

Linux file systems are hierarchical tree structures similar to the following: 

 

     / 

 

  etc  var  boot  home  

 

            passwd      group     students 

 

        comp311 

 

      u115678       u115679      u116789  

 

There are several common directories that usually exist in most Linux systems such as: 

/etc: includes most administration related files. 

/var: includes data that changes such as log files and user mail boxes. 

/boot:  includes system boot files. 

/home: includes user home directories 

 

To display the file systems, use the command df (display file systems) as follows: 

df   -h     ( -h human readable format). 

 

What are the physical device names as well as the mount points (directory names 

where file systems are mounted) for the file systems on your system? 

 

________________________________________________________________ 

 

________________________________________________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

12 

 

To Manipulate directories under a file system, you can use the following commands: 

mkdir  newdir  ( creates a new directory called newdir) 

cd newdir (changes your position to newdir ) 

rmdir newdir ( removes directory new directory only if newdir is empty) 

rm –rf newdir ( removes non-empty or empty directory newdir) 

pwd (displays present working directory) 

 

 

Using the commands above, create the following tree under your home directory: 

 

    mytree 

 

   dir1        dir2        dir3 

 

                             dir4   dir5 

 

                                     file1    dir6 

 

All the above are directories except file1 which is a regular file. 

 

Commands used to create mytree in order: 

 

 

 

 

 

 

 

 

 

 

 

 

 

To display your tree use the command:    

ls –R  mytree 

 

Absolute and Relative Paths 

 
Any Linux file may be referenced by either its absolute path name or relative path name.  

Each file has one and only one absolute path name while it may have an infinite number 

of relative names. 

 

The absolute path name for file1 in the previous tree is: 

/home/students/comp311/username/mytree/dir1/dir5/file1 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

13 

 

While it has several relative names such as: 

./mytree/dir1/dir5/file1 

./mytree/../mytree/dir1/dir4/../dir5/file1 

 

and so forth.  Notice that ( . ) stands for current directory while ( .. ) stands for previous 

(parent) directory. 

 

Remove the sub tree mytree created in the previous section ( rm –rf mytree ) 

Now try creating the whole tree again using relative paths from your home directory (i.e.  

you are not allowed to use the cd command to create any parts of the tree). 

 

Commands used: 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

So far, we have mentioned two types of Linux files as follows: 

1- Regular files which include scripts, binaries, as well as text files.  These files 

contain data and are identified by any empty first slot when we list them using the 

ls –al   filename command.  These are created using the vi editor. 

2- Directories which are simply containers that include the mappings between 

filenames and subdirectory names and their unique inode (index) number in the 

file system.  These are identified by the letter d in the first slot when we list them 

using the ls –al dirname command.  These are created using the mkdir command. 

 

The third type of Linux files are the special (device) files which are usually located under 

the /dev directory.  There are two types of device files: 

1- Character device files: which are used to read and write from/to devices one 

character at a time (e.g. keyboard device files).  These are identified with the 

character c when we list them with the ls –al command. 

2- Block device files: which are used to read and write from/to devices one block at 

a time (e.g. disk device files). ).  These are identified with the character b when 

we list them with the ls –al command. 

 

Run the command ls –al on the /dev directory.  List three character device files and 

three block device files. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

14 

 

 

 

 

 

 

 

 

 

 

The fourth type of Linux files are the links. 

The original links in Linux are called the hard links and are created using the command 

ln. 

Create a directory to try some links ( mkdir links; cd links) 

Create a file called original and put the phrase “this is original” inside then save and quit 

(vi original) 

Now create a directory called mydir ( mkdir mydir ) 

 

Let us now start working with links: 

 

Create a hard link called filehlink to file original: 

 ln  original  filehlink 

List the files in your directory with ls –ali  ( the i option displays the inode numbers) 

Notice that all the properties of file original and link filehlink (except the name) are 

exactly the same (even the inode number).  Hard links basically give a new name to the 

same inode number. 

Hard links have two limitations: 

1- Not allowed on directories 

Try the command:    

ln  mydir  dirhlink 

What was the result? 

________________________________________________________. 

 

2- Not allowed across different devices (file systems) 

Try the command:    

ln   /etc/passwd   passwdhlink 

What was the result? 

________________________________________________________. 

 

 

Those limitations are solved using a different type of links called symbolic (soft) links. 

To create a symbolic link simply use the option (-s) with the ln command. 

 

Try the following commands and see what happens: 

 

rm  filehlink 

ln   -s   original  fileslink 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

15 

 

ls –ali     (what  are the differences between original and fileslink properties?) 

 

 _________________________________________________________________. 

 

 

ln –s   mydir    dirslink   (what happened now?) 

 

 _________________________________________________________________. 

 

ln –s   /etc/passwd   passwdslink  (what happened now?) 

 

_________________________________________________________________. 

 

Now go back to the tree you created earlier (mytree) and add the links shown below: 

 

 

mytree 

 

   dir1        dir2        dir3 

 

                             dir4   dir5 

 

                                     file1    dir6 

 

       file1link 

          dir3link 

 

What commands did you use: 

 

 

 

 

 

 

 

 

 

 

Although there are few more types of Linux files such as pipe files or socket files.  They 

are rarely used or seen by users. 

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

16 

 

Lab 4. File Systems (II) (File Metadata) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Understand and manipulate permissions (mode) on different Linux files 

- Set the default permissions for files and directories 

- Identify and handle file properties such as ownership, groups, size, and 

timestamps. 

 
Permissions (Mode) 
Each file has nine characters that represent the permissions on that file.  Those are 

divided into three equal parts:  

user (u)= user (owner) permissions on the file. 

group (g) = permissions of members of the group name stamped on the file (except 

owner). 

other (o)= all system users other than the group and owner. 

 

The main three permissions that may exist on the file are read (r), write (w), and execute 

(x).  These mean different things for files than they do for directories as follows: 

 

Read:  for files it means the user can view content of file ( using vi, more, cat, …) while 

for directories it means the user can view content of directory (using ls). 

Write: for files it means the user can modify the content of the file, but is not allowed to 

remove it while for directories it means the user can modify the content of the directory 

(i.e. can create or remove files and subdirectories). 

Execute: for files it means the user can run the file (scripts or binaries) while for 

directories it means the user can access the directory ( use cd). 

 

To change the mode, a user may use the chmod (change mode) command.  This 

command can specify the new permissions using a relative or absolute method. 

 

Chmod using relative method 

Using this method the user can modify the permissions on a file ( or directory ) relative to 

the already existing permission as follows: 

 

Assume that we start with the following permissions on a file called myfile    r_xrw_r___   

 

The command: chmod    u+w,g-rw,o+ x   myfile      

Will change the permissions on myfile to   rwx____r_x 

If we continue with the command:   chmod   u=rw,g+w   myfile 

The permissions will now become    rw___w_r_x 

 

Check the man pages on command chmod for more examples and then do the following: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

17 

 

 

Create a directory called  mode and move inside it (  mkdir  mode; cd mode ). 

Create a file called myfile and a directory called mydir inside directory mode. 

Using the chmod command with relative mode, change the permissions on both myfile 

and mydir as follows: 

 

rwxr_xrw_         commands=  _______________________;______________________. 

 

r__rw____x       commands= ________________________;______________________. 

 

___rwx_wx        commands=________________________;_____________________. 

 

 

The second method is the absolute method which does not depend on the permissions that 

already exist on the file. 

This method uses a binary 1 where you want a permission to be set and a binary 0 where 

you want it unset as follows: 

 

The command:    chmod    734     file will set the permissions on file to  111 (7) for user = 

rwx and 011(3) for group = _wx and 100(4) for other = r__ so the permissions on the file 

will be=   rwx_wxr__ 

 

Using the chmod command with absolute mode, change the permissions on both myfile 

and mydir as follows: 

 

rwxr_xrw_         commands=  _______________________;______________________. 

 

r__rw____x       commands= ________________________;______________________. 

 

___rwx_wx        commands=________________________;_____________________. 

 

 

Default Mode 
 

The default permissions that are set on newly created files and directories are set using 

the umask command. 

Run the command:  

umask 

What number did you get:________________. 

 

This number decides the permissions set on newly created files or directories. 

Read the manual page for umask ( man 2 umask ) and try to figure out what permissions 

would you get on files and directories after you run the command:  umask 123 

Expected permissions on a new file= ______________________________. 

Expected permissions on a new directory= ______________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

18 

 

Check to see if you understood how umask works by creating a new file and a new 

directory and checking the set permissions.  Did you get it right?  ____________. 

 

What permissions would you expect after the command: umask 625    is executed.  Try it 

to see the results.  Did it work?_________________. 

 

Now let us try and do the reverse: 

 

If you want a newly created directory to have the permissions  rwxr___wx what umask 

command would you run:   _____________________________________. 

Try it.  Did it work? ______________. 

To have the following permissions on a newly created file:  r__rw___w_ what umask 

command would you run:_______________________________________. 

Try it.  Did it work?_____________. 

What about if you wanted a newly created file to have permissions:  rwxr___wx.  What 

umask command would you run: __________________________________. 

Try it.  Did it work?   _____________.  Why? ___________________________. 

 

Changing Link Properties 

 
Since we can modify the mode property of a file we can do more testing to see how links 

work.  Go back and create two files called file1 and file2 and then create a hard link 

called hlink to file1 and a symbolic link called slink to file2.  List the commands you 

used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now try changing the permissions on file1 to rwxrwxr__.  

Command:_______________________ 

 

What happened to the permissions on hlink? Why? 

 

_______________________________________________________________________. 

 

Now change the permissions on hlink to rwx______x. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

19 

 

Command:______________________________. 

 

What happened to the permissions on file1? Why? 

 

_______________________________________________________________________. 

 

Now try changing the permissions on file2 to rw_r_xr__. 

 

 Command:_______________________ 

 

What happened to the permissions on slink? Why? 

 

_______________________________________________________________________. 

 

Now change the permissions on slink to r__rwxr_x. 

 

Command:______________________________. 

 

What happened to the permissions on file2? Why? 

 

_______________________________________________________________________. 

 

What happened to the permissions on slink?__________________________________. 

 

 

Ownership and Groups 

 
The next file property is the name of the owner of the file.  The owner is the only user 

(other than root) that can modify the properties of a file.  The root is the only one that can 

change a file ownership using the command chown as follows:   

chown  newuser   filename 

Try changing the ownership of any of your files.  Did it work?________________. 

 

The following file property is the group name on the file.  This group name may be 

modified by the owner if he/she is a member of the new group he/she wants to put on the 

file.  To change the group, a user uses the command chgrp as follows:    

chgrp    newgroup   file 

Try to change a group on any of your files.  What happened?____________________. 

 

Size 
The next property shows the size (in bytes) of a file.  Try creating a file and putting the 

phrase “how are you” inside then save and quit.  What is the size of the file?_________. 

Why?________________________________________________________. 

Change to directory /dev.  Command:____________________________. 

Check out the size property on device files.  What did you find? 

_______________________________________________________________________. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

20 

 

What are the two numbers that exist instead of the size? 

 

______________________________________________________________________ 

 

______________________________________________________________________. 

 

Go back to your home directory.  Command:____________________________. 

 

Go back and display the size of the symbolic link (slink) you created earlier.  Can you 

figure out how that size was calculated?________________________. 

 

Try creating a new symbolic link and see if you are able to figure out how the size on a 

symbolic link is set.  What did you find? 

 

____________________________________________________________________. 

 

 

Time Stamps 

 
A file has several time stamps.  The main two are: 

1- Last modification time: which is the time the file was last modified and saved.  

This is the default time displayed by ls –al command. 

2- Last access time:  which is the time the file was last accessed or viewed.  What ls 

option is used to display that time. _______________ (Check the man pages). 

 

Check the times on file myfile and record them. 

Now view the file using the more command.  What happened to the times? 

____________________________________________________________________. 

 

Now open the file myfile, modify it and then save and quit. 

What happened to the times now? 

____________________________________________________________________. 

 

Another way to display file properties in detail is to use the stat command.  Run the stat 

command on file myfile as follows:   

 stat myfile 

What information can you see: 

 

_______________________________________________________________________ 

 

_______________________________________________________________________ 

 

For more information on the output, you can read the man pages on the stat. 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

21 

 

File name 

 
A Linux file name can be up to 255 characters long and is made of any characters.  A dot 

has no special meaning in a file name except if it is the first character then the file is a 

hidden file.  Create a hidden file called   .hidden.   

Command:______________________. 

Try to list your files using the command ls.  Can you see .hidden? 

__________________. 

Now try to list the files using the command ls with the –a (all) option?  Can you see it 

now?____________________________. 

 

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

22 

 

Lab5. Shell Usage and Configuration (I) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Become familiar with common Linux shells. 

- Recognize and manipulate system and user defined shell variables. 

- Identify and use shell functions like command substitution, aliasing, command 

line editing and file name completion. 

 
Linux Shells 

 
A shell is a command interpreter.  It is the main program used by the user to access and 

use the Linux operating system.  When the user enters a command and hits the Return 

key the shell checks the command and rejects or accepts it.  Accepted commands are then 

passed on to the Kernel part of the OS for execution and the result is displayed by the 

shell to the user. 

There are different shells on many Linux and UNIX based systems such as: 

sh (bourne shell) 

csh ( C shell) 

ksh  (korn shell) 

bash (bourne again shell) 

To change from one shell to another simply type the name of the shell on the command 

line and hit Enter. 

 

Shells have many features and functions which allow them to perform their work.  The 

following are some of those features or functionalities: 

 

Variable Substitution 

 
A shell is a program that has several variables that help the shell do its work.  Many of 

those variables are system defined variables (usually written using upper case letters) and 

some may be user defined variables. 

 

Let us consider some of the system defined variables to see how the shell uses them. 

 

PATH variable: 

Run the command:    

echo PATH    

What did you get?______________________. 

Now run the command:    

echo   $PATH   

What did you get?________________________________________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

23 

 

To display the value of a variable you need to precede it with the ($) character. 

The PATH variable is used by the shell to locate commands for execution.  Let us see 

how the shell is affected by modifying that variable.   

Run the following commands: 

 

SAVEPATH=$PATH   (saves the value of PATH in variable SAVEPATH) 

ls   Did it work? ________________________ 

PATH=/etc 

ls  Does it work now?_____________________.  

Why?________________________________________________________________. 

Restore the original value for variable PATH.  

Command?_________________________. 

 

Now try the command:  

ls    Does it work now? ____________________________. 

You can add directories to your PATH.   To add the dir  /etc to the end of the PATH 

use the command: 

PATH=$PATH:/etc 

Try it and then use the command: 

echo $PATH 

Was it added as expected? _____________________. 

 

PWD and PS1 Variables: 

 

Display the value of the PWD variable.  

Command?_____________________________. 

Change your directory to /etc.  Command?_____________________________. 

What is the value of PWD now?_______________________________. 

How do you think the pwd command works?__________________________________. 

 

Now run the following command: 

PS1=”hello >” 

What happened to your prompt?______________________________. 

Now run the command: 

PS1=’$PWD >’ 

What happened?________________________________________________. 
 

There are several other variables such as HOME, PS2, SHELL, MAIL and so forth. To 

display the variables in your shell run the command: 

set  |  more 

List three more variables other than the ones mentioned above and their values: 

 

1- ____________________________________. 

 

2- ____________________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

24 

 

 

3- ____________________________________. 

 

Run the command: 

env  |  more 

Is the output the same as the set command or different?  ______________. 

What is the difference between set and env?  (hint:  Check the man pages). 

 

_______________________________________________________________________. 
 

 

User-Defined Variables 

 
Users can define their own shell variables to simplify their work or store values for later 

use.   

Under your home directory ( cd ) create the following structure: 

 mkdir  project 

 mkdir  project/myfiles 

 touch  project/myfiles/firstfile 

 

Now create a new variable called myprojfiles as follows: 

myprojfiles=$HOME/project/myfiles 

Now you can use the new variable to manipulate your project directory.  Try the 

following commands and write what each does: 

 

vi  $myprojfiles/firstfile 

 

____________________________________________________________________. 

 

cp  /etc/passwd   $myprojfiles 

 

____________________________________________________________________. 

 

touch  good; mv   $HOME/good   $myprojfiles 

 

___________________________________________________________________. 

 

To summarize, a shell checks a command for any variables (words starting with $) and 

substitutes them with their values before executing the command. E.g. in the command 

echo $PWD the shell first substitutes the variable PWD for its value and then executes 

the echo command on that value. 

 

Command Substitution 

 
Another important shell function is command substitution where the shell substitutes 

commands with their results before executing the main command. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

25 

 

 

Try the command:   

date 

What is the result?_________________________________________________. 

Now try to command: 

echo    $(date) 

What is the result?_________________________________________________. 

 

The result of both commands is the same, but for different reasons.  In the first case, 

command date is executed and the result of the command is displayed.  In the second 

case, the shell first substitutes the result of the command date (which is indicated using 

the $(command) notation) and then executes the main command echo on that result.  

Thus, the output of the date command is used as an argument for command echo. 

 

Command substitution is very useful for saving command outputs in variables for later 

use. 

Run the command: 

grep yourusername  /etc/passwd  |  cut  -d:   -f5 |  cut   -d_   -f1 

 

What is the result? ___________________________________________. 

 

To get that result again you need to run the same command each time.  You can save the 

result of that command in a variable for later use using command substitution as follows: 

firstname=$(grep yourusername   /etc/passwd  |  cut   -d:   -f5   |  cut    -d_   -f1) 

 

Now you can use the variable firstname whenever you need it.  This is especially useful 

in shell scripts.  You can run the following command for example: 

echo  how are you doing  $firstname? 

 

The notation $(command) is common to many shells, but not all.  The csh shell does not 

use that notation.  There is another older notation which is understood by most if not all 

shells.  Instead of $(command)  the notation used is  `command`  (The single quote used 

here is the one below the ESC key on the keyboard). 

Try the new notation to get your last name and save it in a variable called lastname. 

 

Command:______________________________________________________________. 

 

Aliasing 

 
Another function of the shell is aliasing which is basically used to give new simple names 

to complicated or long commands.  For example: 

 

alias  dir=”ls  -ali”   

dir 

 

The new alias dir will now behave exactly as “ls –ali” when executed. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

26 

 

 

To display the aliases you already have on your system, run the command: 

 

alias 

 

List three aliases that you have and their values: 

 

1- ___________________________________________________________. 

 

2- ___________________________________________________________. 

 

3- ___________________________________________________________. 

 

 

To cancel an alias, use the unalias command.  For example: 

unalias  dir    (cancels the dir alias) 

 

Always be careful of aliases that have the same names as commonly used commands. An 

alias such as the following may be very dangerous.  Do NOT try it. 

alias   ls=”rm  -f   *” 

 

Command Line Editing 

 
The commands you enter on the command line are stored by the shell in a history file 

called  .bash_history under the bash shell.  To use or modify commands you executed 

earlier you can use the arrow keys.  The up and down keys are used to get commands and 

the left and right arrows are used to move and modify a command if needed. 

 

Rename (use the mv command) the file .bash_history to .save_history. 

Command: __________________________________. 

Exit from the system and log back in. 

Check the commands stored in .bash_history.  What did you find?  Why? 

 

________________________________________________________________________ 

 

_______________________________________________________________________. 

 

 

What can you do to restore all your previous commands? 

 

______________________________________________________________________. 

 

 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

27 

 

File Name Completion 

 
Another useful shell function is file name completion where the shell completes long file 

names for you when you type commands as follows: 

Suppose I have a file called :    abcdefghijklmnopqrstuvwxyz  and I need to copy it. 

All I have to do is type: 

cp   abcESCESC  newfilename 

If there are no other files starting with abc then the shell will complete the long name for 

me.  If there are other files that start with abc then the shell will display them and I need 

to specify the first different character and then press ESCESC for the shell to complete 

the name. 

 

 

Making changes permanent  

 
Many of the changes mentioned above such as creating new variables, changing existing 

variables, or creating aliases will disappear after exiting and logging back into the 

system.  To make those changes permanent, they need to be added to your environment 

file ( .bash_profile ).  Be very careful when modifying this file and always copy it first 

before making modifications.  

 

Copy the file .bash_profile to file .save_bash_profile 

 

Command:____________________________________________. 

 

Add the following to the end of your .bash_profile file: 

1- Add the .  (current directory) to your PATH variable 

2- Add a variable called myproj with the name of a project directory under your 

home directory. 

Save the file and quit. 

Exit the system and then log back in. 

 

Check to see if the changes still exist on the system. Do they? ___________________. 

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

28 

 

Lab6. Shell Usage and Configuration (II) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Understand and use shell input, output, and error redirection. 

- Use pipes to join several Linux commands into single powerful commands. 

 
I/O Redirection 
 

Commands ( and programs ) usually receive input and then produce output and error.  By 

default the input is usually received from the keyboard and the output and error are 

usually both directed to the screen.  Linux shells allow us to change those defaults and 

redirect input, output, and errors. 

 

Input Redirection 

 

To understand input redirection, let us first use the mail command.  The mail command is 

the default command used to send and receive mail on most UNIX based systems.  To 

send email to another user simply use the command: 

mail  username    ( username@system if on another system ) 

You can try sending yourself an email by typing: 

mail   yourusername 

subject:hello 

This is my mail message 

Goodbye 

. 

cc: 

 

As you can see the mail asks you for a subject (title of message) and you end the mail by 

typing a dot (.) by itself on a line and then pressing enter. 

 

To read your email, you can simply type: 

mail 

You will get the & sign.  Type ? for help on how to use 

(read/delete/save/reply/forward/…) the mail program.  To quit just type q and Enter. 

 

The input for the mail command was received from the keyboard ( default ).  You can 

redirect the input such that it is received from a file.  To do that use the ( <  ) character as 

follows: 

Create a file called message and type the following two lines inside: 

This is my message file 

Goodbye 

Then save and quit 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

29 

 

 

Now run the following command: 

 

mail  -s  hello   yourusername   <  message 

 

The input in this case was redirected to come from file message instead of the keyboard. 

 

Another example is the tr (translate) command.  This is a useful command used to change 

input characters and may be used to encrypt characters. 

 

Run the command 

 

tr    “a-z”   “A-Z” 

how are you 

 

The result is “HOW ARE YOU”.  As you can see the input was received from the 

keyboard.  You may redirect the input to come from the file message you created earlier 

as follows: 

tr    “a-z”    “A-Z”   <  message 

What was the output? 

 

_____________________________________________________________ 

 

_____________________________________________________________ 

 

You can append the redirected input using the here text ( << ).  Run the following 

command: 

 

tr    “a-z”    “A-Z”   << ! 

 hello 

 how are you 

 hope well 

 bye 

 ! 

  

What did you get as output? 

 

 

 

 

 

 

 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

30 

 

Output Redirection 

 

The output of commands is sent to the screen by default.  You may redirect the output by 

using the ( > ) character.  Run the command: 

ls –al 

The output will be shown on the screen. 

Now run the command: 

ls –al  >  lsfile 

No output will be displayed on the screen.  View the file lsfile using the more command.  

It should contain the output of the “ls  -al” command. 

 

Using the ( > ) character will create a new file or overwrite an existing file. 

To append the output to a file, you can use the ( >> ) character as follows: 

ls   -al  >>  lsfile 

who   >>  lsfile 

echo hi   >>  lsfile 

 

One of the main Linux philosophies is that everything is treated as a file including 

hardware devices.  To interact with hardware devices, Linux interacts with device files 

which represent those hardware devices.  This means that if we are able to redirect input 

or output from/to files then we actually do the same with devices.  We can try this with 

device files that represent our terminals (screens). 

 

Open two terminals ( if using telnet then do two telnet connections). 

Run the command:   

who 

Record the pts numbers (you should have two, one form each terminal). 

Assume the terminal you are working on has pts/4 and the other terminal has pts/5 ( you 

need to use your numbers when testing).   

Type the following command: 

echo hello 

This will display the word hello on your current terminal ( i.e.  pts/4) which is the default. 

Now type the following command: 

echo  hello  >   /dev/pts/5 

 

What happened?  Explain. 

 

______________________________________________________________________ 

 

______________________________________________________________________ 

 

 

Error Redirection 

 

Command output is sometimes mixed up with command errors since they are both sent to 

the screen by default.  Run the following command: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

31 

 

cp 

What did you get displayed? 

________________________________________________. 

 

Is that output or error? _____________________________. 

Now run the command: 

cp    >   cpfile 

What happened? ___________________________________________________. 

Since the same message got displayed on the screen and was not sent to file cpfile then it 

must not be output.   It is error. 

To understand how to redirect errors, we should learn about file descriptors.  There are 

three file descriptors used by programs to specify input, output, and error. 

Standard input  has file descriptor   0 

Standard output has file descriptor   1 

Standard error has file descriptor   2 

 

There is no need to use the file descriptors 0 and 1 when redirecting input and output 

respectively since they use two different characters namely <   and  >. 

To redirect error we need to use the (>) character so to distinguish it from redirecting 

error, we must specify the file descriptor before the > character as follows: 

cp    2>   cpfile 

 

What happened now?_________________________________________________. 

 

Check the contents of file cpfile.  What did you find?  

 

___________________________________________________________. 

 

Redirecting output and error to different places may be very useful especially when 

dealing with commands that produce both at the same time.  Try the following command: 

 

find     /    -name    passwd    -print   

What did you get?  Was that output or error?________________________________. 

 

Now run the command as follows: 

find   /    -name    passwd   -print   2>  errors 

What did you get now? ____________________________________________. 

 

Check file errors content. 

Now run the command as follows: 

find   /   -name    passwd   -print    >   output      2>    error 

What happened?_____________________________________________________. 

 

Check both files output and error. 

 

To append errors use ( 2>> ). 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

32 

 

Pipes 
 

One of the main Linux philosophies is to have commands where each does one thing very 

well.  For example, the ls command has so many options to display file information in so 

many different ways.  Another philosophy that complements that is the ability to join 

different commands together in a chain to produce more powerful commands.  This is 

usually done using pipes. 

 

Run the following command: 

 

cat   /etc/passwd   |   grep  yourusername   |   cut    -d:   -f5  |  cut  -d_    -f1 

 

What did you get? ___________________________________________________. 

 

 

This command is made up of four different commands joined together using pipes (|).  

Pipes usually work with commands we call filters.  They take input and filter it to 

produce a certain output.  They usually do not change the original input source. 

This is how the above command works: 

 

“cat   /etc/passwd” produces  the passwd file (many lines ) as output. 

The passwd file is passed as input to the “grep  yourusername”  command which in turn 

filters that into a single line that contains your username.  This line is then passed to the 

command  “cut   -d:    -f5” which filters it to one -field (field five) (-f5) based on dividing 

fields by delimiter : (-d:).  This output is then passed as input to the next cut command 

“cut   -d_   -f1” which filters it to get the first field ( your first name ) by cutting based on 

delimiter underscore (-d_).  The output ( your first name) is then displayed on the screen. 

 

What command would you use to get your group number from /etc/passwd: 

 

__________________________________________________________________. 

 

 

What command would you use to get your login time from the who command?  

 ( Hint: use the tr command with the squeeze option ) 

 

__________________________________________________________________. 

 

 

What command would you use to get the default group name for any given user? 

 

______________________________________________________________________. 

 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

33 

 

Try the following command: 

find   /  -name   passwd   -print  |  more 

 

What happened?  Why is the result of the command not filtered by more? 

 

______________________________________________________________________ 

 

______________________________________________________________________. 

 

 

How can we fix this? 

 

_______________________________________________________________________ 

 

_______________________________________________________________________. 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

34 

 

Lab7. Job and Process Management 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Manage several jobs running in the background. 

- Understand how processes are created using the fork and exec steps. 

- Control the priority of newly created processes using the nice command. 

- Identify and use signals for manipulating processes. 

 
Job Control 
Sometimes we need to execute more than one job on the same terminal, but we are forced 

to wait until one command is done executing and getting the shell prompt back before we 

can execute the next command.  This is especially a problem if the one of the jobs we are 

executing takes a long time such as a backup job.  To get around this, Linux allows us to 

run several jobs at the same time in the background.  This is called job control. 

To be able to understand job control, we need to create and use a command that will take 

a long time.  To do this, we do the following steps: 

1- Create a new file called forever using vi as follows: 

vi  forever 

while   true 

do 

echo  running  >  myfile 

done 

 :wq 

 

This is basically a script file with an infinite loop. 

 

2- Now we have to make sure that our PATH variable includes the current directory 

(.).  This step is important for the shell to locate our newly created command 

forever.  This is done as follows: 

 

PATH=$PATH:. 

 

3- The third step is adding the execute (x) permission to the command to make it 

executable.  This is done by adding x to all parts of the mode as follows: 

chmod    +x    forever 

 

Now we have a command called forever that runs for a long time and that can be used to 

understand job control. 

To run a job in the background, we follow the command with an ampersand ( & ).  In our 

case we are going to run three forever jobs in the background as follows: 

 forever& 

             [1][2000] 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

35 

 

 forever& 

            [2][2500] 

 forever& 

            [3][2503] 

Each time we run a job in the background the system displays two numbers.  The first is 

the job id number and the second is the job process number.  These numbers are 

important to be able to reference the job later on for manipulation. 

 

We can display our background job by using the command: 

 jobs 

This will display an output similar to the following: 

[1]  Running forever 

[2] - Running forever 

[3] + Running forever 

 

The number is the job id number.  The plus and minus signs reference the last and the one 

before last jobs.  The status of all jobs is running.  The last column is the name of the 

command used to create the job. 

 

We can manipulate the jobs in several ways, as follows: 

To get a job back to the foreground we use the fg (foreground) command followed by the 

job id number. E.g. to get job 2 to the foreground, we run the command: 

 fg    %2 

This brings the job to the foreground.  To send the job to the background, we press ctrl-z. 

The job is moved back to the background. 

Run the following command: 

jobs 

What do you notice different about job # 2?   

 

______________________________________________________________________. 

 

To resume a stopped or suspended job, we use the bg (background) command followed 

by the job id number.  To resume job 2 ( change its status to running) we use the 

command: 

 bg   %2 

Run the command: 

 jobs 

What is the status of job # 2 now?  ____________________________. 

 

To terminate a job we use the kill command followed by the job id number.  E.g. to kill 

job 3 we issue the following command: 

 kill    %3 

If we type the command:  jobs  quickly enough we will see the status of job 3 changing to 

Terminated and if we check again it will disappear. 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

36 

 

Do the following: 

kill all remaining jobs such that none are in the background. 

Write the sequence of commands needed to have the following output displayed when 

the command “jobs” is issued: 

 

[1]  Stopped forever 

[2] - Terminated forever 

[3] + Running forever 

 

Commands: 

 

 

 

 

 

 

 

 

 

 

 

Process Control 

 
A process is simply a program in execution.  Each command we run results in one or 

more processes.  There are several processes running in the background that allow us to 

use the system and provide us with different services.  Interacting and manipulating 

processes is called process control. 

 

When a command is run, a duplicate copy of the parent process is created using the fork 

function.  This copy is similar to the original except for its process id number (pid).  After 

that the system executes the command using the exec step which basically loads the new 

command on top of the copy created as follows: 

 

When we run the command ls under the bash shell, a copy of bash is created and which is 

replaced by ls. 

 

 

   pid (100)     Fork           pid  (200)              Exec             pid (200) 

 

 

 

 

 

 

bash (local variable) 

 

bash  code 

 

bash  (env. variable) 

 

bash (local variable) 

 

bash  code 

 

bash  (env. variable) 

 

ls (local variable) 

 

ls code 

 

bash  (env. variable) 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

37 

 

Notice that the environment variables are passed from the parent process (bash) to the 

child process (ls). 

 

Let us now run through to see the some details on what happens above. 

To view process information, we can use the ps (process status) command.  To see our 

running processes we use ps with the –f option as follows: 

ps    -f 

 

Describe the output? 

 

_______________________________________________________________________. 

 

 

Let us create two variables called var1 and var2 respectively.   

var1=first 

var2=second 

When new variables are created they are defined as local variables.  To change a variable 

from local to environment, we export it ( use the export command).  Let us make var2 an 

environment variable as follows: 

export   var2 

 

The set command is used to display both local and environment variables.  The command 

env is used to check the environment variables only.  Let us check for var1 and var2 in 

our main process (bash shell): 

Run the command: 

set  |  grep var 

Which of the two variables ( var1 and var2) do you see in the output?  Why? 

 

__________________________________________________________________. 

 

Now run the command: 

env |  grep var 

 

Which do you see now?  Why? 

 

_________________________________________________________________. 

 

 

Now run a child processes ( ksh ) as follows: 

ksh 

Run the command:  

ps   -f 

What is the output now?   

 

_____________________________________________________________________.  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

38 

 

Notice the numbers pid (process id) and ppid (parent process id).   Those should tell you 

that bash is the parent process and ksh is the child process. 

You are now in the child process.  Let us check for the variables var1 and var2 in the 

child process (ksh). 

Run the command: 

set | grep var 

Which of the two variables ( var1 and var2) do you see in the output?  Why? 

 

__________________________________________________________________. 

 

Now run the command: 

env |  grep var 

Which do you see now?  Why? 

 

_________________________________________________________________. 

 

This shows that only environment variables are passed from parent processes to child 

processes. 

 

As shown above any created process goes through the fork and exec steps explained 

above.  We can use the exec command to skip the fork step and just do the exec step and 

see what happens, as follows: 

Run the command: 

 ps –f 

You should have three processes ( bash, ksh, and ps –f).  ps –f  does not exist anymore.  

Now register the pid number for the ksh process.  Now instead of running the “ps –f” 

command as before, run is as follows: 

 exec   ps –f 

What processes do you see now?  What happened to ksh ( hint: note the pid number for  

the ps –f  process) 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

What would you expect to happen if you run the command “exec ps –f” again? 

 

________________________________________________________________. 

 

Try it.  What happened? 

 

________________________________________________________________. 

 

This shows that processes do go through both the fork and the exec steps, otherwise a 

new child process will take over its parent process and destroy it. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

39 

 

 

Nice command 

 

Users may decrease the priority of their processes ( especially those that take a long time 

and are not of high priority such as backups) to allow other users to run their processes at 

a higher priority.  When they do that, they are nice and to do that they use the nice 

command.  The only user that can both decrease and increase the priority of his/her 

processes is the root (system administrator). Let us see how the nice command is used. 

Run the command: 

 ps   -l 

Note the two new columns displayed namely: 

 PRI  ( which refers to the priority of the process) 

 NI  (which refers to the nice value of the process) 

Now run the above command as follows: 

 nice   -6     ps  -l 

Notice what happened to the PRI and NI values for process “ps  -l”.  They increased.  

Increasing the priority number actually makes the priority for that process less. 

Now try to run the command: 

 nice     --8    ps  –l      (  --8  =  two dashes then 8 ) 

What happened?  Why? 

 

______________________________________________________________________. 

 

 

Signals 

 
Users can control their processes through sending signals using the “kill” command.  

There are many signals that may be sent to a process.  To get a list you may use the 

following command: 

 man    7    signal 

There are three interesting signals that stand out.  Those are namely TERM (also called 

SIGTERM) which has the number 15,  HUP  (also called SIGHUP) which has the 

number 1, and KILL (also called SIGKILL)  which has the number 9.  The default signal 

is the TERM signal. 

The TERM signal tries to terminate signals cleanly and may be blocked by processes 

such as shells.  The HUP signal is used to restart a process to have it upload any changes 

in its configuration files.  The KILL signal is used to kill a process uncleanly and cannot 

be blocked.  Let us try the TERM and KILL signals: 

Run the command we created in the beginning of this lab (forever) in the background and 

note the process id number given (let us assume it is 1234). Check to see that the process 

is running in the background ( use the jobs command). 

Try the following command: 

 kill   1234 (use the number shown for your process) 

Now recheck if the process is running with the jobs command.  What did you find? 

 

___________________________________________________________________. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

40 

 

 

Now repeat the same steps ( i.e. create the forever job in the background and check its 

PID ( we are assuming its 1234, but it could be anything) ). 

 

For each time you create the forever job try killing it with one of the following 

commands: 

 

 kill    -15   1234    ( specify the correct PID, we are assuming its 1234 ) 

kill   -TERM   1234 

kill   -SIGTERM    1234 

 

What did you notice about each of the three commands above? 

 

_______________________________________________________________. 

 

Open two terminals ( if you are using telnet then open two telnet connections) 

Use the ps command to determine the process id number of the terminal you are not 

using, as follows: 

 ps –f  

What is the pid number for the bash process running on the pts number different from the 

pts number that your ps –f process is running.  That is the pid you need.  Now try running 

the following command: 

 kill    pidofbash  (or kill  -15  pidbash) 

What happened?  Why? 

 

______________________________________________________________________. 

 

Now try the following kill command: 

 Kill   -9    pidofbash    ( -9 is equivalent to –KILL or  -SIGKILL) 

Now what happened? 

 

_____________________________________________________________________. 
 

 

 

 

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

41 

 

Lab8. Text Processing Tools and Regular Expressions 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Identify and use filters as valuable text processing tools. 

- Use simple regular expressions to make text processing more efficient. 

 
Text Processing using Filters 

 
In the pipes lab, we mentioned a group of commands called filters.  These are basically 

commands that take some input and then filter it to produce the requested output without 

changing the original source of input.  In this lab we will practice how to use some filters 

as useful tools for text processing. 

 

The filters we will use are ( use the manual pages ( man command ) to get more 

information on those filters and their available options): 

 

head and tail:  used to display lines from the beginning or end of a given input 

respectively. 

cat:  used to view or concatenate files. 

grep: used to extract certain rows (lines) from a given input.  We will concentrate on the 

options   -i,   -l (EL),  -v. 

cut: used to extract certain columns from a given input.  We will use the options  -d, -f, 

and –c. 

tr:  translates (changes) a given input to a specified output 

wc:  used to count lines, words, or characters in a given input. 

sort:  used for sorting a given input.  We will present the options   -i, -o, -u, -n, -k, and –t. 

sed: used for stream editing (changing parts of an input to a specified output) 

 

Create the following file called students using the vi command and then save and quit: 

 

 ah6:506:Ahmad_Hamdan 

 sh5:345:Suha_HAMDAN 

 rd7:427:Ribhi_ahmad 

 hr4:234:hamdan_ribhi 

 ad6:386:Arwa_Ahmad 

 ad5:285:ahmadi_Ahmad 

 

Each line of the file students contain three fields: student user name (e.g. ah6), student 

id number (e.g. 506), and student full name ( first and last names separated by an 

underscore e.g. Ahmad_Hamdan), respectively. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

42 

 

Let us now try our filters on the file students.  Write down what each of the following 

commands does.  Make sure you understand why each command behaves that way. 

 

 head    -2     students 

 

_______________________________________________________________________. 

  

 tail    -3      students 

 

_______________________________________________________________________. 

       

What command would you use to get the fourth line only from file students (hint: mix 

head and tail with pipes): 

 

_______________________________________________________________________. 

 

  

 cat     students 

 

______________________________________________________________________. 

 

 grep  ahmad   students 

 

_______________________________________________________________________. 

 

Join both cat and grep with pipes to get the same result as the previous grep command: 

 

______________________________________________________________________. 

 

  

 grep   -i    Ahmad  students 

 

_______________________________________________________________________. 

  

grep  -l    Ribhi  * 

 

________________________________________________________________________

. 

 grep   -v   Ribhi   students 

 

_______________________________________________________________________. 

  

grep   -iv   hamdan  students 

 

_____________________________________________________________________. 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

43 

 

cut   -d:  -f2   students 

 

___________________________________________________________________. 

 

 

What command would you use to get the last names for all users in file students: 

 

____________________________________________________________________. 

 

What command would you use to get the first names of all users with last name 

hamdan (all cases): 

 

___________________________________________________________________. 

 

 cut     -c2,3    students 

 

__________________________________________________________________. 

 

What command would you use to get the middle digit in the id numbers for all users 

with last name hamdan: 

 

______________________________________________________________________. 

 

 tr     “a-z”   “A-Z”    <  students    ( Describe output ) 

 

_____________________________________________________________________. 

 

What command would you use to get the first names ( all in lower case ) of all users 

that have the word ahmad (all cases) as part of their full name: 

 

_______________________________________________________________________. 

 

 

 wc     -l  students 

 

______________________________________________________________________. 

 

 head    -1  students   |   cut  -d:  -f3  | cut   -d_   -f2  |  wc   -c  

 

______________________________________________________________________. 

 

What command would you use to count the number of files in your home directory?   

Hint:  use the ls and wc commands: 

 

_____________________________________________________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

44 

 

 sort   students     ( Describe output ) 

 

____________________________________________________________________. 

 

 sort     -o    result   students     ( What happened? ) 

 

_____________________________________________________________________. 

 

 sort   -k2   -t:    -n   students    ( Describe output ) 

 

___________________________________________________________________. 

 

What command would you use to list all the first names of users in file students sorted 

based on lower case letters and without repetition ( hint: check the –f and –u options 

for sort): 

 

______________________________________________________________________. 

 

 

 sed   ‘s/ahmad/damha/’  students 

 

_______________________________________________________________________. 

 

What is different when we run the same command with the i (ignore case) option, as 

follows: 

sed   ‘s/ahmad/damha/i’  students 

 

______________________________________________________________________. 

 

What is different when we run the same command with the g (global) option, as 

follows: 

 

 sed  ‘s/ahmad/damha/ig’  students 

 

______________________________________________________________________. 

 

 

Regular Expressions 

 
Some of the filters mentioned above such as grep and sed may use what we call regular 

expressions to be more powerful and precise.  To get more information about the power 

and extent of regular expressions, you can read the man pages using the command: 

 man   regex 

 

We will just give a very basic introduction (a simple taste) to how regex may be used 

with some filters.  The following are some common regular expressions: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

45 

 

 

 pattern$ :  applied to a pattern if it is at the end of a given line. 

 ^pattern:  applied to a pattern if it is at the beginning of a given line. 

 [abc]:  means a or b or c 

 [^abc]: means all characters except a, b, or c. 

 

Let us try some commands with regex.  Write down what each command does: 

 

 grep   -i   ‘hamdan$’  students 

 

____________________________________________________________________. 

 

 cut   -d:   -f3  students  |   grep   -i  ‘^ahmad’     

 

_____________________________________________________________________. 

 

 cut   -d:   -f3  students  |  cut  -d_   -f1  |  grep   -i    ‘^ahmad$’ 

 

_____________________________________________________________________. 

 

 cut    -d:   -f1 students  |   grep   a[dh][^6]  

 

_____________________________________________________________________. 

 

 cut   -d:  -f3 students   |   sed ‘s/^ahmad/sameer/ig’ 

 

____________________________________________________________________. 

 

 sed  ‘s/ahmad$/Sameer/i’  students 

 

____________________________________________________________________. 

 

Using what you learned above, write the commands that are needed to extract and 

display the following information from the /etc/passwd   file: 

 

Display the first names of all users whose last names end with the letter ‘n’ or ‘m’: 

 

________________________________________________________________________ 

 

Display the last names of all the users sorted by their user id numbers (ascending 

order): 

 

________________________________________________________________________ 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

46 

 

List the login names for all users with the bash as their default shell. 

 

_______________________________________________________________________ 

 

 

Display the default shell used by user root. 

 

_______________________________________________________________________ 

 

 

Display the number of files in directory /etc that end with the word .conf 

 

_______________________________________________________________________ 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

47 

 

Lab9. Shell Scripts (I) –Introduction 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Create and execute simple shell scripts. 

- Use positional parameters and shifting to pass command line arguments to scripts. 

 

Introduction to Shell Scripts 

 
One of the most powerful tools in Linux is the ability to group several commands into 

scripts in order to automate manual tasks.  Scripts are also used as configuration and 

setup files in different areas of the Linux File System.  Let us start by writing and 

executing our first simple script.  To create and setup a script you need to do the 

following: 

1- Using the vi editor open a new file and write your script as follows: 

vi  myfirst 

echo this is my first Linux script 

echo I like it 

echo bye 

:wq  (save and quit) 

 

2- You now need to add the x (execute) permission to your script to run it.  This is 

done only the first time you create your script.  If you try to run your script and 

get the error “permission denied” then the reason would most likely be that you 

did not do this step.  To add the x permission run the following command: 

chmod   +x    myfirst 

3- You must make sure that you have the following line added to the end of your 

environment setup file ( .bash_profile ): 

PATH=$PATH:. 

To make this step take effect you either exit the system and log back in or you run 

the following command: 

  .      .bash_profile 

 This adds the current directory (.) to your search path which would make the shell  

search for your script in the current directory.  If you try to run your script and get 

the error “permission denied” then the reason would most likely be that you are 

missing this step. 

This third step is only done once for all your future script to run without trouble. 

Now you are ready to run your first script by typing its name on the command line as 

follows: 

  myfirst 

 What was the result of running the script? 

 

 _________________________________________________________________. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

48 

 

As you can see the echo command is used to print output messages from your 

script to the output device (screen or file). 

Let us now see how to create another script that has both input and output as follows: 

 

  vi   greetings 

   echo What is your name 

   read  name 

   echo hello  $name 

  :wq 

 

  chmod   +x   greetings 

 

  greetings 

 

What do you think is the purpose of the read command? 

 

__________________________________________________________________. 

 

Notice that when you read a value in your variable you just put the name of the variable 

(e..g name) while when you print the value, you need to put the $ sign at the beginning 

(e.g. $name). 

 

By default, shell scripts treat all variables as strings.   

 

Now let us write our own script for deleting a file: 

  vi   delete 

   echo Enter file name: 

   read  filename 

   rm   $filename 

   echo   File $filename has been deleted 

  :wq 

 

Now run your script.  Did you forget to add the (x) permission?________________. 
 

Now it is your turn to write a complete script and run it. 

Write a script called copy that asks the user to enter a source filename and a destination 

filename and then copies the source to the destination.  Your script should work as 

follows: 

  copy 

  Enter source file name: 

  one 

  Enter destination file name: 

  two 

  File one is copied to file two 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

49 

 

Your script: 

 

 

 

 

 

 

 

 

 

 
 

Try to run your copy script.  Did it work? __________________________________. 

 

You probably realize that programs like delete and copy would behave more like similar 

commands if they took their input from the command line instead of asking the user to 

enter those after running the program.  To do this we need to use positional parameters.  

Let us write a simple script to understand how those are used: 

 

  vi  params 

   echo  $1 

   echo  $3  $2 

   echo  $# 

   echo $0 

   echo $5 

   echo  $* 

  :wq 

 

Now run the script params as follows: 

  params    one two  3  four  5  6  bye 

What was the output? 

 

 

 

 

 

 

 

 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

50 

 

Now what do you think are the values of each of the following variables: 

 

 $1: __________________________________________________ 

 

 $3:__________________________________________________ 

 

 $*:_________________________________________________ 

 

 $#:_________________________________________________ 

 

 $0: _________________________________________________ 

 

Now that you understand how positional parameters work, rewrite both the delete and 

copy scripts above to run as follows: 

 

 delete    thefile 

 thefile has been deleted 

 

Answer: 

 

 

 

 

 

 

 

 

 

 

 copy    file1    file2 

 File file1 has been copied to file2 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now try your new delete and copy scripts?  Did they work? _________________. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

51 

 

Notice that since you already had the x permission on the previous scripts ( delete and 

copy ), you did not have to do that step again in order to run them. 

 

 

Practice: 

Write a script called  whoisuser that takes the login name of a user as a parameter and 

then uses the /etc/passwd file to get and print the full name of that user as follows: 

 

 whoisuser   u1122334 

 u1122334 =  Ahmad   Hamdan 

hint:  use variable and command substitution. 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shifting parameters 

 
To shift script command line parameters to the left, we use the shift command as follows: 

 shift    number of shifts ( e.g.   shift   2   for 2 shifts) 

 shift   ( no number shifts one) 

 

 

To understand how shift works, let us rewrite and run the params script above as follows: 

vi  params 

   echo  $1 

   shift     2 

   echo  $2   $3 

   echo  $# 

   shift 

   echo $0 

   shift    3 

   echo $1 

   echo  $* 

  :wq 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

52 

 

Now run the script as follows and notice the effects of shifting: 

 params     one  two  three 4  5  6   seven  8   9   ten bye 

 

Which parameter is not effected by the shift command? _______________________. 

 

Comments 

 
You can add comments to your scripts by using the # sign followed by the comment 

anywhere in your script.  Lines that start with (#) are interpreted as comments except in 

one case where shells have (#!) followed by the name of a shell as the first line of a 

script.  In that case that line is interpreted as the name of the shell to be used for 

executing that script.  

  

Example: 

If your script starts with the line: 

#!/bin/bash 

Then the script is meant to be executed using the /bin/bash shell. 

 

Check out the following system scripts: 

 

more  /etc/rc.sysinit 

more  /etc/rc.local 

 

What is the first line in those files (scripts)? 

 

_______________________________________________ 

 

What is the difference between the first line and the few lines that come after it? 

 

______________________________________________________________________. 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

53 

 

Lab10. Shell Scripts (II)- Programming 
(Selection Constructs) 

 

Objectives 

 
After completing this lab, the student should be able to: 

- Include programming selection constructs in shell scripts. 

- Use the if/else statement to manipulate integer and string values as well as file 

properties. 

- Apply the case statement programming construct for efficient selections as well as 

creating menus. 

 

Script Selection Constructs 
 

In the previous lab, you have noticed that in our scripts we made several assumptions that 

files and user names already existed and that we have permissions to remove, copy, or 

view files and that the correct number of command line arguments where given to our 

scripts.  This is not always the case.  Our scripts should be able to check for values and 

properties before executing what is required.  To do this, we need to use selection 

statements ( the If and Case statements). 

 

Unix commands return a value ( success = zero and failure or error = non-zero) to the 

shell.  This value is stored in the variable (?) as follows: 

 

Run the command: 

 ls –al 

Now run the command: 

 echo  $?   

 

What result did you get? ___________  Why? ________________________________. 

Now run the command: 

 cp 

followed by the command: 

 echo  $? 

 

What result did you get? ___________  Why? ________________________________. 

 

The value returned by Linux commands may be checked in scripts using the if/else 

structure.   

Write the following script: 

 vi  checkcommand 

  if  $1 > out  2> err 

  then 

   echo Command $1 succeeded 

  else 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

54 

 

   echo  Command $1 failed 

  fi 

 :wq 

 

Now run the script as follows: 

 checkcommand    date 

 

What result did you get? ___________  Why? _________________________________. 

 

Now run the command: 

 checkcommand   mv 

 

What result did you get? ___________  Why? _________________________________. 

 

This is one way to use the if/else structure.  Still, many scripts do not check commands, 

but rather check for variable values, file properties, and number of arguments.  To do that 

we need to use one of two syntaxes: 

if   test     condition   (  e.g.   if test  $#  -eq  2 ) 

or 

if  [   condition  ]  ( e.g.  if  [   $#   -eq   2  ]   ) 

 

The general syntax for the if/else statement is as follows: 

 

 if   condition 

 then 

  statements 

 elif  condition 

 then 

  statements 

 else 

  statements 

 fi 

 

To compare integer values, we use the following relational operators: 

-lt  (less than),  -gt (greater than)   -eq  (equal)   

 -le  (less than or equal)  -ge (greater than or equal),  -ne  (not equal). 

  

Let us rewrite the delete script we wrote in the previous lab to check for the correct 

number of arguments as follows: 

 vi  delete 

  if  [   $#   -eq   1  ] 

                        then 

    rm   $1 

    echo  $1 is deleted 

    exit   0      #  This line returns 0 from the script (success) 

  else 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

55 

 

     echo   Usage: delete filename 

     exit   1 

  fi 

 :wq 

 

Now try the above script as follows: 

 delete   myfile   (assuming myfile exists and is a regular file) 

Then run the command: 

 echo  $? 

Did it work?__________________________. 

 

What is the value of variable (?) ?____________________________ 

 

 

Now try it as follows: 

 delete 

Then run the command: 

 echo  $? 

What happened? ______________________  Why?__________________________. 

What is the value of variable (?) ?____________________________ 

 

To check file values we use the following operators: 

 -f   filename   ( to check if file exists and is of type file) 

 -d  filename   ( to check if directory exists and is of type directory) 

 -x,-r,-w  (to check if a user has execute, read, or write permissions on a file) 

 

Let us rewrite our delete script to include those: 

 

 vi delete 

  if  [   $#   -ne    1  ] 

  then 

   echo   Usage:  delete filename 

   exit   1 

  else 

   if  [   -f   $1  ]         #  $1 exists and is a file name 

   then 

    rm  $1 

    echo   File   $1 is deleted 

    exit   0 

   elif   [   -d   $1  ] 

   then 

    rm   -r     $1      #  $1 exists and is a directory 

    echo  Directory   $1 is deleted 

    exit 0 

   else 

    echo  $1: No such file or directory 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

56 

 

    exit  2 

   fi 

  fi 

 :wq 

 

Now create a file and a directory using the following commands: 

 touch   myfile;  mkdir  mydir 

 

No try the updated delete script in the following ways: 

 delete 

 

What happened? ________________________________________________________. 

 

 delete     myfile   ( myfile exists and is a file ) 

 

What happened?________________________________________________________. 

 

 delete    mydir    ( mydir exists and is a directory) 

 

What happened?________________________________________________________. 

 

 delete  wrong   ( wrong does not exist ) 

 

What happened?________________________________________________________. 

 

Now rewrite the copy script to act as follows: 

 copy   

  Usage:   copy  src   dest 

 copy   myfile    newfile 

  File myfile is copied to file newfile 

 copy  mydir     newdir 

  Directory  mydir  is copied to newdir 

 copy  wrong    good 

  wrong:  No such file or directory 

 

Try the new copy script and make sure it works as above? 

 

Did it work correctly? ______________________________________. 

 

Sometimes our scripts need to check string values.  To do that we need to use the 

following operators: 

 =  (equal),    !=   (not equal)     -n   (none null string)    -z  (zero string (null)) 

 

Let us try some of those.  let us write a script to check the value of the name entered by 

the user: 

  vi   checkname 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

57 

 

   if  [   $#   -ne    1 ] 

   then 

    echo   Usage:   checkname   name 

    exit   1 

   else 

    if   [   “$1”   =   “ahmad”  ] 

    then 

     echo  $1:  Hello 

     exit   0 

    else 

     echo    $1: Goodbye 

     exit  0 

    fi 

   fi 

  :wq 

 

try it as follows: 

 checkname   ahmad 

 

What happened?__________________________________________. 

 

 checkname   suha 

 

What happened?_________________________________________. 

 

 checkname 

 

What happened?__________________________________________. 

 

Write a script called checkusername which works as follows: 

 checkusername 

  No names were entered 

 checkusername    u1112233 

  u1112233 =  Ahmad Hamdan 

 checkusername    u11 

  u11  = No such user name 

 checkusername   bash 

  bash = No such user name 

 

Script: 

 

 

 

 

 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

58 

 

Now try it with similar cases to those written above. 

What happened?_______________________________________________________. 

 

Case Statement 
 

We can also use a case statement ( similar to switch in c) to check for values.  The syntax 

is as follows: 

 

 case      value    in 

 pattern1)  statements 

   ;;        # ;;  is the break statement 

 pattern2)  statements 

   ;; 

 *)   statements  #   * stands for anything which is the default case 

 esac 

 

 

The patterns may be strings or parts of strings.  Those can include the * wild card, the (|)  

OR operator, as well as ranges (e.g  [0-9]  or [a-f]) as follows: 

 

 s* |  S* | good)     

means any pattern that starts with s or S or the word good. 

 [A-Z]*[0-5])    

means any pattern with any size that starts with a capital letter and ends 

with a number between 0 and 5 

 [a-z][0-9][0-9][0-9] | [0-9][A-Z][A-Z][A-Z][a-f]) 

means the accepted pattern must consist of exactly four characters the first 

is a small letter and the next three are numbers or the pattern must be 

exactly five characters with the first being a number followed by three 

capital letters and then one small letter between a and f. 

 

Write a script that uses case statement with patterns similar to the above. 

Did they work?_________________________. 

 

Case statements are usually used for handling menus and menu options.  Let us try a 

simple example that uses a menu to call different scripts (modular programming): 

 

Create three different scripts called script1, script2, and script3 respectively.  In each 

script put one line to display which script you’re in (e.g in script1 put the line “echo this 

is script 1”). 

Now create a script called mainscript that displays the following menu: 

 Please select your choice (1-4): 

 1 -  Run script1 

 2-  Run  script2 

 3-  Run  script3 

 4- Exit main script 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

59 

 

 

Using a case statement, have your script run the suitable script (1,2, or 3) or exit based 

on the user’s selection. 

 vi mainscript 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now try mainscript.  Did it work?___________________________________. 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

60 

 

Lab11. Shell Scripts (III)- Programming  

( Looping Constructs) 

 
Objectives 

 
After completing this lab, the student should be able to: 

- Include programming looping constructs in shell scripts. 

- Understand and use the while, until, and for loops constructs. 

- Learn how to make for loops more efficient by using command outputs as lists. 

 

Shell Script Loops 

 
In order to create useful scripts that can automate real jobs, we need to learn how to 

include loops in those scripts.  There are different loop constructs that may be used in 

shell scripts which include: 

 while  loops 

 until  loops 

 for loops 

Each has its own useful features that make it useful in certain situations. 

 

While Loop 

 

Let us first start with the while loop.  The structure of the while loop is as follows: 

 while   condition 

 do 

  statement(s) 

 done 

example: 

 vi listarguments 

  while   [  $#  -ne   0  ] 

  do 

   echo  $1 

   shift 

  done  

 :wq 

 

Run the above script as follows: 

 listarguments   a   hello   7    x 

Check the output. 

 

Note:   Rules that apply to conditions used in selection statements are exactly the same 

as those that apply to conditions in loop statements. 

 

After making sure you understand the above example do the following: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

61 

 

 

Rewrite the delete script we wrote in the last lab such that it works as follows: 

 delete   file1   wrong    dir1   file2 

 

 File  file1   is deleted 

 wrong:  No such file or directory 

 Directory  dir1 is deleted 

 File file2   is deleted 

 

Answer: 

 vi   delete 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 :wq 

 

Now try it with existing file and directory names as arguments.  Does it work?  _______. 

 

Sometimes the loop will stop executing based on the user input, as follows: 

 

 vi    findahmad 

  echo Enter name 

  read  name 

  while   [   “$name”  !=   “ahmad”   ] 

  do 

   echo   $name:  wrong name.  Try again. 

   echo  Enter name 

   read  name 

  done 

 :wq 

 

Now modify the checkusername script from the previous lab such that it is called 

checkusernames instead and works as follows: 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

62 

 

 checkusernames 

  Enter user name to check or  word “enough” to stop 

  u1112345 

  Enter user name to check or  word “enough” to stop 

  u11 

  Enter user name to check or  word “enough” to stop 

  u1123456 

  Enter user name to check or  word “enough” to stop 

  enough 

 

  u1112345  =   Salem  Hamdi 

  u11  =  No such user name 

  u1123456  =   Sabah  Khaled 

 

Answer: 

  vi  checkusernames 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  :wq 

 

 
Break and Continue Statements 

 
The programmer can use break and continue statements inside shell script loops which 

mean the same as they do in the C language: 

break -  exit the loop immediately. 

continue – stop running the current cycle but go back and check the condition. 

 

In addition they can use break and continue followed by a number to specify how many 

loop levels they want them to work for.  For example: 

break   2 

Will exit out of two nested loops if they exist. 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

63 

 

 

until  loop 

The until loop is similar to the while loop, but stops when the condition becomes true. 

 

 until  false 

 do 

  statements 

 done 

 

Modify the above two programs such that they use the until construct instead of the 

while construct and try them out.  Did they work? ______________. 

 

For loop 

 

In shell scripts, the for loop is very powerful and useful.  The general structure of the for 

loop is as follows: 

 for   item   in  list of items 

 do 

  statement(s) 

 done 

 

What makes a for loop powerful is the different ways a list of items may be specified. 

Let us start with a simple example: 

 

 vi  names 

  for   name  in  ahmad  hamdan  subha  khaled 

  do 

   echo  $name 

  done 

 :wq 

 

Run the script names.  It should display the names given in the list. 

 

Now change the first line in script names to the following: 

  for   name  in   $*  ( remember that $* holds all the arguments as a list) 

and run the modified script as follows: 

 

 names   ahmad  subha  khaled 

 

What happened?  ______________________________________________________. 

 

Rewrite the delete script we wrote at the beginning of this lab such that it uses a for 

loop instead of a while loop.  Did it work? _________________. 

 

The best feature about the for loop is that we can treat the output of a command as a list 

of items as follows: 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

64 

 

 

 vi   lines 

  for   line  in   $(cat  /etc/passwd) 

  do 

   echo $line 

  done 

 

Using a for loop, write a script called comp311 that lists the full names of all the users 

that are registered in the comp311 course. 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now rewrite the script comp311 such that it will display only the names of the users that 

are currently logged in to the system.  (hint: use the output of the who command) 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The for loop can also be applied to a directory of files as follows: 

 vi  myfiles 

 for   file  in  * 

 do 

  echo  $file 

 done 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

65 

 

Write a script called filetypes that uses a for loop to type the name and type ( file, dir, or 

unknown) for each file in a given directory as follows: 

Assume that I use the script in the following way: 

  filetypes   /etc 

then the script should display the names of all the files under directory /etc and the type 

of each of those files: 

 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The which command displays the directory in the PATH that contains the command.  Try 

it as follows: 

 which ls 

What is the result? _______________________ . 

 

Write a script called mywhich that simulates the which command.  You are not allowed 

to use the which command in your script.  (hint: use the for loop and the sed command). 

 

Answer: 

 

 

 

 

 

 

 

  



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

66 

 

Lab12. Security and Networking Concepts 
 

Objectives 

 
After completing this lab, the student should be able to: 

- Understand through example the importance and usage of set user id (suid) and 

set group id (permissions) in Linux. 

- Set and modify suid and sgid values on Linux files. 

- Identify and learn some Linux networking tool basics. 

 

 

Suid and Sgid 
Linux systems are very secure and have multiple levels of security that takes volumes to 

discuss.  We have already talked about a part of one of those security levels which is file 

security where we explained the permissions (mode) and how they are used to control 

who can access and use files and directories.  The permissions we talked about were the 

read (r), write (w), and execute (x).  In this lab we will present a less obvious, but very 

powerful permission called the setuid (set user id) and setgid (set group id) permission 

usually referenced with an (s) permission. 

 

Set User Id (suid) Permission 

 

To understand how the suid permission is used let’s take an example based on the passwd 

command which we use to change our passwords. 

 

run the command 

 which   passwd 

This gives you the absolute path name of the passwd command ( usually 

/usr/sbin/passwd). 

 

now run the command ls –al on that file as follows: 

 

 ls   -al    /usr/bin/passwd   (or whatever the which command produced) 

Notice the permissions on that file. 

What are they? ______________________________________________. 

 

The (s) on the user part of the mode is the suid.  This (s) is very important and without it 

a user will not be able to change his/her password. 

 

When a command such as passwd is executed, a process is created as explained in lab 6.  

That process has many properties.  Four of those are: 

 real  uid  (real user id) 

 real  gid  (real  group id) 

 effective  uid  ( effective user id) 

 effective  gid  (effective  group id) 

 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

67 

 

The real uid and gid are the same as the username and group of the user executing that 

command.  The effective uid is the same as the real uid and the effective gid is the same 

as the real gid except when there is an (s) permission.  In this case the effective uid will 

be same as the owner of the file and the effective gid will be same as the group name on 

the file. 

 

The process resulting from running the passwd command has an effective uid as root 

(owner of the file passwd) which is why this command is able to open and modify files ( 

e.g. /etc/passwd and /etc/shadow files) which the user running the command is not 

allowed to. 

This gives great flexibility by giving regular users the ability to access files through 

running commands which they cannot access normally. 

 

Set  Group  id  ( sgid) Permission 

 

Let us now see how the same idea is applied to the sgid. 

 

run the command: 

 which write 

what are the permissions on the write command? ______________________________. 

 

What is the name of the group name on the write command ? ____________________. 

 

Using the who command find the pts file for your neighbor.    Now run the ls –al 

command on that pts file in the dev directory  as follows: 

 Assume the pts file  is 5 then you run: 

  ls   -al   /dev/pts/5 

what is the group on that file and what permission does the group have? 

______________________________________________________________________ 

 

Now to see how that helps try to write a message directly to your neighbor’s terminal as 

follows: 

  echo   hello  >  /dev/pts/5 

What happened? ____________________________________________________. 
 

Now using the write command write the same message to your neighbor’s terminal as 

follows: 

  write   u1112233 

  hello 

  ctrl-d 

What happened?_____________________________________________________. 

 

In both cases, it was you ( same user with same permissions) that was trying to write a 

message to the other user’s terminal.  Why did it not work when you tried to do it 

directly while it worked using the write command?  (hint   the  (s)  permission on the 

write command). 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

68 

 

 

_______________________________________________________________________ 

 

_______________________________________________________________________. 

 

 

Adding (s) Permission 

 

To add the s permission to your files, use the chmod command with four digits instead of 

three as before, for example: 

create a file called   newfile  (touch newfile). 

 chmod    2777  newfile 

What permissions are now on file newfile?  __________________________________. 

 

 chmod   4777  newfile 

What permissions are now on file newfile?  __________________________________ 

  

 chmod  6777  newfile 

What permissions are now on file newfile?  __________________________________ 

 

As you can see adding an even digit (2 or 4 or 6) will put (s) on group, user, or both 

respectively. 

 

 What command would you use to set the permissions on newfile to: 

 

1.  r_s_wxrwx     ______________________________________ 

 

2. r_xrwsr___   ________________________________________ 

 

3. rwSrwsr___    _______________________________________ 

 

How do you get a capital s (S) and a small s (s)? 

 

_______________________________________________________________________. 

 

 

Networking 

 

As users we are not allowed to modify network setups, but we can view some 

information on how networks are configured on Linux. 

 

 Run the command: 

  /sbin/ifconfig 

 

 What is the ip address ( inet ) of your machine? 

 _________________________________________________________________. 



Computer Science Department  ( Linux OS Laboratory Manual COMP311 ) 

69 

 

 

 What is the MAC ( HWaddr ) address of your machine? 

 

 _________________________________________________________________. 

 

 What is the netmask used by your machine? 

 

 _________________________________________________________________. 

 

 

 Run the command 

  /sbin/route 

 

 What is the default gateway? 

 

 _________________________________________________________________. 

 

 Run the command: 

  /bin/netstat -n | grep 23 

 This will give information about the telnet connections made to/from the system. 

 List the quad ( Socket Connection ) for your telnet connection: 

 

 _________________________________________________________________. 

 

 Use the ftp tool to copy files from windows to Linux and vice versa. 

 Show your work to the instructor. 




