Collaboration Leads to Success

A Study of the Effects of Using Pair-Programming Teaching Technique on Student
Performance in a Middle Eastern Society

Mamoun Nawahdah and Dima Taji

Faculty of Engineering and Technology
Birzeit University
Birzeit, Palestine

Abstract—In pair-programming, two developers share a
computer to work together on developing one piece of code. To
test Pair-programming effects on student performance in a
Middle Eastern society where some interaction restrictions are
found, we devised an experiment that was carried out over an
entire academic year consists of two semesters. The experiment
targeted two sections per semester of an advanced computer
programming course. The students of one of the sections worked
in pairs during the lab sessions, applying pair-programming
rules and techniques. The other section had students who worked
individually, as it is the norm in most programming labs.
Through this experiment we revealed that pair-programming has
the potential to increase the students' confidence, their enjoyment
of the course, and improved the course's completion rate. In
addition, the students in the pair-programming section showed
that they were able to individually produce code of better quality
than the students in the traditional section.

Keywords— Pair-programming; Extreme Programming; Agile;
Computing Education; Teaching/Learning Methodologies

L INTRODUCTION

Trends in teaching techniques in computer science courses
are trying to bridge the gap between the university environment
and work environment. In universities, students are usually
instructed to do their work and assignments individually, and
collaborations are most often considered as cheating attempts.
When working in software companies and other institutes,
team players are the ones that usually thrive, and produce better
results. This pushed for incorporating collaborative work in the
teaching of computer science courses in universities around the
world, to facilitate the transition of computer science students
from an individual-centered environment to a group-centered
environment.

In 1999, the notion of Extreme Programming (XP) was
introduced, and one of the more controversial practices it
introduced was pair-programming. Pair-programming is “the
practice whereby two programmers work together at one
computer, collaborating on the same algorithm, code, or
test”[1]. In pair-programming, two programmers will sit next
to each other on one computer, looking at the same screen, as
shown in Fig. 1. They use one keyboard and one mouse, to
manipulate the computer and type their code. The programmers
work together, taking turns to type, and continuously discuss
their code, improve it, revise it, and debug it.

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

Tomoo Inoue

Faculty of Library, Information and Media Science
University of Tsukuba
Tsukuba, Japan

Fig. 1. Two students practicing pair-programming.

Because of the success of this technique in the software
development industry, and due to its applicability in labs, this
technique was attempted, as a teaching technique, in a number
of universities worldwide[2-10]. The experiments where pair-
programming was applied in teaching produced various
degrees of success, and concentrated on a wide number of
parameters, and environment variables.

Programming courses are reputed with having low
averages, with failure rates warying between 30% to 50%
worldwide[11]. The literature shows that the application of
pair-programming as a teaching technique has promising
results of improving the education of computer science, if
applied correctly[3]. In an attempt to acclimate students to
working within a team, and to improve their learning abilities,
and their programming quality, we applied pair-programming
as a teaching technique to one advanced programming course
at our university. Even though similar experiments in the
application of pair-programming in education were carried out,
it has not, to our knowledge, been applied in a conservative
Middle Eastern society so far. A Middle Eastern society has
known restrictions on gender interaction and social behaviors
norms. This might impose some limitations to the extent of
interaction between students in the same class.

Being a conservative society does not look favorably on
pairs formed of students from different genders. Therefore,
male students often prefer to work with other male students,

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 16

and female students with other female students. This usually
limits the exposure of a student to his or her peers, which leads
to limiting their experience and knowledge. In addition, from
our experience in higher education, it was noted that students
regard any group activity as an opportunity to have the
workload fall on one or more students, but not the entire group.
However, pair-programming's success depends on having both
members of the pair work equally to obtain the best results.
Having students understand that they will have to work with
each other, regardless of who their partner is, or where they are
from, was a hitch that we had to overcome. This makes the
experiment conducted in our university stand out from other
experiments, due to the social norms that distinguishes the
Middle Eastern society from other societies.

The main research question is does pair-programming have
the potential of improving the performance, in terms of grades,
and the enjoyment of students, and allow them to produce
quality software code, within the local restriction?

Despite the mentioned society restrictions, this study
revealed that pair-programming had the ability to improve the
course completion rate, the students' enjoyment of the course,
and quality of the code that they produced by the end of the
semester.

II. LITERATURE REVIEW

Programming has always been considered a solitary
activity[16]. This was the way it was taught, and the way it was
practiced until 1999, when Kent Beck created Extreme
Programming (XP), and listed pair-programming as one of its
twelve practices[17]. Solo programming was associated with
the waterfall development cycle in software engineering,
suggested in 1970, in which a development team would meet
with the customer once to get all the requirements of the
system, and then design it, and implement its design[l8§].
Nowadays, most software development institutes give a lot of
importance to the ability to work in teams, and research is
always looking for methods that will improve the
programmers' efficiency, productivity, and quality of work.

A. Agile Software Development

Agility may best be defined as "the ability to both create
and respond to change in order to profit in a turbulent business
environment"[20], which is an aspiration to most software
development teams. Judging from this definition, as well as the
Manifesto for Agile Software Development[21], flexibility is a
requirement to successful software development. Many
practices are being adopted by software development teams in
order to achieve the concepts of flexibility, interaction, and
collaboration, among others. Of the practices listed by Kent for
Extreme Programming, pair-programming appears to stand out
as a different and somewhat controversial practice.

B. Pair-Programming

Pair-programming may be defined as "the practice whereby
two programmers work together at omne computer,
collaborating on the same algorithm, code, or test"[1]. Not
only do the programmers work at one computer, but "all
production code is written with two people looking at one
machine, with one keyboard"[22].

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

A programming pair consists of a driver and a navigator.
The driver’s task is to actively type the code, and handle the
keyboard, mouse, and any other input devices that are relevant.
The navigator has to follow up with what is being typed on the
screen, to catch any syntax mistakes, errors, or shortcomings of
the code, in order to be able to correct and suggest better
methods and solutions.

A key point that distinguishes the pair-programming
practice is that the pair should always switch roles. Pair-
programming is most beneficial when this happens regularly.
When the two members of the pair each assume a role and stick
to it for an extended period of time, the efficiency of this
technique decreases, and becomes less apparent.

Some of the advantages of pair-programming that are
repeated throughout the literature include improving design
quality[1, 2, 6, 16, 19, 23], reducing defects[16, 19, 23],
contributing to pair members' skills[8, 16, 24], improving team
communications[15, 16, 19], and resulting in simpler code that
is easier to extend[16]. In addition, some researchers have
found that people working using pair-programming tend to
spend more effort on the tasks they undertake[4].

C. Pair-Programming in Education

Research shows that when students take a programming
course, they are usually in their first year of university, when it
is important to get them used to help them gain the skills
needed during their university years as well as integrating into
the industry[3]. This is why most experiments carried out with
pair-programming as a teaching technique is applied to
introductory level courses[3, 5, 8, 14]. However, a number of
researchers attempted to carry out the experiments on second-
year and even advance students as well[6, 10].

Conducting a pair-programming experiment involves two
issues to be considered: Pair formation and work assessment.
Pair formation means the way students are paired. Pair
formation could affect the dynamics of the pair, and might
result in an effect on the outcome of the experiments. The
methods followed for the formation of pairs differed among
experiments. They varied between forming pairs according to
their level of programming experience[3, 5, 6], random
formation[5, 10], letting students form their own pairs[3, 5], or
a combination of having students select a number of potential
partners, and then assigning one of them according to
experience[8]. Concerning the work assessment, in most the
reviewed experiments, students were required to finish a
number of assignments for which they were graded|[3, 5, 6, 8§,
10]. In addition, at least a final exam was given to assess
students' performance in the course[8, 10]. A number of
researchers collected feedback from their students as well,
through questionnaires and surveys[3, 5, 6]. These
questionnaires aimed to measure different parameters, such as
students' confidence level after pair-programming, their
perception of their compatibility with their partner, the effect of
pair-programming on their understanding the exercises and
course material, and their enjoyment of the course. Other
researchers as in [27] opted for recording students while
they were working in pairs, and analyzing the videos for
certain parameters.

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 17

III. RESEARCH METHODOLOGY

Experiment Design

In an attempt to improve the level of students programming
ability, in terms of their grades, their confidence, their pass
rate, and their enjoyment we applied pair-programming method
in an advanced programming course. This course is preceded
by an introduction to programming course that is taught in C,
which gives the basic of procedural programming. The
advanced programming course is offered for sophomore-level
students, and covers the basics of Object-Oriented
programming and is taught in Java language. The course
includes two one-hour lectures, and one three-hours lab per
week, and spans over a 15-week semester.

The experiment was carried out twice during each of the
fall and spring semesters of the educational year 2014-2015. In
each semester, the experiment was conducted on two sections,
one of which was a pair-programming based section, and the
other was a control section where the course was taught the
traditional way.

In both semesters, the two sections were taught by the same
instructor and teacher assistant (TA). The lectures were given
to both sections using the same methodology, and pair-
programming was applied only during the lab sessions. Both
sections in each semester contained the same number of
students. In the first semester, both sections had 30 students
each (30 males and 30 females), and in the second semester,
both sections had 29 students each (32 males and 26 females).
Because all those parameters were identical, we were able to
select the pair-programming section randomly in both
semesters with a coin toss.

The students were asked to work in pairs during the lab
only. They were presented with the programming problems in
their lab workbook, and asked to solve them while working on
one computer. Students were instructed to switch roles
constantly, which usually happened in between exercises.
Students were also encouraged to discuss the problem before
starting to solve it, and to avoid asking the instructor or the TA
for help, unless they both fail to reach a solution.

The control section was not given any specific instructions.
They continued with the lab sessions regularly after the fourth
lab, with every student working on the assigned exercises on
their own. Like the students of the pair-programming section,
they were encouraged to try to reach the solution on their own.

Pair Formation

The literature showed two main methods of pair formation
stood out for having more merits than others; random selection,
and students selecting their own partners. As the experiment
was spanning over two semesters, both methods were tried, in
an attempt to determine which was more beneficial to the
participants.

During the first semester, students were asked to select their
own partner for the duration of the semester, following the
methods illustrated by Teague[3] and Khan[5] in their research.
As most of the students knew each other for around a year,
they opted to select a friend rather than a work partner. On the

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

other hand, students who did not have friends in the same
section ended up in random pairs.

During the second semester, the students were distributed
into pairs by the TA and the instructor. This was in accordance
with the experiments presented by Khan[5] and Mendes[10].
The factors that were taken into consideration when
distributing the pairs are their preference in working with a
partner of the same or opposite gender, and the partner's
academic level. The aim was to try to find the most compatible
pairs according to the students' preferences.

Data Collection

The data collected throughout the semesters were in the
form of questionnaire, course work assessment, and
observations done by the instructor and TA during the labs.

e Initial Questionnaire: Before starting the experiments,
a questionnaire was designed and distributed among
the students. The questionnaire was designed after
studying several similar questionnaires that were
designed for similar experiments[3, 12, 25], while
taking into consideration the background and mentality
that distinguished our students from those in other
countries. The questionnaire aimed to give us a general
idea of the students’ academic background, and their
preference as to working in groups. The questionnaire
also asked about the students’ partner preference from
an academic aspect, as well as their gender.

e Work Assessment: During the semester, the students
took four quizzes and submitted four assignments. In
addition, a midterm exam, a practical final exam and a
written final exam were taken into consideration. The
midterm exam took place during the semester, and the
practical and written finals are scheduled at the end of
the semester. Finally, the drop rate and the attendance
and average absence from lectures and labs were taken
into consideration.

e In-lab observations: Notes and observations were made
both by the instructor and the TA during the labs in
both sections. These observations pertained to the
interactions between the students, the number and type
of questions asked, the time required to complete tasks,
and the degree of enjoyment of the labs session. In
addition, in the lab sessions of the pair-programming
section, it was observed how often students switched
roles, how helpful and attentive were the navigators,
and to what extent the tasks were discussed among
each pair.

IV. RESULTS AND DISCUSSION

Results

This section presents the results of the data that was
collected and statistically analyzed during the two iterations of
the experiment. This includes data collected from the
questionnaire given to the students, and the code collected from
students, as well as the grades of the students.

e Initial Questionnaire

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 18

This questionnaire was given to the students at the
beginning of the semesters aimed to collect some demographic
information about the students, their academic level, and their
preferences to working within a team.

Regarding the students' preferences when it comes to
working in teams, very few students indicated that they
preferred to work individually, with 17% in the pair-
programming section, and 20% in the traditional section. In
addition to that, the vast majority of the students preferred to
select their own partner. In the pair-programming section, 87%
indicated that they preferred to select their partner, as did 93%
of the traditional section. When it came to the partner gender
most students did not have an issue with working with partners
from either gender. However, most students indicated that they
would prefer to work with a partner with the same
programming level as they are. 53% of the pair-programming
section students indicated that they would prefer to work with a
partner in the same programming level as they were, and 23%
of the students indicated wanting to work with a partner in a
different programming level, whether it be higher or lower. In
the traditional section, 56% of the students indicated wanting to
work with a partner at their programming level, and 23% of
them preferred to work with a partner with a different
programming level than theirs.

e Code Quality

To understand the effect that pair-programming had on the
quality of the code that was produced by the students, a sample
of the students' code was collected and analyzed using
SourceMonitor' application. Nine programs were collected
from each of the pair-programming and traditional sections,
and run through the software. SourceMonitor gives statistics
about a number of parameter per program; It also counts the
number of lines, statements, calls, and classes in the code. In
addition, it gives the percentage of branches and comments.
Moreover, it offers the ration of methods to classes, and
statements to methods. Finally, it calculates the average and
maximum complexity and depth. In addition to the statistics
produced by SourceMonitor, the number of methods in each
program was counted, as well as the number of syntax errors
the software had. Fig. 2 shows that the code written by pair-
programming section was shorter on average, by about a third
(T(9)=-1.14, p<0.15), with fewer statements (T(10)=-1.11,
p<0.15), and fewer calls (T(11)=-1.12, p<0.15). This resulted
in significantly less errors (T(8)=-1.13, p<0.15), as shown in
Fig. 3.

300 .
— B Pair-programing

250 Section
g’ 200 - .
3 @ Traditional
E 150 Section
? 100
- = *p<015

0 {

Statements Calls

Lines

Fig. 2. Code Statistics from SourceMonitor Regarding Program Length.

! Available from: http://www.campwoodsw.com/sourcemonitor.html

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

10
E 8
- B Pair-programing
s 6 Section
E 4 = Traditional Section
=z 2

*p <015
0 <+

Section

Fig. 3. Number of Errors per Program.

e Course Assessment

The course assessment was measured firstly through the
grades that the students received during the semester, and
secondly through the drop and completion rates of the students
in the course. The grades were the results of four quizzes, four
assignments, a practical exam, a midterm and final exams.

The quizzes were given during the lab, and often contained
a written part, and a programming part. Fig. 4, shows that the
pair-programming section's grades were significantly better in
the first (T(108)=3.57, p<0.001) and third (T(94)=1.56,
p<0.15) quizzes, as well as in the quizzes total grade
(T(102)=3.11, p<0.001), but not in the second (T(94)=-0.15)
and fourth (T(66)=1.37) quizzes.

100% =

90% 4+ .

80% | -))

70% - mPair-programing
o 60% - Section
.E 50% - @ Traditional
S aom 4 Section

30% -

20% -

10% -

Quiz1 Quiz2 Quiz3 Quiz4 Quizzes A
Total

Fig. 4. Students Performance in Quizzes.

Fig. 5 shows the students’ assignment results. The only
significant difference was in the third assignment A3
(T(86)=1.54, p<0.2), and the assignments total (T(98)=1.67,
p<0.1). However, in the first assignment Al (T(98)=1.02),
second assignment A2 (T(88) = -0.22), and fourth assignment
A4 (T(50) = 1.27), the differences were not of significance.

100% -

Frmy ®&

@ Pair-programing
0% Section
8 60% - @ Traditional
© Section
O 40% -
20% - * pc
**p<01
0%
Al A2 A3 A4 Total
Fig. 5. Students Performance in Assignments.

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 19

At the end of the semester, a practical exam was given to
the students. This exam was a programming exercise that
covers all the programming concepts that were introduced
throughout the semester. The students’ performance in the
quizzes, assignments, and the practical exam is combined to
create their lab total. The lab work has a weight of 35% of their
semester work. Fig. 6 shows the lab performance of the
students of the pair-programming section and the traditional
section. This results shows no significance between two
sections with respect to practical exam (T(81)=0.57). However,
the pair-programming section performed significantly better in
lab total work (T(101)=2.43, p<0.001).

*

80% e
@ Pair-programing
60% Section
40% @ Traditional
Section
20%
*p<0001
0% -

Practical Lab Total

Fig. 6. Students Performance in the Practical Exam and Total lab grades.

The written exams during the semester were distributed on
a midterm and final exams. Both sections took the same exams
at the same time. The students in the pair-programming section
performed better in the midterm (T(95)=2.51, p<0.001).
However, in the final exam, the difference between both
sections was not significant (T(87)=-0.38). The students’ final
grade was made up from the lab total, and the midterm and
final exams. Fig. 7 shows that the pair-programming section
performed significantly better in the overall result of the course
(T(88)=1.61, p<0.15).

L *
ro——

F s

E Pair-programing
Section

@ Traditional Section

Grade
;§§§§

Midterm Final Course Average

Fig. 7. Studnets Performance in Written Exams and Final Course Average.

The drop rate and absence rate in pair-programming section
was less than half of the traditional section, as shown in Table
1. However, this affected the fail rate, making it a little higher
in the pair-programming section (17%) than in the traditional
section (14%). More students tended to miss class in the
traditional section, with absences averaging near four students
per class, where in the pair-programming section this rate was a
around two students per class.

Discussion

This discussion attempts to put the data that was produced
by the experiment into the context of the experiment, and the
society. In addition, it offers the insights and experience of the
researchers regarding the results.

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

TABLE L. THE STUDENTS DROP AND FAIL RATES, AND ABSENCE

AVERAGE PER SEMESTER
Pair-programing Traditional
Section Section
Drop Rate 15% 32%
Fail Rate 17% 14%
Absence Average 2.26 3.85

Before the experiment started, it was crucial to know
whether the students were willing to work in pairs. Luckily,
most students did not have any issues working with a partner,
and the larger percentage of them (around 61% of all students)
preferred working with a partner to working individually. The
students' preference to selecting their partners or having a
partner assigned by the instructor or TA was measured to direct
the selection of the pair formation method. The majority of
students (90% of the students in both sections) indicated that
they preferred to select their own partner.

From observations, and experience, the parameters
regarding the partner, whether they were the gender or
programming level, did not have a clear effect on the students'
performance. However, it was noted in one pair, where a male
students and female students were paired together, that the
male students, who has registered for the course during
previous semesters, exhibited more commitment to the course,
and put more effort during the lab, than he did in previous
semesters. This could be the result of the student's act of
proving his abilities in front of his female partner.

Since the students in the first semester selected their own
partner, they tended to select a friend to work with, and they
got along well together. However, some conflicts issued
between a few pairs, and one student explicitly declared that if
they were to work in pairs in other courses they would rather
not work with the same partner.

When comparing the students' preferences in partners that
they indicated in the initial questionnaire to the characteristics
of the partner that the students selected, the selection was very
random. There was no pattern or similarity between the
indicated preference and the selected partner. This is attributed
to the students selecting their friends to be their partners.

In the second semester, pairs were selected by the
instructors randomly. The change in pair formation method did
not seem to have an effect on the pair dynamic within the lab
session. The students in the pairs got along together, and were
working together to solve the exercises. However, the
instructor and TA were approached with a request to switch
partners by a couple of students.

From trying out two different methods of pair formation,
and considering the results that were obtained, both approaches
to pair formation achieved similar results. For this reason, we
recommend following the approach which lets students select
their own partners. Through this approach, students are already
comfortable with their partner, and it reduces the overhead that
pairing the students requires, which is a concern that was
expressed by Gupta et al. in [13].

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 20

Measuring the code quality was a key to this experiment,
because it is not enough to measure students' grades, and their
perception of pair-programming. Referring to SourceMonitor
results the following observations were made:

. Pair-programming students wrote shorter code as
indicated in Fig. 2. Keating explains in [26] that shorter and
simpler code is generally a better code. Also pair-programming
students wrote code with more classes (7.63 classes per
program on average), when compared to the code written by
students in the traditional section (6.89 classes per program on
average). This indicates that pair-programming students were
able to modularize their code better than the traditional section
students.

e On average, pair-programming section students' code
contained less than one error (syntax or compilation) per
program as illustrated in Fig. 3.

. Pair-programming section students commented their
code more than traditional section students. SourceMonitor
indicated that pair-programming section code had 10%
comments, while the traditional section code had only 6%.
Furthermore, a large percentage of the comments in the
traditional section code were auto generated comments, which
were auto generated by AP

The course assessment depended on the grades of four
quizzes, four assignments, a practical exam, a midterm exam,
and a final exam. These grades were distributed the same
throughout both semesters. Regarding quizzes, the averages
varied throughout the semesters, with the pair-programming
section getting higher averages at times. However, the results
of the t-test that was administered on this data, and illustrated
in Fig. 4, showed that the differences between the two sections'
averages were significant in the first and third quizzes, as well
as in the quizzes total. The reason that the differences were not
always significant is the number of students who missed the
quizzes due to skipping lab sessions in the traditional section.
This meant that mostly serious and hardworking students were
present for the quiz, resulting in a better average than what
would have been had all the students been present.

Likewise, the assignment results, as illustrated in Fig. 5,
were not substantially different between the pair-programming
and traditional sections, with the exception of the third
assignment. This is understandable, since students worked on
assignments at home, taking their time, and using whatever
resources they required. In addition to that, the number of
students that submitted their assignments was more in the pair-
programming section, while students in the traditional section
preferred to forego the submission of assignments they had
trouble solving, rather than trying to find a solution or
submitted work that was not complete. This might be an
indication of the students' persistence and confidence in their
ability to solve problems, which pair-programming is believed
to enhance. However, the assignments total showed a
significant difference between the pair-programming and
traditional sections. This could be due to the fact that several
students in the traditional section did not submit one or more
assignment, as mentioned previously, resulting in a low
assignments total, even though individual assignments had
good grades.

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

The practical exam results, shown in Fig. 6, were fairly
close in both semesters, and the t-test showed that they did not
have much difference. This is due in the most part to the
withdrawal of students from the traditional section. The
weakest and most unconfident students were noticed to have
withdrawn from the course during the period between the
midterm exam and the practical exam. Therefore, the number
of weak students in the pair-programming section was more
than those in the traditional section, which affected the
averages, and the significance of the difference in the results.
The lab total were significantly better in the pair-programming
section which can be reasoned by the fact that the students in
the pair-programming section had more confidence in their
work and were getting better grades than the students in the
traditional section. In addition, they did not miss out on quizzes
and assignments throughout the semester, resulting in better
totals than those in the traditional sections.

It can also be noted that according to Fig. 7, the results of
the pair-programming students in the midterm exam were
significantly better than those of the traditional section
students. However, since most withdrawals take place between
the midterm and the practical exam time, the results of the final
exam were not significantly different. Nevertheless, in the
overall total of the semester, the difference between the pair-
programming section's results, and the traditional section's
results is significant with an 85% confidence.

Due to their higher confidence in their abilities, the number
of students who withdraw from the course in the pair-
programming section was almost half of the number of
students who withdrew from the course in the traditional
section. This can be attributed to the increase in the students'
confidence in their ability to complete the requirements of the
course, and their will to commit to it. This result comes in
accordance with the findings of [2, 7-9, 14]. Likewise, the low
absence rate can be caused by the enjoyment the students had
in the pair-programming labs and classes. However, since less
students drop out of the course, the chances of having students
who are weaker increase, making it more likely to have some
students, although still a low percentage, fail the course. This
resulted in having the fail rate a little bit higher in the pair-
programming section than in the traditional section.

General impressions are more difficult to measure, but
informal chats with the students during the semester and the
instructor and TA’s observation indicated that:

» Students in the pair-programming section were enjoying the
lab more.

e Students in the pair-programming section had more
confidence in the code they were producing, whether
it was for in-class tasks, quizzes, or assignments.

* Students in the pair-programming section often came to the
lab with prior knowledge of the tasks that they were
going to take, and prepared accordingly.

e Students in the pair-programming section were more
interested in coming up with different ideas for
programs to write.

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 21

V. CONCLUSION

The work described in this research was concerned with the
implementation of pair-programming as a teaching technique
in a Middle Eastern university. Our goal was to find out
whether pair-programming will improve the learning
experience of students within local interaction constraints. This
research concludes that pair-programming has a potential to
improve the overall performance of the students despite the
restrictions. One of the aspects that can be improved by pair-
programming is the quality of the code that is produced by the
students. Students in the pair-programming section usually
produced a code that had fewer errors, and was simpler and of
better quality. Another aspect that may be improved is the
students' performance in terms of grade. Students in the pair-
programming section scored significantly better in a number of
exams and assignments, and more importantly in the overall
averages of the course. Moreover, pair-programming has the
ability to increase the students’ enjoyment in programming
courses. Pair-programming technique forces students to
interact with each other, allowing them to socialize within the
classroom. This leads to students feeling more relaxed,
allowing them to enjoy the lab sessions more. Finally, pair-
programming has the potential to increase the students'
completion rate and reduced the absence rate. Students who are
enjoying the course, and have more confidence in their
programming abilities tend to avoid dropping the course, and
try to complete all the requirements needed to pass the course.

REFERENCES

[1]1 A. Begel and N. Nagappan, “Pair programming: What’s in it for
me?,” in Proceedings of the Second ACM-IEEE International
Symposium on Empirical ~ Software Engineering and
Measurement, ESEM °08, (New York, NY, USA), pp. 120128,
ACM, 2008.

[2] N. Salleh, E. Mendes, and J. Grundy, “Empirical studies of pair
programming for cs/se teaching in higher education: A
systematic literature review,” Sofiware Engineering, IEEE
Transactions on, vol. 37, no. 4, pp. 509-525, 2011.

[31 M. M. Teague, “Pedagogy of introductory
programming: a people-first approach,” 2011.

[41 O.S.G’omez, J. L. Bat'un, and R. A. Aguilar, “Pair versus solo
programming—an experience report from a course on design of
experiments in software engineering,” arXiv preprint
arXiv:1306.4245,2013.

[51 S. Khan, L. Ray, A. Smith, and A. Kongmunvattana, “A pair
programming trial in the csl lab,” in Proc. Annual International
Conference on Computer Science Education: Innovation and
Technology (CSEIT), pp. 67, 2010.

[6] A. B. Prabhakar, “Applying pair programming for advanced
java course: a different approach,” in Proceedings of the 2011
conference on Information technology education, pp. 319-320,
ACM, 2011.

[71 X. He and Y. Chen, “Analyzing the efficiency of pair
programming in education,” 2015.

[8] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The
effects of pairprogramming on performance in an introductory
programming course,” SIGCSE Bull., vol. 34, pp. 38-42, Feb.
2002.

[91 N. Salleh, E. Mendes, J. Grundy, and G. S. J. Burch, “The
effects of neuroticism on pair programming: An empirical study

computer

978-1-4673-9225-9/15/$31.00 ©2015 IEEE

[10]

[1

—

[12]

(3

[t}

[14

=

[15]
[16]
[17]

[18]

[19

[}

[20

=

[21]

[24]

[25

—

[26

—

in the higher education context,” in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Sofiware
Engineering and Measurement, ESEM ’10, (New York, NY,
USA), pp. 22:1-22:10, ACM, 2010.

E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “A replicated
experiment of pair-programming in a 2nd-year software
development and design computer science course,” in ACM
SIGCSE Bulletin, vol. 38, pp. 108-112, ACM, 2006.

J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bulletin, vol. 39, no. 2, pp. 32—
36, 2007.

K. Wood, D. Parsons, J. Gasson, and P. Haden, “It’s never too
early: Pair programming in csl,” in Proceedings of the Fifteenth
Australasian Computing Education Conference - Volume 136,
ACE ’13, (Darlinghurst, Australia, Australia), pp. 13-21,
Australian Computer Society, Inc., 2013.

S. Gupta, V. Bhattacharya, and M. Singha, “Pair programming
“potential benefits and threats”,” International Journal of
Advanced Computer Research (IJACR), vol. 3, no. 1, 2013.

L. Porter, M. Guzdial, C. McDowell, and B. Simon, “Success in
introductory programming: What works?,” Commun. ACM, vol.
56, pp. 34-36, Aug. 2013.

S. Wray, “How pair programming really works,” IEEE software,
no. 1, pp. 50-55, 2010.

A. Cockburn and L. Williams,
examined,” 2001.

K. Beck, “Embracing change with extreme programming,”
Computer, vol. 32, pp. 70-77, Oct. 1999.

B. Bruegge and A. H. Dutoit, Object-Oriented Software
Engineering Using UML, Patterns, and Java. Upper Saddle
River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.

A. Sillitti, G. Succi, and J. Vlasenko, “Understanding the impact
of pair programming on developers attention: A case study on a
large industrial experimentation,” in Software Engineering
(ICSE), 2012 34th International Conference on, pp. 1094-1101,
June 2012.

J. Highsmith, Agile Software Development Ecosystems. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2002.

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J.
Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J.
Sutherland, and D. Thomas, “Manifesto for agile software
development,” 2001.

K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2Nd Edition). Addison-Wesley Professional,
2004.

E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J.
Vlasenko, “Pair programming and software defects-a large,
industrial case study,” /IEEE Trans. Software Eng., vol. 39, no.
7, pp- 930-953, 2013.

M. Giri and S. Soni, “Effectiveness of software development
process using programmer ranker algorithm in pair
programming,” 2015.

N. Salleh, E. Mendes, and J. Grundy, “Investigating the effects
of personality traits on pair programming in a higher education
setting through a family of experiments,” Empirical Software
Engineering, vol. 19, no. 3, pp. 714-752, 2014.

M. Keating, “Good design of impossibly complex chips,” 2013.
T. Inoue, “Investigating the relation between behavior and result
in pair programming: Talk and work leads to success,” The

Journal of Information and Systems in Education, vol.12, no.1,
pp-39-49, 2014.

“Extreme programming

10-12 December 2015, United International College, Zhuhai, China

2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
Page 22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

