
By Maryam Shaheen

Computer Science Department

Computer 336

Midterm Exam Date: 23/11/2017

Student Name: No.

Instructor: Iyad Jaber

Question One [25 Marks]

Finding a missing number

An array of elements contains all but one of the integers from 1 to n+1

1. Give the best algorithm you can for determining which number is missing if the array is

sorted, and analyze its asymptotic worst-case running time.

2. Give the best algorithm you can for determining which number is missing if the array is

not sorted, and analyze its asymptotic worst-case running time.

Solution:

1. Sorted Array:

Based on binary search

public int getMissingInt(int[] array, int start, int end){
start = 0;

end = array.length – 1;

 if(end == start + 1) return array[end] - 1;

 int pivot = start + (end - right) / 2;

 if(array[pivot] ==array[start]+(array[end]-array[start])/2(end - start)%2)

 return getMissingInt(array, pivot, end);

 else

 return getMissingInt(array, start, pivot);

}

Time = O(log n).

By Maryam Shaheen

2. Unsorted array

 public int getMissingNo(int array[], int n){
 int i, total;
 total = (n+1)*(n+2)/2;
 for (i = 0; i< n; i++)
 total -= a[i];
 return total;
 }

Time = O(n).

Question Two [25 Marks]

Huffman code

A) Given the frequency series for a Huffman as follows:

 F(i) = {
4 𝑖 = 1

 2𝑖 𝑖 € {2 … 𝑛}

Draw the structure of the Huffman Tree that describes this series.

Solution:

 From substitution we get: 4, 4, 8, 16, 32, 64, 128, ……..

 OR

4 4

8

16

32

4 4

 8

 16

 32

By Maryam Shaheen

B) Write a frequency list that the Huffman Code of this frequency Would deterministically creat the

following structure:

 Solution:

4

7

2

2

5

5

5

5

12

By Maryam Shaheen

Question Three [25 Marks]

(Dynamic Programming) Balanced Partition, You have a set of n integers each in the range

0…k, Partition these integers into two subsets such that (S1- S2 =0), there S1 and S2 denote the

sums of the elements in each of the subsets. (The sum of elements in both subsets is same).

Hint: Dynamic Programming →

 Part[i][j] = true if a subset of {𝑎𝑟𝑟[0], 𝑎𝑟𝑟[1], … … 𝑎𝑟𝑟[𝑗 − 1]} has sum equal to i,

 otherwise false.

If the input

 int arr[] = {3, 1, 1, 2, 2, 1} ;

Complete the following table:

 {} {3} {3, 1} {3, 1, 1} {3, 1, 1, 2} {3, 1, 1, 2, 2} {3, 1, 1, 2, 2, 3}

0 True True True True True True True

1 False False True True True True True

2 False False False True True True True

3 False True True True True True True

4 False False True True True True True

5 False False False True True True True

By Maryam Shaheen

Complete the following code:

// Returns true if arr[] can be partitioned in two subsets of

//equal sum, otherwise false

Boolean findPartion (int arr[] , int n){

 int sum = 0;

 int i, j;

// Calculate sum of all elements

 for(i=0 ; i<n ; i++)

 sum += arr[i];

if(sum%2 !=0)

 return false;

Boolean part[sum/2+1][n+1];

//initialize top row as true

for(i=0; i<= n; i++)

part[0][j] = true;

//initialize leftmost column, except part[0][0], as 0

for(i=0; i<= sum/2 ; i++)

part[i][0] = false;

//fill the partition table

for(i=1; i=j ; i++)

 for(i=1; i<=n ; i++){

 part[i][j] = part[i][j-1];

 if(i> arr[j-1])

 part[i][j] = part[i][j];

 }

Return part[sum/2][n];

}

By Maryam Shaheen

Question Four [25 Marks]

Consider the following undirected, weighted graph:

 1

Step through Dijkstra’s algorithm to calculate the single-source shortest paths from A to every other

vertex. Show your steps in the table below. Cross out old values and write in new ones, from left to right

within each cell, as the algorithm proceeds. Also, list vertices in the order, which you marked them

known. Finally, indicate the lowest-cast path from node A to node F.

Solution:

Known vertices (in order marked known): __ __ __ __ __ __ __

Vertex known Cost Path

A Yes 0 0

B Yes 1 A

C Yes 3 2 A B

D Yes ∞ 8 7 B, E

E Yes ∞ 6 5 B C

F Yes 10 7 A, E

G Yes ∞ 3 B

Lowest-Cost path from A to F: A B C G E D F Or A B C G E F D

G

D B

E C

F A

2

12

7
 1

3

3

2

1
 9

5

10

2

