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Tree Classifiers
• Popular classification methods.

• Easy to understand, simple algorithmic approach.

• No assumption about linearity.

• History:

– CART (Classification And Regression Trees): Friedman

1977.

– ID3 and C4.5 family: Quilan 1979-1983.

– Refinements in mid 1990’s (e.g., pruning, numerical fea-

tures etc.).

• Applications:

– Botany (e.g., New Flora of the British Isles Stace 1991).

– Medical research (e.g., Pima Indian diabetes diagnosis, early

diagnosis of acute myocardial infarction).

– Computational biology (e.g., interaction between genes)
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• The terminology Tree is graphic.

• However, a decision tree is grown from the root downward.

The idea is to send the examples down the tree, using the

concept of information entropy.
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• The terminology Tree is graphic.

• However, a decision tree is grown from the root downward.

The idea is to send the examples down the tree, using the

concept of information entropy.

• General Steps to build a tree:

1. Start with the root node that has all the examples.

2. Greedy selection of the next best feature to build the

branches. The splitting criteria is node purity.

3. Class majority will be assigned to the leaves.



Classification
Given: Training data:

(x1, y1), . . . , (xn, yn)

Where xi ∈ Rd and yi is discrete (categorical/qualitative), yi ∈ Y.

Example Y = {−1,+1},Y = {0,1}.

Task: Learn a classification function:

f : Rd −→ Y



Classification
Given: Training data:

(x1, y1), . . . , (xn, yn)

Where xi ∈ Rd and yi is discrete (categorical/qualitative), yi ∈ Y.

Example Y = {−1,+1},Y = {0,1}.

Task: Learn a classification function:

f : Rd −→ Y

In the case of Tree Classifiers:

1. No need for xi ∈ Rd, so no need to turn categorical features

into numerical features.

2. The model is a tree.
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Splitting criteria in C4.5

1. The central choice is selecting the next attribute to split on.

2. We want some criteria that measures the homogeneity or im-

purity of examples in the nodes:

(a) Quantify the mix of classes at each node.

(b) Maximum if equal number of examples from each class.

(c) Minimum if the node is pure.

3. A perfect measure commonly used in Information Theory:

Entropy(S) = - p⊕ log2 p⊕ − p	 log2 p	

p⊕ is the proportion of positive examples.

p	 is the proportion of negative examples.
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In general, for c classes:

Entropy(S) =
c∑

i=1

−pi log2 pi
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Splitting Criteria in C4.5

• Now each node has some entropy that measures the homo-

geneity in the node.

• How to decide which attribute is best to split on based on

entropy?

• We use Information Gain that measures the expected reduc-

tion in entropy caused by partitioning the examples according

to the attributes:

Gain(S,A) = Entropy(S)−
∑

v∈Values(A)

|Sv|
|S|

Entropy(Sv)
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Back to the example

At the first split starting from the root, we choose the attribute

that has the max gain.

Then, we re-start the same process at each of the children nodes

(if node not pure).



Numerical features



Overfitting the data



Pruning strategies

To get suitable tree sizes and avoid overfitting:

• Stop growing the tree earlier, before it reaches the point where

it perfectly classifies the training examples. (difficult to know

when to stop!).

• Grow a complex tree then to prune it back (Best strategy

found).

1. Use a validation set / Cross validation to evaluate the utility

of post-pruning (remove a subtree if the performance of the

new tree is no worse than the original tree).

2. Rule post pruning.



CART

• Adopt same greedy, top-down algorithm.

• Binary splits instead of multiway splits.

• Uses Gini Index instead of information entropy.

Gini = 1− p2
⊕ − P2

	9.2 Tree-Based Methods 309
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1 − p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1 − p̂mk).

Cross-entropy or deviance: − ∑K
k=1 p̂mk log p̂mk.

(9.17)
For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1 − p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while



Practical considerations

1. Consider performing dimensionality reduction beforehand to

keep the most discriminative features.

2. Use ensemble methods. E.g., Random Forest, have a great

performance.*

3. Balance your dataset before training to prevent the tree from

creating a tree biased toward the classes that are dominant.

• Under-sampling: reduce the majority class

• Over-sampling: Synthetic data generation for the minority

class (e.g., SMOTE, and ADASYN).

*An Empirical Comparison of Supervised Learning Algorithms Rich by Caruana

and Alexandru Niculescu-Mizil. ICML 2006.



Tree classifiers: Pros & Cons

+ Intuitive, interpretable (but...).

+ Can be turned into rules.

+ Well-suited for categorical data.

+ Simple to build.

+ No need to scale the data.

- Unstable (change in an example may lead to a different tree).

- Univariate (split one attribute at a time, does not combine

features).

- A choice at some node depends on the previous choices.

- Need to balance the data.
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