PLANNING AND SEARCH

CLASSICAL PLANNING: PLANNING GRAPHS, GRAPHPLAN

Classical Planning: Planning graphs, Graphplan 1

Outline

> Propositionalising planning problems

> Planning graphs
> Heuristics

¢ GraphPlan algorithm

Classical Planning: Planning graphs, Graphplan

2

Propositional planning problems

Both GraphPlan and SATPlan (in the next lecture) apply to propositional

planning problem

How to propositionalise PDDL action schema: replace each action schema
with a set of all its ground (no variables) instances.

For example, replace

Move(b, x,y):
PRECOND:
EFFECT:

with

Move(A, B, C):
PRECOND:
EFFECT:

On(b,xz) A Clear(b) N\ Clear(y)
On(b,y) A Clear(x) A =On(b,x) A ~Clear(y)

O
O

(A, B) A Clear(A) A Clear(C)
(A, C) A Clear(B) A —=On(A, B) A =Clear(C)

n
n

Classical Planning: Planning graphs, Graphplan 3

Move(A, C, B):
PRECOND: On(A,C) N Clear(A) A Clear(B)
EFFECT: On(A, B) A Clear(C') AN =0On(A,C) A =Clear(B)

Move(B, A, C):
PRECOND: On(B, A) A Clear(B) A Clear(C)
EFFECT: On(B,C) A Clear(A) AN =On(B, A) A =Clear(C)
and so on.

Ground fluents can be treated as propositional symbols: On(A, B) as some-
thing like pyp.

Classical Planning: Planning graphs, Graphplan 4

Planning graphs

GraphPlan is an algorithm based on planning graph

Planning graphs are also used as a source of heuristics (an estimate of how
many steps it takes to reach the goal)

Planning graph is an approximation of a complete tree of all possible actions
and their results

Classical Planning: Planning graphs, Graphplan 5

Planning graph 2

Planning graph is organised into levels

Level Sy: initial state, consisting of nodes representing each fluent that holds

In S()
Level Ay: each ground action that might be applicable in Sy
Then alternate S; and A;

S; contains fluents which could hold at time i, (may be both P and —P);
literals may show up too early but never too late

A; contains actions which could have their preconditions satisfied at ¢

Classical Planning: Planning graphs, Graphplan 6

Example

Initial state: Have(Cake)

Goal: Have(Cake) N FEaten(Cake)

FEat(Cake):

PRECOND: Have(Cake)

EFFECT: —~Have(Cake) N\ Eaten(Cake)
Bake(Cake):

PRECOND: —Have(Cake)

EFFECT: Have(Cake)

Classical Plann

ing:

Plann

ing graphs, Graphplan

7

(Incomplete) planning graph example

S0 AO
Have(Cake)
\ -Have(Cake)
Eat(Cake) |<
Eaten(Cake)
- Eaten(Cake)

Classical Planning: Planning graphs, Graphplan 8

Building a planning graphs

In addition to ‘normal’ action, persistence action or no-op (no operation):
one for each fluent, preserves the fluent’s truth.

Mutex or mutual exclusion links depicted by red semicircles mean that actions
cannot occur together

Similarly there are mutex links between fluents.

Build the graph until two consecutive levels are identical; then the graph
levels off.

Classical Planning: Planning graphs, Graphplan 9

Another incomplete planning graph example

S

0

A

0

Have(Cake)

no-op

)

\ Eat(Cake) |<

- Eaten(Cake)

)

no-op

S

1

Have(Cake)

-Have(Cake)

Eaten(Cakeb
- Eaten(Cake)

Classical Planning: Planning graphs, Graphplan

10

Mutex between actions

Mutex relation holds between two actions at the same level if any of the
following three conditions holds:

> Inconsistent effects: one action negates an effect of another. For exam-
ple, Eat(Cake) and persistence for Have(Cake) have inconsistent effects
(~Have(Cake) and Have(Cake))

> Interference: one of the effects of one action is the negation of a precon-
dition of the other. For example Eat(Cake) interferes with the persistence
of Have(Cake) by negating its precondition

> Competing needs: one of the preconditions of one action is mutually
exclusive with a precondition of the other. For example, Fat(Cake) has pre-
condition Have(Cake) and Bake(Cake) has precondition of =Have(Cake).

Classical Planning: Planning graphs, Graphplan 11

Mutex between fluents

Mutex holds between fluents if:
> they are negations of each other, like Have(Cake) and =Have(Cake)

{> each possible pair of actions that could achieve the two literals is mutually
exclusive, for example Have(Cake) and Faten(Cake) in Sy can only be
achieved by persistence for Have(Cake) and by Eat(Cake) respectively.
(In S5 can use persistence for Eaten(Cake) and Bake(Cake) which are
not mutex).

Classical Planning: Planning graphs, Graphplan 12

Planning graph example

S, A, S, A S,
Bake(Cake)
Have(Cake) no-op Have(Cake) Have(Cake)
\) ~Have(Cake) -Have(Cake)
Eat(Cake) Eat(Cake)
) Eaten(Cakeb no-op Eaten(Cake>
- Eaten(Cake) no-op - Eaten(Cake) —no-opr”Z —~Eaten(Cake

Classical Planning: Planning graphs, Graphplan 13

Size of the planning graph

Polynomial in the size of the problem (unlike a complete search tree, which
is exponentiall)

If we have n literals and a actions,
each S; has no more than n nodes and n? mutex links,

each A; has no more than a + n nodes (n because of no-ops), (a + n)?
mutex links, and 2(an + n) precondition and effect links.

Hence, a graph with & levels has O(k(a + n)?) size.

Classical Planning: Planning graphs, Graphplan 14

Using planning graph for heuristic estimation

If some goal literal does not appear in the final level of the graph, the goal
is not achievable

The cost of achieving any goal literal can be estimated by counting the
number of levels before it appears

This heuristic never overestimates

It underestimates because planning graph allows application of actions (in-
cluding incompatible actions) in parallel

Conjunctive goals:

max level heuristic: max level for any goal conjunct (admissible but inaccu-
rate)

set level heuristic: which level they all occur on without mutex links (better,
also admissible)

Classical Planning: Planning graphs, Graphplan 15

FastForward

Example of a planning system using planning graphs for heuristics

FF or FastForward system (Hoffman 2005)

Forward space searcher

Ignore-delete-lists heuristic (see lecture 9) estimated using planning graph
Uses hill-climbing search with this heuristic to find solution

When hits a plateau or local maximum uses iterative deepening to find a
better state or gives up and restarts hill-climbing

Classical Planning: Planning graphs, Graphplan 16

GraphPlan

GraphPlan repeatedly adds a level to a planning graph with EXPAND-(GRAPH.

Once all the goals show up as non-mutex in the graph, calls EXTRACT-SOLUTION
on the graph to search for a plan.

If that fails, extracts another level.

Classical Planning: Planning graphs, Graphplan 17

GraphPlan algorithm

function GRAPHPLAN(problem) returns solution or failure
graph < INITIAL-PLANNING-GRAPH(problem)
goals <+ CONJUNCTS(problem.GOAL)
loop do
if goals all non-mutex in last level of graph then do
solution «+— EXTRACT-SOLUTION(graph,goals, NUMLEVELS(graph)
if solution /A~ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph «— EXPAND-GRAPH(graph,problem)

Classical Planning: Planning graphs, Graphplan 18

Extracting solution

Backward search problem:

The initial state is the last level of the planning graph, S, along with the
set of goals

Available actions in \S;: any set of conflict-free actions in A;,_; whose effects
cover the goals in the state. Conflict-free means: no two actions are mutex
and no two of their preconditions are mutex.

The result of applying it is a subset of S;_1 which has as its set of goals the
preconditions of the selected set of actions.

The goal is to reach a state at level Sy such that all the goals are satisfied.

The cost of each action is 1.

Classical Planning: Planning graphs, Graphplan 19

Heuristic

The search may still degenerate to an exponential exploration

Heuristic:
1. Pick the literal with a highest level cost

2. To achieve this literal, pick actions with easiest preconditions (the set of
preconditions which has the smallest max level cost)

Classical Planning: Planning graphs, Graphplan 20

Termination of GraphPlan

The graph will level off (assuming a finite set of literals and actions):

¢ Literals in planning graphs increase monotonically (because of persis-
tence)

> Actions increase monotonically (because preconditions don't go away)

> Mutexes decrease monotonically (if two actions are mutex at level ¢, they
were mutex at all previous levels)

When the graph levels off, if it is missing one of the goal conjuncts or two
of the goals are mutex, solution is impossible and GraphPlan returns failure.

If the graph levels off but EXTRACT-SOLUTION fails to find a solution, we
mey need to expand the graph finitely many times (but this will terminate -
uses additional tricks).

Classical Planning: Planning graphs, Graphplan 21

Next lecture

SATPLan

Complexity of classical planning
Successful classical planning systems
Russell and Norvig 3rd edition chapter 10

Russell and Norvig 2nd edition chapter 11

Classical Planning: Planning graphs, Graphplan

22

