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Motivation

We may assume a linear curve, 
How much a house of 1250ft2 costs?

Given the following housing prices,

Price
(in 1000s 
of dollars)

Size (feet2)

1250

230

So, conclude that a house with 1250ft2 costs 230K$.
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Motivation

Given the following housing prices

Given the right answers for each 
example in the data (training data)

Supervised Learning: Regression Problem:
Predict real-valued output
Remember that classification (not 
regression) refers to predicting 
discrete-valued output 

Price
(in 1000s 
of dollars)

Size (feet2)
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Motivation

Given the following training set of housing prices:

Notation:
m = Number of training examples
x’s  = “input” variable/features
y’s  = output variable/target variable
(x, y) : a training example
(xi, yi) : the ith training example

Size in feet2 (x) Price ($) in 1000s (y)
2104 460
1416 232
1534 315
852 178
… …

Our job is to learn 
from this data how 
to predict prices

For example:
x1 = 2104
y1 = 460
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Linear Regression

Training Set

Learning Algorithm

h

Hypothesis 

Size of 
house

Estimated 
Price

h maps x’s to y’s

How to represent h?

h (x) = q0 + q1x

h(x)

• This is a linear function.

• Also called linear regression with 
one variable.
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Linear Regression with Multiple Features

x1 x2 x3 x4 y
Suppose we have the following features

Size ft2 bedrooms floors Age Price
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178

… … … … …

A hypothesis function h(x) might be:
h(x) = q0 + q1x1 + q2x2 + q3x3 +…+ qnxn

or h(x) = q0x0 + q1x1 + q2x2 + q3x3 +…+ qnxn (x0=1)
e.g.,   h(x) = 80 + 0.1·x1 + 0.01·x2 + 3·x3 - 2·x4

Linear regression with multiple features is also called 
multiple linear regression 
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Polynomial Regression

Another hypothesis function h(x) might be (polynomial):

h (x) = q0x0 + q1x1 + q2x22 + q2x33 +…+ qnxnn (x0=1)

Suppose we have the following features
x1 x2 x3 x4 y

Size ft2 bedrooms floors Age Price
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178

… … … … …
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Polynomial Regression

Price
(y)

Size (x)

x

x x
x

x

x

x

x

x
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x

x
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xx

x

x x
x

h (x) = q0 + q1x + q2x2

h (x) = q0 + q1x + q2x2 + q3x3

h (x) = q0 + q1x + q2
! x

• We may combine features (e.g., size = width * depth).

• We have the option of what features and what models 

(quadric, cubic,…) to use. 

• Deciding which features and models that best fit our data and 

application, is beyond the scope of this course, but there are 

several algorithms for this.
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Understanding qs Values
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h (x) = q0 + q1x

qi’s:  Parameters

How to choose qi’s?
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Understanding qs Values

h(x) = 1 + 0.5x

0
321

3

2

1

q0 = 1
q1 = 0.5

h(x) =0 + 0.5x

0
321

3

2

1

q0 = 0
q1 = 0.5

h(x) = 1.5 + 0·x

0
321

3

2

1

q0 = 1.5
q1 = 0
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The Cost Function

y

x

x

xx

x x
x

x

x

Idea: Choose q0,q1 so that
h(x) is close to y for our 
training examples (x,y).

y: is the actual value.
h(x): is the estimated value.

q0,q1 

1
2m ∑ ( h(xi) – yi )2J(q0,q1) =

This cost function is also called 
a Squared Error function

The Cost Function J aims 
to find q0,q1 that minimizes 
the error.

i=1

m
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Undersetting the Cost Function

0
321

3

2

1

Lets try different values of qs and see how the cost function J(q0,q1) behave!

╳
╳

╳

0
321

3

2

1 ╳
╳

╳

0
321

3

2

1 ╳
╳

╳
J(0,1) J(0,0.5) J(0,0)

321

3

2

1

J(q1)

q1╳

J(0.5)= 1/2·3 [(0.5-1)2 +(1-2)2(1.5-3)2] 
≃ 0.68

J(1)= 1/2·3 [(0)2 +(0)2(0)2] 
= 0

J(0)= 1/2·3 [(1)2 +(2)2(3)2] 
≃ 2.3

╳

╳

╳

╳
╳╳

Given our training data, 
this is the best value of q1.

But this figure plots 
only q1, the problem 

becomes complicated if 
we have also (q0. q1)
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Cost Function Intuition II

Hypothesis:

Parameters:

Cost Function:

Our Goal:

h (x) = q0 + q1

q0, q1

1
2m ∑ ( h(xi) – yi )2J(q0,q1) =

i=1

m

minimize J(q0, q1)

Remember that our goal is find the minimum values of q0 and q1
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Cost Function Intuition II

Given any dataset, when we try to draw the cost function  
J(q0,q1), we may get this 3D shape:

Given a dataset, 
our goal is find the 
minimum values of 
J(q0,q1)
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Cost Function Intuition II

We may draw the cost function also using contour figures: 
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Cost Function Intuition II

(q0,q1 )

h (x) = 800 + 0.15 · x
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Cost Function Intuition II

(q0,q1 )

h (x) = 360 + 0·x
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Cost Function Intuition II

(q0,q1 )

Is there any way/algorithm to find qs automatically?
Yes, e.g., the Gradient Descent Algorithm 
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The Gradient Descent Algorithm

!"#$0 ≔ '0 − α . +
+,-

. .('0, '1)
Repeat until convergence { 

}

!"#$1 ≔ '1 − α . +
+,3

. .('0, '1)
'0: = !"#$0
'1:= !"#$1

Starts with some initial values of '0 and '1
Keep changing '0 and '1 to reduce .('0, '1)
Until hopefully we end up at a minimum 

Learning 
Rate

Partial 
Derivation

J		is 0	or	1



Jarrar © 2018 25

The Problem of the Gradient Descent algo.

q1
If α is too small, gradient descent 
can be slow 

q1
If α is too large, gradient decent can 
overshoot the minimum. It may fail to 
converge or even diverge

May converge to global minimum May converge to a local minimum
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The Gradient Descent for Linear Regression

!0 ≔ !0 − α . '( . ∑*+'( (ℎ(.*) − 0*)

!1 ≔ !1 − α . '( . ∑*+'( (ℎ(.*) − 0*) . .*

Repeat until convergence { 

}

Simplified version for linear regression

Next, we will try to use Linear Algebra to numerically
minimize !2 (called Normal Equation) without needing to 
use iterating algorithms like Gradient Descent. However 
Gradient Descent scales better for bigger datasets.

J		is 0	and	1
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Minimizing !" numerically

Convert the features and the target value into matrixes:

2104   5    1    45
1416   3    2    40
1534   3    2    30
852   2    1    36 

X =

x1 x2 x3 x4 y
Size ft2 bedrooms floors Age Price
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178

… … … … …

Another way to numerically (using linear algebra) estimate 
the optimal values of !".
Given the following features:

460
232
315
178

y=
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Minimizing !" numerically

1  2104   5    1    45
1  1416   3    2    40
1  1534   3    2    30
1    852   2    1    36 

X =

x1 x2 x3 x4 y
Size ft2 bedrooms floors Age Price
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178

… … … … …

460
232
315
178

y=

add #0, so to represent !0
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The Normal Equation

To obtain the optimal values (minimized) of !s, 
Use the following Normal Equation:

! = (XT ·X)-1 · XT · y

In Octave: pinv(X’*X)*X’ *y

!:   the set of !s we want to minimize
X:   the set of features in the training set
y:    the output values we try to predict 
XT:  the transpose of X
X-1: the inverse of X

Where:
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Gradient Descent Vs Normal Equation 

Gradient Descent Normal Equation 

• Needs to choose the 
learning rate (α)

• Needs many iterations

• Works well even when n
is large  

• No need to choose (α)
• Don’t need to iterate
• Need to compute (XTX), 

which takes about O(n3)
• Slow if n is very large
• Some matrices (e.g., 

singular) are non-invertible 

m training examples, n features

Recommendation: use the Normal Equation If the number of features 
in less than 1000, otherwise the Gradient Descent.
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Matrix Vector Multiplication

1   3
4   0
2   1

1
5 =╳

1×1 + 3×5 = 16

4×1 + 0×5 = 4

16
4
7

2×1 + 1×5 = 7
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Matrix Matrix Multiplication

1   3   2
4   0   1

1   3 
0   1
5   2

=╳

Multiple with the first column 

1   3   2
4   0   1

1
0
5

=╳ 11
9

Multiple with the second column 

1   3   2
4   0   1

3
1
2

=╳ 10
14

11 10
9 14
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Matrix Inverse

3    4

2   16 
=╳

If A is an m×m matrix, and if it has an inverse, then

A×A-1 = A-1×A = I

The multiplication of a matrix with its inverse produce an 

identity matrix: 

0.4      -0.1

-0.05     0.075

1    0

0    1

Some matrices do not have inverses e.g., if all cells are zeros

For more, please review Linear Algebra 
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Matrix Transpose 

1   2   0
3   5   9A=

1   3
2   5
0   9

AT=Example:

Let A be an m×n matrix, and let B = AT

Then B is an n×m matix, and Bij = Aji
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Octave

• Download from https://www.gnu.org/software/octave/

• High-level Scientific Programming Language

• Free alternatives to (and compatible with) Matlab

• helps in solving linear and nonlinear problems numerically

Online Tutorial https://www.youtube.com/playlist?list=PLnnr1O8OWc6aAjSc50lzzPVWgjzucZsSD

https://www.gnu.org/software/octave/
https://www.youtube.com/playlist?list=PLnnr1O8OWc6aAjSc50lzzPVWgjzucZsSD
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Compute the normal equation using Octave

1  2104   5    1    45
1  1416   3    2    40
1  1534   3    2    30
1    852   2    1    36 

X =

460
232
315
178

y=Given

! =

In Octave: load X.txt
load y.txt
C= pinv(X’*X)*X’ *y
Save !.txt

188.4
0.4

-56
-93
-3.7

These are the values of !s we need to 
use in our hypothesis function h(x)

h (x) = q0 + q1x + q2x2 + q3x3 + q4x4

h (x) = 188.4 + 0.4x - 56x2 - 93x3 – 3.7x4
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R (programming language)

Free software environment for statistical computing and graphics 
that is supported by the R Foundation for Statistical Computing. 

R comes with many functions that can do sophisticated stuff, and 
the ability to install additional packages to do much more.

Download R: https://cran.r-project.org/

A very good IDE for R is the RStudio:
https://www.rstudio.com/products/rstudio/download/

R basics tutorial:
https://www.youtube.com/playlist?list=PLjgj6kdf_snYBkIsWQYcYt
UZiDpam7ygg

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.youtube.com/playlist?list=PLjgj6kdf_snYBkIsWQYcYtUZiDpam7ygg
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Compute the normal equation using R

1  2104   5    1    45
1  1416   3    2    40
1  1534   3    2    30
1    852   2    1    36 

X =

460
232
315
178

y=Given

In R:
X = as.matrix(read.table("~/x.txt", header=F, sep=","))
Y = as.matrix(read.table("~/y.txt", header=F, sep=","))

thetas = solve( t(X) %*% X ) %*% t(X) %*% Y

write.table(thetas, file="~/thetas.txt",
row.names=F, col.names=F)

t(X): is the transpose of matrix X.
solve(X): is the inverse of matrix X.
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