
CHAPTER 4 
 
The process model introduced in Chapter 3 assumed that a process was an executing program with a single 
thread of control. Many modern operating systems now provide features for a process to contain multiple 
threads of control. This chapter introduces many concepts associated with multithreaded computer systems 
and covers how to use Java to create and manipulate threads. We have found it especially useful to discuss 
how a Java thread maps to the thread model of the host operating system. 

 
Exercises 
 
4.1 Provide two programming examples in which multithreading does not provide better performance than a 
single-threaded Solution. 
Answer: 

a. Any kind of sequential program is not a good candidate to be threaded. An example of this is a 
program that calculates an individual tax return. 

b. Another example is a “shell” program such as the C-shell or Korn shell. Such a program must closely 
monitor its own working space such as open files, environment variables, and current working 
directory. 

 
4.2 Under what circumstances does a multithreaded solution using multiple kernel threads provide better 
performance than a single-threaded solution on a single-processor system? 
Answer: 
When a kernel thread suffers a page fault, another kernel thread can be switched in to use the interleaving 
time in a useful manner. A single-threaded process, on the other hand, will not be capable of performing 
useful work when a page fault takes place. Therefore, in scenarios where a program might suffer from 
frequent page faults or has to wait for other system events, a multithreaded solution would perform better 
even on a single-processor system. 
 
4.3 Which of the following components of program state are shared across threads in a multithreaded 
process? 

a. Register values 
b. Heap memory 
c. Global variables 
d. Stack memory 

Answer: 
The threads of a multithreaded process share heap memory and global variables. Each thread has its 
separate set of register values and a separate stack. 
 
4.4 Can a multithreaded solution using multiple user-level threads achieve better performance on a 
multiprocessor system than on a single processor system? Explain. 
Answer: 
A multithreaded system comprising of multiple user-level threads cannot make use of the different 
processors in a multiprocessor system simultaneously. The operating system sees only a single process and 
will not schedule the different threads of the process on separate processors. Consequently, there is no 
performance benefit associated with executing multiple user-level threads on a multiprocessor system. 
 
4.5 In Chapter 3, we discussed Google’s Chrome browser and its practice of opening each new website in a 
separate process. Would the same benefits have been achieved if instead Chrome had been designed to 
open each new website in a separate thread? Explain. 



Answer: 
No. The primary reason for opening each website in a separate process is that if a web application in one 
website crashes, only that renderer process is affected, and the browser process, as well as other renderer 
processes, are unaffected. Because multiple threads all belong to the same process, any thread that crashes 
would affect the entire process. 
 
4.6 Is it possible to have concurrency but not parallelism? Explain. 
Answer: 
Yes. Concurrency means that more than one process or thread is progressing at the same time. However, it 
does not imply that the processes are running simultaneously. The scheduling of tasks allows for concurrency, 
but parallelism is supported only on systems with more than one processing core. 
 
4.7 Using Amdahl’s Law, calculate the speedup gain of an application that has a 60 percent parallel 
component for (a) two processing cores and (b) four processing cores. 
Answer: 
Two processing cores = 1.43 speedup; four processing cores = 1.82 speedup. 
 
4.8 Determine if the following problems exhibit task or data parallelism: 

• The multithreaded statistical program described in Exercise 4.21 
• The multithreaded Sudoku validator described in Project 1 in this chapter 
• The multithreaded sorting program described in Project 2 in this chapter 
• The multithreaded web server described in Section 4.1 

Answer: 
• Task parallelism. Each thread is performing a different task on the same set of data. 
• Task parallelism. Each thread is performing a different task on the same data. 
• Data parallelism. Each thread is performing the same task on different subsets of data. 
• Task parallelism. Likely running the same code, but on entirely different data. 

 
4.9 A system with two dual-core processors has four processors available for scheduling. A CPU-intensive 
application is running on this system. All input is performed at program start-up, when a single file must be 
opened. Similarly, all output is performed just before the program terminates, when the program results 
must be written to a single file. Between startup and termination, the program is entirely CPU-bound. Your 
task is to improve the performance of this application by multithreading it. The application runs on a system 
that uses the one-to-one threading model (each user thread maps to a kernel thread). 

• How many threads will you create to perform the input and output? Explain. 
• How many threads will you create for the CPU-intensive portion of the application? Explain. 

Answer: 
• It only makes sense to create as many threads as there are blocking system calls, as the threads will 

be spent blocking. Creating additional threads provides no benefit. Thus, it makes sense to create a 
single thread for input and a single thread for output. 

• Four. There should be as many threads as there are processing cores. Fewer would be a waste of 
processing resources, and any number > 4 would be unable to run. 

 
 
 
 
 
 
 
 



4.10 Consider the following code segment: 
pid_t pid; 

 

pid = fork(); 

if (pid == 0) { /* child process */ 

fork(); 

thread_create( . . .); 

} 

fork(); 

 
a. How many unique processes are created? 
b. How many unique threads are created? 

Answer: 
There are six processes and two threads. 
 
4.11 As described in Section 4.7.2, Linux does not distinguish between processes and threads. Instead, Linux 
treats both in the same way, allowing a task to be more akin to a process or a thread depending on the set of 
flags passed to the clone() system call. However, many operating systems—such as Windows XP and 
Solaris—treat processes and threads differently. Typically, such systems use a notation wherein the data 
structure for a process contains pointers to the separate threads belonging to the process. Contrast these 
two approaches for modeling processes and threads within the kernel. 
Answer: 
On one hand, in systems where processes and threads are considered as similar entities, some of the 
operating system code could be simplified. A scheduler, for instance, can consider the different processes 
and threads on an equal footing without requiring special code to examine the threads associated with a 
process during every scheduling step. On the other hand, this uniformity could make it harder to impose 
process-wide resource constraints in a direct manner. Instead, some extra complexity is required to identify 
which threads correspond to which process and perform the relevant accounting tasks. 
 
4.12 The program shown in Figure 4.16 uses the Pthreads API. What would be the output from the program 

at LINE C and LINE P? 
Answer: 
Output at LINE C is 5. Output at LINE P is 0. 
 
4.13 Consider a multiprocessor system and a multithreaded program written using the many-to-many 
threading model. Let the number of user-level threads in the program be more than the number of 
processors in the system. Discuss the performance implications of the following scenarios. 

a. The number of kernel threads allocated to the program is less than the number of processors. 
b. The number of kernel threads allocated to the program is equal to the number of processors. 
c. The number of kernel threads allocated to the program is greater than the number of processors but 

less than the number of user-level threads. 
Answer: 
When the number of kernel threads is less than the number of processors, then some of the processors 
would remain idle since the scheduler maps only kernel threads to processors and not user-level threads to 
processors. When the number of kernel threads is exactly equal to the number of processors, then it is 
possible that all of the processors might be utilized simultaneously. However, when a kernel-thread blocks 
inside the kernel (due to a page fault or while invoking system calls), the corresponding processor would 
remain idle. When there are more kernel threads than processors, a blocked kernel thread could be swapped 
out in favor of another kernel thread that is ready to execute, thereby increasing the utilization of the 
multiprocessor system. 
 



4.14 Pthreads provides an API for managing thread cancellation. The pthread_setcancelstate() 
function is used to set the cancellation state. Its prototype appears as follows: 

pthread_setcancelstate(int state, int *oldstate) 

The two possible values for the state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE. 
Using the code segment shown in Figure 4.17, provide examples of two operations that would be 

suitable to perform between the calls to disable and enable thread cancellation. 
Answer: 
Three examples: 

a. An update to a file 
b. A situation in which two write operations must both complete if either completes 
c. Essentially any operation that we want to run to completion 


