
CHAPTER 5 
 
CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU among processes, 
the operating system can make the computer more productive. In this chapter, we introduce the basic 
scheduling concepts and discuss in great length CPU scheduling. FCFS, SJF, Round-Robin, Priority, and the 
other scheduling algorithms should be familiar to the students. This is their first exposure to the idea of 
resource allocation and scheduling, so it is important that they understand how it is done. Gantt charts, 
simulations, and play acting are valuable ways to get the ideas across. Show how the ideas are used in other 
situations (like waiting in line at a post office, a waiter time sharing between customers, even classes being 
an interleaved round-robin scheduling of professors). 

A simple project is to write several different CPU schedulers and compare their performance by 
simulation. The source of CPU and I/O bursts may be generated by random number generators or by a trace 
tape. The instructor can make up the trace tape in advance to provide the same data for all students. The file 
that I used was a set of jobs, each job being a variable number of alternating CPU and I/O bursts. The first line 
of a job was the word JOB and the job number. An alternating sequence of CPU n and I/O n lines followed, 
each specifying a burst time. The job was terminated by an END line with the job number again. Compare the 
time to process a set of jobs using FCFS, Shortest-Burst-Time, and round-robin scheduling. Round-robin is 
more difficult, since it requires putting unfinished requests back in the ready queue. 

 

Exercises 
 
5.1 Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs? 
Answer: 
I/O-bound programs have the property of performing only a small amount of computation before performing 
I/O. Such programs typically do not use up their entire CPU quantum. CPU-bound programs, on the other 
hand, use their entire quantum without performing any blocking I/O operations. Consequently, one could 
make better use of the computer’s resources by giving higher priority to I/O-bound programs and allow them 
to execute ahead of the CPU-bound programs. 
 
5.2 Discuss how the following pairs of scheduling criteria conflict in certain settings. 

a. CPU utilization and response time 
b. Average turnaround time and maximum waiting time 
c. I/O device utilization and CPU utilization 

Answer: 
a. CPU utilization and response time: CPU utilization is increased if the overheads associated with 

context switching is minimized. The context switching overheads could be lowered by performing 
context switches infrequently. This could, however, result in increasing the response time for 
processes. 

b. Average turnaround time and maximum waiting time: Average turnaround time is minimized by 
executing the shortest tasks first. Such a scheduling policy could, however, starve long-running tasks 
and thereby increase their waiting time. 

c. I/O device utilization and CPU utilization: CPU utilization is maximized by running long-running CPU-
bound tasks without performing context switches. I/O device utilization is maximized by scheduling 
I/O-bound jobs as soon as they become ready to run, thereby incurring the overheads of context 
switches. 

 
5.3 One technique for implementing lottery scheduling works by assigning processes lottery tickets, which 
are used for allocating CPU time. Whenever a scheduling decision has to be made, a lottery ticket is chosen at 
random, and the process holding that ticket gets the CPU. The BTV operating system implements lottery 



scheduling by holding a lottery 50 times each second, with each lottery winner getting 20 milliseconds of CPU 
time (20 milliseconds × 50 = 1 second). Describe how the BTV scheduler can ensure that higher-priority 
threads receive more attention from the CPU than lower-priority threads. 
Answer: 
By assigning more lottery tickets to higher-priority processes. 
 
5.4 In this chapter, we discussed possible race conditions on various kernel data structures. Most scheduling 
algorithms maintain a run queue, which lists processes eligible to run on a processor. On multicore systems, 
there are two general options: (1) each processing core has its own run queue, or (2) a single run queue is 
shared by all processing cores. What are the advantages and disadvantages of each of these approaches? 
Answer: 
The primary advantage of each processing core having its own run queue is that there is no contention over a 
single run queue when the scheduler is running concurrently on 2 or more processors. When a scheduling 
decision must be made for a processing core, the scheduler only need to look no further than its private run 
queue. A disadvantage of a single run queue is that it must be protected with locks to prevent a race 
condition and a processing core may be available to run a thread, yet it must first acquire the lock to retrieve 
the thread from the single queue. However, load balancing would likely not be an issue with a single run 
queue, whereas when each processing core has its own run queue, there must be some sort of load 
balancing between the different run queues. 
 
5.5 Consider the exponential average formula used to predict the length of the next CPU burst. What are the 
implications of assigning the following values to the parameters used by the algorithm? 

a. α = 0 and τ0 = 100 milliseconds 
b. α = 0.99 and τ 0 = 10 milliseconds 

Answer: 
When α = 0 and τ0 = 100 milliseconds, the formula always makes a prediction of 100 milliseconds for the next 
CPU burst. When α = 0.99 and τ0 = 10 milliseconds, the most recent behavior of the process is given much 
higher weight than the past history associated with the process. Consequently, the scheduling algorithm is 
almost memoryless, and simply predicts the length of the previous burst for the next quantum of CPU 
execution. 
 
5.6 A variation of the round-robin scheduler is the regressive round-robin scheduler. This scheduler assigns 
each process a time quantum and a priority. The initial value of a time quantum is 50 milliseconds. However, 
every time a process has been allocated the CPU and uses its entire time quantum (does not block for I/O), 10 
milliseconds is added to its time quantum, and its priority level is boosted. (The time quantum for a process 
can be increased to a maximum of 100 milliseconds.) When a process blocks before using its entire time 
quantum, its time quantum is reduced by 5 milliseconds, but its priority remains the same. What type of 
process (CPU-bound or I/O-bound) does the regressive round-robin scheduler favor? Explain. 
Answer: 
This scheduler would favor CPU-bound processes as they are rewarded with a longer time quantum as well as 
priority boost whenever they consume an entire time quantum. This scheduler does not penalize I/O-bound 
processes as they are likely to block for I/O before consuming their entire time quantum, but their priority 
remains the same. 
 
 
 
 
 
 
 



5.7 Consider the following set of processes, with the length of the CPU burst time given in milliseconds: 
 

Process  Burst Time  Priority 
P1  2  2 
P2  1  1 
P3  8  4 
P4  4  2 
P5  5  3 

 
The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0. 

a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling 
algorithms: FCFS, SJF, nonpreemptive priority (a smaller priority number implies a higher priority), 
and RR (quantum = 1). 

b. What is the turnaround time of each process for each of the scheduling algorithms in part a? 
c. What is the waiting time of each process for each of these scheduling algorithms? 
d. Which of the algorithms results in the minimum average waiting time (over all processes)? 

Answer: 
a. The four Gantt charts are 

 
b. Turnaround time 

 FCFS RR SJF Priority 

P1 10 19 19 16 
P2 11 2 1 1 
P3 13 7 4 18 
P4 14 4 2 19 
P5 19 14 9 6 

 
c. Waiting time (turnaround time minus burst time) 

 FCFS RR SJF Priority 

P1 0 9 9 6 
P2 10 1 0 0 
P3 11 5 2 16 
P4 13 3 1 18 
P5 14 9 4 1 

 
d. Shortest Job First 

 
5.8 The following processes are being scheduled using a preemptive, round-robin scheduling algorithm. Each 
process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition 
to the processes listed below, the system also has an idle task (which consumes no CPU resources and is 
identified as Pidle). This task has priority 0 and is scheduled whenever the system has no other available 



processes to run. The length of a time quantum is 10 units. If a process is preempted by a higher-priority 
process, the preempted process is placed at the end of the queue. 
 

Thread Priority Burst Arrival 

P1 40 20 0 

P2 30 25 25 

P3 30 25 30 

P4 35 15 60 

P5 5 10 100 

P6 10 10 105 

 
a. Show the scheduling order of the processes using a Gantt chart. 
b. What is the turnaround time for each process? 
c. What is the waiting time for each process? 
d. What is the CPU utilization rate? 

Answer: 
a. Gantt chart in handwritten notes. 
b. p1: 20-0 - 20, p2: 80-25 = 55, p3: 90 - 30 = 60, p4: 75-60 = 15, p5: 120-100 = 20, p6: 115-105 = 10 
c. 1 p1: 0, p2: 40, p3: 35, p4: 0, p5: 10, p6: 0 
d. 105/120 = 87.5 percent. 

 
5.9 The nice command is used to set the nice value of a process on Linux, as well as on other UNIX systems. 
Explain why some systems may allow any user to assign a process a nice value >= 0 yet allow only the root 
user to assign nice values < 0. 
Answer: 
Nice values < 0 are assigned a higher relative priority and such systems may not allow non-root processes to 
assign themselves higher priorities. 
 
5.10 Which of the following scheduling algorithms could result in starvation? 

a. First-come, first-served 
b. Shortest job first 
c. Round robin 
d. Priority 

Answer:  
Shortest job first and priority-based scheduling algorithms could result in starvation. 
 
5.11 Consider a variant of the RR scheduling algorithm where the entries in the ready queue are pointers to 
the PCBs. 

a. What would be the effect of putting two pointers to the same process in the ready queue? 
b. What would be two major advantages and disadvantages of this scheme? 
c. How would you modify the basic RR algorithm to achieve the same effect without the duplicate 

pointers? 
Answer: 

a. In effect, that process will have increased its priority since by getting time more often it is receiving 
preferential treatment. 

b. The advantage is that more important jobs could be given more time, in other words, higher priority 
in treatment. The consequence, of course, is that shorter jobs will suffer. 

c. Allot a longer amount of time to processes deserving higher priority. In other words, have two or 
more quantums possible in the Round-Robin scheme. 

 



5.12 Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume that the I/O-bound 
tasks issue an I/O operation once for every millisecond of CPU computing and that each I/O operation takes 
10 milliseconds to complete. Also assume that the context-switching overhead is 0.1 millisecond and that all 
processes are long-running tasks. Describe is the CPU utilization for a round-robin scheduler when: 

a. The time quantum is 1 millisecond 
b. The time quantum is 10 milliseconds 

Answer: 
a. The time quantum is 1millisecond: Irrespective of which process is scheduled, the scheduler incurs a 0.1 
millisecond context-switching cost for every context-switch. This results in a CPU utilization of 1/1.1 * 100 = 
91%. 
b. The time quantum is 10 milliseconds: The I/O-bound tasks incur a context switch after using up only 1 
millisecond of the time quantum. The time required to cycle through all the processes is therefore 10*1.1 + 
10.1 (as each I/O-bound task executes for 1 millisecond and then incur the context switch task, whereas the 
CPU-bound task executes for 10 milliseconds before incurring a context switch). The CPU utilization is 
therefore 20/21.1 * 100 = 94%. 
 
5.13 Consider a system implementing multilevel queue scheduling. What strategy can a computer user 
employ to maximize the amount of CPU time allocated to the user’s process? 
Answer:  
The program could maximize the CPU time allocated to it by not fully utilizing its time quantums. It could use 
a large fraction of its assigned quantum, but relinquish the CPU before the end of the quantum, thereby 
increasing the priority associated with the process. 
 
5.14 Consider a preemptive priority scheduling algorithm based on dynamically changing priorities. Larger 
priority numbers imply higher priority. When a process is waiting for the CPU (in the ready queue, but not 
running), its priority changes at a rate α; when it is running, its priority changes at a rate β. All processes are 
given a priority of 0 when they enter the ready queue. The parameters α and β can be set to give many 
different scheduling algorithms. 

a. What is the algorithm that results from β > α > 0? 
b. What is the algorithm that results from α < β < 0? 

Answer: 
a. FCFS 
b. LIFO 

 
5.15 Explain the differences in how much the following scheduling algorithms discriminate in favor of short 
processes: 

a. FCFS 
b. RR 
c. Multilevel feedback queues 

Answer: 
a. FCFS—discriminates against short jobs since any short jobs arriving after long jobs will have a longer 

waiting time. 
b. RR—treats all jobs equally (giving them equal bursts of CPU time) so short jobs will be able to leave 

the system faster since they will finish first. 
c. Multilevel feedback queues work similar to the RR algorithm—they discriminate favorably toward 

short jobs. 
 
5.16 Using the Windows scheduling algorithm, determine the numeric priority of each of the following 
threads 

a. A thread in the REALTIME_PRIORITY_CLASS with a relative priority of HIGHEST. 



b. A thread in the NORMAL_PRIORITY_CLASS with a relative priority of NORMAL. 
c. A thread in the HIGH_PRIORITY_CLASS with a relative priority of ABOVE_NORMAL. 

Answer: 
a. 26 
b. 8 
c. 14 

 
5.17 Assuming that no threads belong to the REALTIME_PRIORITY_CLASS and that none may be assigned a 
TIME_CRITICAL priority, what combination of priority class and priority corresponds to the highest possible 
relative priority in Windows scheduling? 
Answer: 
HIGH priority class and HIGHEST priority within that class. (numeric priority of 15) 
 
5.18 Consider the scheduling algorithm in the Solaris operating system for time-sharing threads: 

a. What is the time quantum (in milliseconds) for a thread with priority 10? With priority 55? 
b. Assume a thread with priority 35 has used its entire time quantum without blocking. What new 

priority will the scheduler assign this thread? 
c. Assume a thread with priority 35 blocks for I/O before its time quantum has expired. What new 

priority will the scheduler assign this thread? 
Answer: 

a. 160 and 40 
b. 35 
c. 54 

 
5.19 Assume that two tasks A and B are running on a Linux system. The nice values of A and B are−5 and+5, 
respectively. Using the CFS scheduler as a guide, describe how the respective values of vruntime vary 
between the two processes given each of the following scenarios: 

• Both A and B are CPU-bound. 
• A is I/O-bound, and B is CPU-bound. 
• A is CPU-bound, and B is I/O-bound. 

Answer: 

• Since A has a higher priority than B, vruntime will move more slowly for A than B. If both A and B 
are CPU-bound (that is they both use the CPU for as long as it is allocated to them), vruntime will 
generally be smaller for A than B, and hence A will have a greater priority to run over B. 

• In this situation, vruntime will be much smaller for A than B as (1) vruntime will move more 
slowly for A than B due to priority differences, and (2) Awill require less CPU-time as it is I/O-bound. 

• This situation is not as clear, and it is possible that B may end up running in favor of A as it will be 

using the processor less than A and in fact its value of vruntime may in fact be less than the value 

of vruntime for B. 
 
5.20 Discuss ways in which the priority inversion problem could be addressed in a real-time system. Also 
discuss whether the solutions could be implemented within the context of a proportional share scheduler. 
Answer: 
The priority inversion problem could be addressed by temporarily changing the priorities of the processes 
involved. Processes that are accessing resources needed by a higher-priority process inherit the higher 
priority until they are finished with the resources in question. When they are finished, their priority reverts to 
its original value. This solution can be easily implemented within a proportional share scheduler; the shares 
of the high-priority processes are simply transferred to the lower-priority process for the duration when it is 
accessing the resources. 
 



5.21 Under what circumstances is rate-monotonic scheduling inferior to earliest-deadline-first scheduling in 
meeting the deadlines associated with processes? 
Answer: 
Consider two processes P1 and P2 where p1 = 50, t1 = 25 and p2 = 75, t2 = 30. If P1 were assigned a higher 
priority than P2, then the following scheduling events happen under rate-monotonic scheduling. P1 is 
scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled at t = 50, and P2 is scheduled at t = 75. P2 is not 
scheduled early enough to meet its deadline. The earliest deadline schedule performs the following 
scheduling events: P1 is scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled at t = 55, and so on. This 
schedule actually meets the deadlines and therefore earliest-deadline-first scheduling is more effective than 
the rate-monotonic scheduler. 
 
5.22 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75, and t2 = 30. 

a. Can these two processes be scheduled using rate-monotonic scheduling? Illustrate your answer using 
a Gantt chart such as the ones in Figure 5.16–Figure 5.19. 

b. Illustrate the scheduling of these two processes using earliest-deadline-first (EDF) scheduling. 
Answer: 
Consider when P1 is assigned a higher priority than P2 with the rate monotonic scheduler. P1 is scheduled at t 
= 0, P2 is scheduled at t = 25, P1 is scheduled at t = 50, and P2 is scheduled at t = 75. P2 is not scheduled early 
enough to meet its deadline. When P1 is assigned a lower priority than P2, then P1 does not meet its deadline 
since it will not be scheduled in time. 
 
5.23 Explain why interrupt and dispatch latency times must be bounded in a hard real-time system. 
Answer: 
following tasks: save the currently executing instruction, determine the type of interrupt, save the current 
process state, and then invoke the appropriate interrupt service routine. Dispatch latency is the cost 
associated with stopping one process and starting another. Both interrupt and dispatch latency needs to be 
minimized in order to ensure that real-time tasks receive immediate attention. Furthermore, sometimes 
interrupts are disabled when kernel data structures are being modified, so the interrupt does not get serviced 
immediately. For hard real-time systems, the time-period for which interrupts are disabled must be bounded 
in order to guarantee the desired quality of service. 


