
Webservices Technologies

Lecture handouts

Feb 2020

Definition of Web Service

A Web service is an interface that describes a
collection of operations that are network-
accessible through standardized XML
messaging.

Web services built on existing and emerging
standards such as HyperTextTransferProtocol
(HTTP), Extensible Markup Language (XML),
SimpleObjectAccessProtocol(SOAP), WebServices
Description Language (WSDL), and the Universal
Description, Discovery, and
Integration(UDDI)project.

A Web service performs a specific task or set of tasks.
Web service is describes
dusingastandard,formalXMLnotation,calledit service
description,that provides all of the details necessary to
interact with the service, including message formats
(that detail the operations), transport protocols, and
location. Web service descriptions are expressed in
WSDL.

Characteristics of Web Service

• Available over the internet or private (intranet) networks

•Uses a standardized xml messaging system

•Is not tied to any one operating system or programming

language

•Is self-describing via a common xml grammar

•Is discoverable via a simple find mechanism

Gottschalk, Karl, et al. "Introduction to web services

architecture." IBM systems Journal 41.2 (2002): 170-177.

Web services actors, objects, and operation

Web services programming stack

Gottschalk, Karl, et al. "Introduction to web services

architecture." IBM systems Journal 41.2 (2002): 170-177.

Webservice Architecture

Web Service Roles

❑Service Provider

This is the provider of the web service.
The service provider implements the
service and makes it available on the
Internet.

❑Service Requestor

This is any consumer of the web service.
The requestor utilizes an existing web
service by opening a network
connection and sending an XML request.

❑Service Registry
This is a logically centralized directory of services. The registry
provides a central place where developers can publish new
services or find existing ones. It therefore serves as a
centralized clearing house for companies and their services.

Web Service Protocol Stack

has four main layers.

Service Transport

This layer is responsible for transporting messages
between applications. Currently, this layer includes
Hyper Text Transport Protocol (HTTP), Simple Mail
Transfer Protocol (SMTP), File Transfer Protocol
(FTP), and newer protocols such as Blocks Extensible
Exchange Protocol (BEEP).

XML Messaging
This layer is responsible for encoding messages in a common
XML format so that messages can be understood at either end.
Currently, this layer includes XML-RPC and SOAP.
Service Description

Service Description

This layer is responsible for describing the public
interface to a specific web service. Currently,
service description is handled via the Web
Service Description Language (WSDL).

Service Discovery

This layer is responsible for centralizing services into a

common registry and providing easy publish/find

functionality. Currently, service discovery is handled via

Universal Description, Discovery, and Integration (UDDI).

As web services evolve, additional layers may be added

and additional technologies may be added to each layer.

The next chapter explains the components of web

services.

How Does a Web Service Work?

• A web service enables communication among various applications by using open
standards such as HTML, XML, WSDL, and SOAP. A web service takes the help of −

• XML to tag the data

• SOAP to transfer a message

• WSDL to describe the availability of service.

• You can build a Java-based web service on Solaris that is accessible from your Visual
Basic program that runs on Windows.

• You can also use C# to build new web services on Windows that can be invoked from
your web application that is based on JavaServer Pages (JSP) and runs on Linux.

Example

Consider a simple account-management and order

processing system. The accounting personnel use a client

application built with Visual Basic or JSP to create new

accounts and enter new customer orders.

The processing logic for this system is written in Java and

resides on a Solaris machine, which also interacts with a

database to store information.

The steps to perform this operation are as follows −

Example

• The client program bundles the account registration
information into a SOAP message.

• This SOAP message is sent to the web service as the body
of an HTTP POST request.

• The web service unpacks the SOAP request and converts it
into a command that the application can understand.

• The application processes the information as required and
responds with a new unique account number for that
customer.

• Next, the web service packages the response into another
SOAP message, which it sends back to the client program in
response to its HTTP request.

• The client program unpacks the SOAP message to obtain
the results of the account registration process.

Introduction to RESTful Services

Source: https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-
details-e47ec659f6bc

REST is an architecture style for designing networked
applications. The idea is that, rather than using complex
mechanisms such as CORBA, RPC or SOAP to connect between
machines, simple HTTP is used to make calls between
machines.

https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-details-e47ec659f6bc
https://tr.wikipedia.org/wiki/CORBA
https://en.wikipedia.org/wiki/Remote_procedure_call
https://tr.wikipedia.org/wiki/SOAP

Benefits of REST

RESTful as lightweight Web Services: The RESTful
architecture was a reaction to the more heavy-
weight SOAP-based standards. In REST web
services, the emphasis is on simple point-to-point
communication over HTTP using plain XML. In
addition, RESTful permits many different data
formats whereas SOAP only permits XML.

The simplicity of RESTful: The RESTful architecture is much
simpler to develop than SOAP. One of the main reasons for
REST popularity is the simplicity and ease of use, as it does an
extension of native Web technologies such as HTTP.

RESTful architecture is closer in design to the Web: RESTful is
the architectural style of the web itself, so the developer with
knowledge in web architecture will naturally develop in the
RESTful architecture.

Scalability: As RESTful forbids conversational state, which
means we can scale very wide by adding additional server
nodes behind a load balancer.

Expose APIs as HTTP Services: When developers need
the universal presence with minimum efforts, given the
fact that RESTful APIs are exposed as HTTP Services,
which is virtually present on almost all the platforms.

Architectural Constraints

1. Interface / Uniform Contract: Once a developer becomes
familiar with one of your API, he should be able to follow the
similar approach for other APIs.

2. Client-Server: Servers and clients may also be replaced and
developed independently, as long as the interface between
them is not altered.

3. Stateless: No client context shall be stored on the server
between requests. The client is responsible for managing the
state of the application.

4. Cache: Well-managed caching partially or completely
eliminates some client-server interactions, further improving
scalability and performance.

Source: https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-
details-e47ec659f6bc

The server will not store anything about the latest
HTTP request the client made. It will treat every
request as new. No session, no history.
If the client application needs to be a stateful
application for the end-user, where user logs in once
and do other authorized operations after that, then
each request from the client should contain all the
information necessary to service the request –
including authentication and authorization details.

https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-details-e47ec659f6bc

Architectural Constraints

5. Layered System
layered system style allows an architecture to be composed of

hierarchical layers by constraining component behavior such
that each component cannot "see" beyond the immediate
layer with which they are interacting. By restricting knowledge
of the system to a single layer, we place a bound on the overall
system complexity and promote substrate independence

6. Code-On-Demand (optional)
REST allows client functionality to be extended by downloading
and executing code in the form of applets or scripts. This
simplifies clients by reducing the number of features required
to be pre-implemented. Allowing features to be downloaded
after deployment improves system extensibility. However, it
also reduces visibility, and thus is only an optional constraint
within REST.

REST Verbs

Methods or verbs commonly used

1. GET − Provides a read only access to a
resource.

2. POST − Used to create a new resource.

3. DELETE − Used to remove a resource.

4. PUT − Used to update a existing resource
or create a new resource.

Sr.No. URI HTTP
Method

POST body Result

1 /UserService
/users

GET empty Show list of
all the users.

2 /UserService
/addUser

POST JSON String Add details
of new user.

3 /UserService
/getUser/:id

GET empty Show details
of a user.

Source: https://www.tutorialspoint.com/restful/index.htm

https://www.tutorialspoint.com/restful/index.htm

Uniform Interface

Resource identification in requests

Individual resources are identified in requests, for example using URIs in RESTful Web services. The resources

themselves are conceptually separate from the representations that are returned to the client. For example, the

server could send data from its database as HTML, XML or as JSON—none of which are the server's internal

representation.

Resource manipulation through representations

When a client holds a representation of a resource, including any metadata attached, it has enough information to

modify or delete the resource.

Self-descriptive messages

Each message includes enough information to describe how to process the message. For example, which parser to

invoke can be specified by a media type.[3]

Hypermedia as the engine of application state (HATEOAS)

Having accessed an initial URI for the REST application—analogous to a human Web user accessing the home

page of a website—a REST client should then be able to use server-provided links dynamically to discover all

the available actions and resources it needs. As access proceeds, the server responds with text that

includes hyperlinks to other actions that are currently available. There is no need for the client to be hard-coded

with information regarding the structure or dynamics of the application.

https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-3
https://en.wikipedia.org/wiki/HATEOAS
https://en.wikipedia.org/wiki/Home_page
https://en.wikipedia.org/wiki/Hyperlink

HTTP Response Codes

CATEGORY DESCRIPTION

1xx: Informational Communicates transfer protocol-level information.

2xx: Success
Indicates that the client’s request was accepted
successfully.

3xx: Redirection
Indicates that the client must take some additional action
in order to complete their request.

4xx: Client Error
This category of error status codes points the finger at
clients.

5xx: Server Error
The server takes responsibility for these error status
codes.

Source: https://restfulapi.net/http-status-codes/

https://restfulapi.net/http-status-codes/

Serverless Architecture

Serverless Computing

What is serverless computing?
Serverless computing allows you to build and run applications
and services without thinking about servers. Serverless
applications don't require you to provision, scale, and manage
any servers. You can build them for nearly any type of
application or backend service, and everything required to run
and scale your application with high availability is handled for
you.

-https://aws.amazon.com/serverless/

.

PaaS

IaaS

Function Function Function

Serverless Model

https://aws.amazon.com/serverless/#Serverless_Application_Use_Cases

Example of AWS Serverless Architecture

/

AWS API Gateway

• Amazon API Gateway is an AWS service for creating, publishing, maintaining, monitoring, and securing REST,
HTTP, and WebSocket APIs at any scale. API developers can create APIs that access AWS or other web services,
as well as data stored in the AWS Cloud. As an API Gateway API developer, you can create APIs for use in your
own client applications. Or you can make your APIs available to third-party app developers. API Gateway creates
RESTful APIs that:

• Are HTTP-based.

• Enable stateless client-server communication.

• Implement standard HTTP methods such as GET, POST, PUT, PATCH, and DELETE.

Source: https://aws.amazon.com/serverless/

https://aws.amazon.com/what-is-cloud-computing/

NOSQL Database

• NoSQL databases are purpose built for specific
data models and have flexible schemas for
building modern applications. NoSQL databases
are widely recognized for their ease of
development, functionality, and performance at
scale.

DynamoDB is the Serverless NoSQL Database offering by AWS.

Being Serverless makes it easier to

consider DynamoDB for Serverless Microservices since it goes inline with

the patterns and practices when designing serverless architectures in

AWS

https://medium.com/totalcloudio/aws-dynamodb-for-serverless-microservices-2acbbbff1bca

https://medium.com/totalcloudio/aws-dynamodb-for-serverless-microservices-2acbbbff1bca

NO SQL Example

•In a relational database, a book record is often dissembled (or “normalized”) and
stored in separate tables, and relationships are defined by primary and foreign key
constraints. In this example, the Books table has columns for ISBN, Book Title,
and Edition Number, the Authors table has columns for AuthorID and Author Name,
and finally the Author-ISBN table has columns for AuthorID and ISBN. The relational
model is designed to enable the database to enforce referential integrity between
tables in the database, normalized to reduce the redundancy, and generally
optimized for storage.

•In a NoSQL database, a book record is usually stored as a JSON document. For each
book, the item, ISBN, Book Title, Edition Number, Author Name, and AuthorID are
stored as attributes in a single document. In this model, data is optimized for
intuitive development and horizontal scalability.

http://json.org/

Serverless Advantages

• No Hardware or Operating System Management: Developers
don’t need to worry about hardware and operating systems,
focusing on business logic. No Server Management.

• High Availability and auto scalability: If function needs to
be run in multiple instances, the vendor's servers will start
up, run, and end them as they are needed, often using
containers (the functions start up more quickly if they have
been run recently)

• Cost Efficient : Developers are only charged for the server
space they use, reducing cost. As in a 'pay-as-you-go' phone
plan, No costs when functions aren't running.

• Faster Development : Decreased time
to market and faster software release.

1. https://medium.com/systems-architectures/advantages-and-disadvantages-of-serverless-a-
technical-perspective-2eb1fa5c69ec

Sources

2. https://jaxenter.com/benefits-drawbacks-serverless-computing-135074.html

3. https://www.cloudflare.com/learning/serverless/why-use-serverless/

https://medium.com/systems-architectures/advantages-and-disadvantages-of-serverless-a-technical-perspective-2eb1fa5c69ec
https://jaxenter.com/benefits-drawbacks-serverless-computing-135074.html
https://www.cloudflare.com/learning/serverless/why-use-serverless/

Severless Disadvantages

• Difficult to test and and Debug :It is difficult to replicate the serverless
environment in order to see how code will actually perform once deployed.
Debugging is more complicated because developers do not have visibility into
backend processes, and because the application is broken up into separate,
smaller functions.

• Vendor lock-in is a risk : Allowing a vendor to provide all
backend services for an application inevitably increases
reliance on that vendor. Setting up a serverless architecture
with one vendor can make it difficult to switch vendors if
necessary, especially since each vendor offers slightly
different features and workflows.

• Possible Impact on Performance :Because it's not constantly
running, serverless code may need to 'boot up' when it is
used. This startup time may degrade performance

Web Applications
Restful Approach

Single Page and Mutlipe Page App

Traditional web application

Perform most of the application logic on
the server

Single Page App with APIs

single page applications (SPAs) that perform
most of the user interface logic in a web
browser, communicating with the web
server primarily using web APIs

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps

Possible
Advantages of
SPA with APIs

Easier design Easier testing &
continuous integration

Better performance

Better scaling Client – server loose
coupling

Source: https://applandeo.com/blog/single-page-applications-rest-better-dynamic-web-pages/

https://applandeo.com/blog/single-page-applications-rest-better-dynamic-web-pages/

Using SPA Or Dynamic Web App:
Factors to Consider

Use traditional web applications when:

•Your application's client-side requirements are simple or even read-only.

•Your application needs to function in browsers without JavaScript support.

•Your team is unfamiliar with JavaScript or TypeScript development techniques.

Use a SPA when:

•Your application must expose a rich user interface with many features.

•Your team is familiar with JavaScript and/or TypeScript development.

•Your application must already expose an API for other (internal or public) clients.

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps

SPA+ API: Fits with Serverless

https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-
dynamodb-cognito/

https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Sample App:
Building a Serverless APP with RESTful

• https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-
apigateway-s3-dynamodb-cognito/

Sample App Tutorial

https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

